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The successful development and translation of PET imaging agents targeting β-amyloid
plaques and hyperphosphorylated tau tangles have allowed for in vivo detection of
these hallmarks of Alzheimer’s disease (AD) antemortem. Amyloid and tau PET have
been incorporated into the A/T/N scheme for AD characterization and have become
an integral part of ongoing clinical trials to screen patients for enrollment, prove
drug action mechanisms, and monitor therapeutic effects. Meanwhile, preclinical PET
imaging in animal models of AD can provide supportive information for mechanistic
studies. With the recent advancement of gene editing technologies and AD animal
model development, preclinical PET imaging in AD models will further facilitate
our understanding of AD pathogenesis/progression and the development of novel
treatments. In this study, we review the current state-of-the-art in preclinical PET imaging
using animal models of AD and suggest future research directions.

Keywords: positron emission tomography, Alzheimer’s disease, β-amyloid (Aβ), tau, neurodegeneration, SV2A,
neuroinflamamation, animal model

INTRODUCTION

Dementia is a category of neurodegenerative diseases that mainly affect the daily lives of
older people and is characterized by progressive loss of memory, communication, problem-
solving/thinking, and motorsensory abilities. The common types of dementia include vascular
dementia, frontotemporal dementia, dementia with Lewy bodies, and Alzheimer’s disease (AD),
which is the most common type and accounts for 60–80% of overall dementia cases (Alzheimer’s
Association, 2021). Globally, there are 350,000 new cases of early onset dementia per year, and by
2050, 107 million people are predicted to be living with AD, among which 68% reside in the low-
and middle-income countries (Global Burden of Disease Study).

The pathological hallmarks of AD are β-amyloid (Aβ)-containing extracellular plaques
and oligomers and tau-containing intracellular neurofibrillary tangles (NFTs). The plaques
and oligomers interfere with neuron-to-neuron communication at synapses, leading to
neurodegeneration. Tau tangles block the transport of nutrients and other molecules inside the
neurons, which contributes to neural death. In addition, the Aβ plaque and tau proteins can
activate the microglia, which clears these toxic proteins and dead cells but may result in chronic
inflammation (Long and Holtzman, 2019). Atrophy, a decrease in brain volume owing to the loss
of synapses, dendrites, and neuronal cell bodies, is another biomarker for AD progression (Pini
et al., 2016; Halliday, 2017). In addition, the decrease in glucose metabolism further compromises
the brain’s function (Wang et al., 2016). Familial early-onset AD (FAD) is associated with mutated
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genes such as APP, PSEN1, PSEN2, and MAPT, which also
significantly increase the risk for late-onset AD (LOAD)
(Ryan and Rossor, 2010), while apolipoprotein E variant ε4
(APOEε4) (Kim et al., 2009) and triggering receptor expressed
on myeloid cells 2 (TREM2) are associated with the highest risk
of developing LOAD (Wolfe et al., 2018). These dominantly
inherited Alzheimer’s disease (DIAD) caused by rare genetic
mutations are associated with increased levels of Aβ and tau,
decreased glucose metabolism, and brain atrophy 10–20 years
before the symptoms set in. In addition, multiple enzymes are
associated with AD, including the β-site APP cleaving enzyme
1 (BACE1) (Das and Yan, 2017), caspase 3 (Rohn, 2010), and
aspartyl cathepsin (Haque et al., 2008), among others.

Animal models of AD have become essential for studying
the pathogenesis and progression of AD pathology and for
validating the mechanism of action of novel therapeutics before
translation to human trials (Alzheimer’s Association, 2021).
Many animal models have been developed to mimic the
pathophysiological processes and progression mechanisms of AD
and to preclinically test treatment methods (Figure 1). Both
invertebrate and vertebrate animals have been used in modeling
the aging and certain aspects of AD processes, as genetically
modified animals that recapitulate certain traits of AD are needed
to understand the pathological and biological mechanisms of
AD. Because there has not been a rodent model that completely
recapitulates human AD, rodent models have been mainly used
for proving mechanisms of action for therapeutic interventions
or testing the target binding specificity of imaging probes. A fully
characterized AD animal model with stable phenotypes and a
clear disease onset time can greatly help address the specific
scientific questions.

Many neuroimaging methods, such as magnetic resonance
imaging (MRI; structural and functional), computerized
tomography (CT), and positron emission tomography
(PET), have been increasingly employed to evaluate AD
neurodegeneration. PET imaging uses radiolabeled tracers
to detect and quantify cerebral and metabolic changes by
targeting specific biomarkers that are associated with AD.
Fluorodeoxyglucose (FDG) PET detects brain metabolism and
amyloid PET that quantifies the amyloid deposit has been
developed to understand AD pathogenesis and to monitor
disease progression and therapeutic effects. Other neuro-specific,
inflammation- and metabolic-associated radiotracers are under
development for AD studies. In this study, we discuss the AD
animal models that are relevant in AD PET imaging studies and
summarize the PET tracers that have been tested in AD animal
models and the findings from these studies.

AD ANIMAL MODELS

Mouse Models
In the field of neurodegenerative diseases, mice are the most
commonly used animals for their biological features that are
similar to those of humans, easily manipulated genetics to
mimic human conditions and diseases, and a relatively short
life span (1.5–2 years). Because mice do not develop AD

naturally, transgenic mice are generated to recapitulate certain
AD pathological features to fit the research needs (Table 1). The
genes associated with the early onset of AD have been the main
targets for transgenic manipulations.

Mice With the Familial APP Mutations V717F (Indiana)
and K670N/671L (APPswe, Swedish)
The first Aβ plaque-developing mouse model is APP (V717F),
which progressively develops extracellular thioflavin S-positive
Aβ deposits, neuritic plaques, synaptic loss, astrocytosis, and
microgliosis (Games et al., 1995). This model can be used for
testing therapeutic drugs targeting amyloidosis. The commonly
studied Swedish APP mutation (APPswe) K670N/M671L carries
a transgene coding for the 695-amino acid isoform of human
Aβ precursor protein bearing the Swedish mutation (Sturchler-
Pierrat et al., 1997). This mouse model expresses high
concentrations of the mutant Aβ, develops significant amyloid
plaques, and displays memory deficits. It is useful for studying
APP expression, amyloid plaque formation, neuronal decline,
and memory loss associated with AD, as well as drug discoveries.
Recently, Xu et al. (2015) achieved the amyloid deposition using
murine genes carrying the APPswe mutation, indicating murine
Aβ peptides can produce amyloid deposits that morphologically
resemble those found in human AD.

Mice With the Familial FTLD MAPT Mutation P301L
or Human Tau
The first NFT-developing mouse was achieved by expressing
the familial FTLD MAPT mutation P301L under the control
of the mouse prion promoter (Lewis et al., 2000). Allen et al.
(2002) used mouse Thy1.2 promoter to reach a 2-fold increase
in the expression of P301S mutant FTLD-tau compared with
endogenous tau, with NFTs forming at 5 months of age. The
first human MAPT transgenic model (ALZ7) with the human
THY1.2 promoter expressed only a low level of the transgenic
gene but achieved deposition of hyperphosphorylated tau in the
somatodendritic domain (Gotz et al., 1995). The rTg4510 model
uses a reversible binary transactivator system to achieve a high
level of tau expression (13-fold) with P301L, NFT-like lesions,
neuronal loss, cognitive impairment, and brain atrophy at an
earlier time frame (Santacruz et al., 2005). This mouse develops
progressive intracellular tau aggregations in the corticolimbic
areas and forebrain atrophy. The human Tau (hTau) mice
(Andorfer et al., 2003) were generated by crossing 8c mice
expressing human 3R and 4R tau isoforms (Duff et al., 2000)
with tau knockout (KO) mice generated by targeted disruption
of exon one on the MAPT gene (Tucker et al., 2001). This mouse
model expresses all six isoforms of hTau but lacks mouse tau. It
develops age-associated tau pathology that appears most severe
in the neocortex and hippocampus. No tau pathology was found
in both 8c mice and tau KO mice. Recently, Saito et al. (2019)
used a homologous recombination approach to replace the entire
murine Mapt gene with the human ortholog to create a MAPT
knock-in (KI) mouse model that expresses all six tau isoforms
present in humans. They cross-bred the MAPT KI mice with
single App KI mice to generate the APP/MAPT double knock-in
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FIGURE 1 | Major AD animal models and PET imaging targets.

(dKI) mice that exhibit higher tau phosphorylation than the
single MAPT KI mice (Saito et al., 2019).

APOE-Target Replacement Mice (APOE-TR Mice)
The APOE family consists of three isoforms: APOE2, APOE3,
and APOE4, with APOE4 being the greatest genetic risk factor for
AD (Kim et al., 2009). APOE-target replacement mice (APOE-
TR Mice), in which the m-APOE coding sequence is replaced by
that of an h-APOE allele, display alterations in synaptic number
and structure, network connectivity, and behavior based on the
specific APOE isoform expressed (Ji et al., 2003; Wang et al.,
2005; Tai et al., 2011; Zhu et al., 2012; Dumanis et al., 2013;
Koutseff et al., 2014; Neustadtl et al., 2017; Lewandowski et al.,
2020). These mice exhibit isoform-specific differences in lipid
physiology and synaptic function. Mice with h-APOE4 exhibit
earlier and more severe AD pathology and memory decline (Bour
et al., 2008; Sun et al., 2017; Lewandowski et al., 2020).

Triggering Receptor Expressed on Myeloid Cells 2
Gene-Modified Mice
Triggering receptor expressed on myeloid cells 2 (TREM2)
is expressed in microglia, and its genetic variants R47H and
Y38C are linked to AD, frontotemporal dementia, and Nasu-
Hakola disease, which is an early onset of dementia characterized
by white matter pathology (Yaghmoor et al., 2014). While
Trem2 variant R47H is largely associated with late-onset AD,
Trem2 variant Y38C is associated with the development of
early onset dementia (Jadhav et al., 2020). Both Trem2R47H
and Trem2Y38C mice were generated using the CRISPR/Cas9
technique to introduce the point mutations of Trem2R47H and
Trem2Y38C. TREM2 R47H homozygous mice exhibit a novel
splice variant resulting in partial expression of mRNA and protein
in the brain (Xiang et al., 2018). While mice harboring the
Trem2 Y38C exhibited normal expression levels of TREM2,
alterations were observed in the expression of neuronal and
oligodendrocyte/myelin genes, along with regional decreases
in synaptic protein levels, particularly in the hippocampus
(Jadhav et al., 2020).

APP/PS1 Mice
In addition to the “single-gene models” described above,
combinations of AD-related genes have also been introduced in
mice using transgenic technology. These combinatorial genetic
models present greater phenotypical diversity, and thus offer
more options for preclinical studies. The APP/PS1 mouse
model was generated by administration of both APPswe mutant
(K595N/M596L) and the 1E9 mutant of presenilin 1 (PS1),
which is an essential component of γ-secretase, the enzyme
responsible for APP cleavage. Mutations in PS1 lead to dominant
inheritance of early-onset FAD (Jankowsky et al., 2001). The mice
develop Aβ deposits in the brain by 6–7 months of age, with
15-month-old females presenting a 5-fold (Aβ42) and 10-fold
(Aβ40) increase in Aβ deposits in the cerebellum compared to
males (Jankowsky et al., 2004; Ordonez-Gutierrez et al., 2016).

The 3 × Tg Strain
Although there are no reports that APP, PS1, and tau mutations
occurring simultaneously in humans, the 3 × Tg strain is
the most widely used model that presents aggregated Aβ and
synaptic dysfunction. This model is created by co-injecting
two constructs expressing APPswe and P301L mutant tau
into oocytes obtained from PS1 M146V KI mice. These triple
transgenic mice express mutant APP, PSEN2, and MAPT
and show age-dependent accumulation of Aβ plaques and
neurofibrillary tangle-like pathology, starting around 4 months
of age (Grueninger et al., 2010).

The 5 × FAD Strain
The 5 × FAD strain combines the APPswe mutation with the
Florida (I716V) and London (V717I) mutations of APP, as well
as the M146L and L286V mutations of PSEN1. These mice show
progressive cognitive deficits with several pathological hallmarks
of AD, such as Aβ plaques, gliosis, synaptic degeneration, and
neuronal loss, and develop tau pathology (Oakley et al., 2006).

The APOE4/TREM2R47H Mouse
This double mutant strain carries a humanized APOE4 knock-
in mutation and a CRISPR/cas9-generated R47H point mutation
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TABLE 1 | List of major AD mice models.

# Strain name Genetic modification Genetic
background

Age of AD
pathology first
appear (month)

AD related pathology

1 Tg2576 (APPSwe) APP KM 670/671NL B6; SJL 5 m Extensive amyloid pathology

2 JNPL3(P301L)/Tg(Prnp-
MAPT*P301L)

htau with P301L mutation B6, DBA/2, SW 4.5 m/homo. and
6.5 m/hemi.

Homozygous develops human-like
tauopathies faster than the
hemizygous model

3 APP/PS1 Chimeric Mo/HuAPP695swe and a
mutant hPS1 (PS1-dE9)

B6;C3 6 m Early-onset of amyloid plaque

4 ARTE10 (APP-PS1)16347 hAPP 695-a.a. isoform with
Swedish mutation and hPS1 with
M146V mutation

B6 3 m/homo. and
5 m/hemi.

Robust and reliable plaque
pathology

5 APPSWE-TAU-2469 hAPP695-a.a. isoform and hMAPT
P301L mutation

B6,DBA/2, SJL,
SW

3 m similar plaque pathology to Tg2576
with more extensive neurofibrillary
tangles than the JNPL3.

6 3xTg-AD APP KM 670/671NL, MAPT
P301L, and PS1 M146V

B6;129 6 m age-related and progressive
plaques and tangles. tau pathology
at 12 m. Synaptic dysfunction
occur before plaques and tangles

7 5xFAD, TG6799 hAPP695 isoform with Swedish KM
670/671NL, Florida (I716V),
London (V717I), hPS1 with M146L
and L286V mutations

B6, B6SJLF1 2 m Amyloid pathology; reduced
synaptic marker protein levels

8 APOE3 hAPOE3 from the endogenous
APOE locus

B6 NA NA

9 APOE4 hAPOE4 allele from the
endogenous APOE locus

B6 4 m Decreased levels of total
cholesterol, LDL and HDL

10 Trem2*R47H an R47H point mutation and two
silent mutations (lysine
AAG > AAA and alanine
GCC > GCA) into mTrem2

B6 NA NA

11 Trem2*Y38C Y38C point mutation B6 NA TREM2-deficient microglia fail to
proliferate and cluster around
plaques

12 APOE4/Trem2*R47H hAPOE4 knock-in mutation and
R47H point mutation

B6 NA NA

13 HApp/APOE4/Trem2
*R47H

triple mutants with hAPOE4, R47H
mutation mTrem2, and a hAPP
within the mApp

B6 NA the human Aβ generated by these
mice is more aggregation-prone
than the endogenous mouse Aβ

of the Trem2 gene. This strain does not produce any severe
phenotypes, even late in life, allowing a better understanding
of the effect of AD risk factors in the context of aging
(Kotredes et al., 2021).

Knockout Mice
Several AD-related KO mice are generated for understanding the
pathophysiological role of AD-related proteins, including APP,
MAPT, BACE1, APOE, PSEN1, PSEN2, and Trem E (Table 2).

APP KO mice display deficits in forelimb grip strength
and locomotor activity and an age-related deficit in retention
of memory for an aversive experience (Senechal et al., 2008).
MAPT KO mice have been reported to show less evidence of
brain dysfunction (Harada et al., 1994; Dawson et al., 2001;
Morris et al., 2011). PSEN1 KO mice exhibit perinatal lethality
in homozygous animals, which die shortly after birth (Shen
et al., 1997). PSEN2 KO mice are viable and normal in growth
and size and do not display any gross brain abnormalities,

astrogliosis, or behavioral abnormalities by 12 months of age,
and no deficit in APP processing (Herreman et al., 1999). APOE
KO mice display poor lipoprotein clearance with subsequent
accumulation of cholesterol-ester-enriched particles in the blood
(Piedrahita et al., 1992). The systemic proinflammatory status of
APOE KO mice also makes them good candidates for studying
risk factors for AD (Lo Sasso et al., 2016). TREM KO mice
show no behavioral and cognitive deficit (Kang et al., 2018).
BACE1 KO mice do not display any gross physical or behavioral
abnormalities (Cai et al., 2001).

Chemical-Induced AD Models
Alzheimer’s disease models can also be generated by chemical
induction. Synthetic Aβ and tau aggregates have been
intraperitoneally injected to induce cerebral amyloids and
intracerebral tauopathy (Gotz et al., 2001; Clavaguera et al.,
2014). Intracranial injection of okadaic acid, a protein
phosphatase inhibitor, increased tau phosphorylation and
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TABLE 2 | List of AD-related gene knockout mice models.

# Strain name Genetic modification Genetic
background

Phenotype

1 APP−/− APP gene was disrupted by inserting a stop
codon into the first exon through homologous
recombination

B6 Deficits in forelimb grip strength and locomotor activity
and an age-related deficit in retention of memory for an
aversive experience (Senechal et al., 2008)

2 PS1 Psen1 knock-out B6 A drastic reduction in neural progenitor cells in the
embryo with death occurring minutes after being born

3 MAPT−/− A PGK-neo cassette is inserted into the first
exon of tau, only short fragments incapable of
binding to MTs

129 × B6 Not much evidence of brain dysfunction (Dawson et al.,
2001)

4 PSEN1−/− Disruption of exons 1 to 3 129 × B6 Perinatal lethal in homozygous animals which die
shortly after birth (Shen et al., 1997)

5 PSEN2−/− The replacement of exon 5 by the hygromycin
cassette results in a frame shift between exons
4 and 6.

129 × B6 Do not display any gross brain abnormalities,
astrogliosis, or behavioral abnormalities by 12 m. APP
processing is not affected (Herreman et al., 1999)

6 APOE2-1547 Homozygous for a human APOE2 gene
targeted replacement of the endogenous
mouse APOE gene

129 × B6 Hyperlipoproteinemia with elevated plasma cholesterol
and triglyceride levels, decreased clearance of vLDL
particles, and spontaneous atherosclerotic plaques on
a normal diet, exacerbated by a high fat diet

7 APOE3 1548 Homozygous for a human APOE3 gene
targeted replacement of the endogenous
mouse APOE gene

129 × B6 Increased risk of atherosclerosis and
hypercholesterolemia compared with wild type mice on
a high fat diet, but not on a normal diet

8 APOE4-1549 Homozygous for a human APOE4 gene
targeted replacement of the endogenous
mouse APOE gene

129 × B6 At increased risk of atherosclerosis compared with
wild-type animals or mice expressing human APOE3

9 Trem2 KO (KOMP) The entire coding region of the Trem2 gene was
replaced by Velocigene cassette ZEN-Ub1 (lacZ
−p(A)−loxP-hUbCpro-neor-p(A)-loxP)

B6 Trem2−/− microglia show less proliferative activity and
less pronounced changes in morphology than do
wild-type microglia after an excitotoxic insult no
behavioral and cognitive deficit (Kang et al., 2018)

10 BACE1−/− Targeted deletion in the mouse gene β-site APP
cleaving enzyme 1

129 × B6 Do not display any gross physical or behavioral
abnormalities (Cai et al., 2001)

protein aggregation in distinct brain regions (Baker and Gotz,
2016). Intracranial injection of synthetic Aβ aggregates into
P301L tau transgenic mice can accelerate NFT formation
(Peeraer et al., 2015). Brain lysates from both transgenic
mice and patients with AD also induce nucleation of protein
aggregation along with neuronal projections in healthy mice
or mice with preexisting AD pathology (Bolmont et al., 2007;
Clavaguera et al., 2009; He et al., 2018). Lipopolysaccharide
(LPS) acts as a Toll-like receptor 4 ligand to activate microglia
to produce proinflammatory cytokines such as TNF-α, IL-1β,
prostaglandin E2 (PGE2), and nitric oxide (NO) in the central
nervous system (Heneka et al., 2015). The administration
of LPS to animals induces cognitive impairment (Shaw
et al., 2001; Choi et al., 2012) and high levels of Aβ1−42
(Zhao et al., 2019).

Other chemicals used for the induction of cognitive
impairment include heavy metals (e.g., aluminum, cobalt,
and cooper), scopolamine, ethanol, colchicine, an excitotoxin,
streptozotocin, and sodium azide, among others, and have
been nicely summarized in the review (More et al., 2016;
Götz et al., 2018).

Injury-Based and Trauma-Based Models
Brain injury is associated with elevated Aβ levels and tau
phosphorylation (Yu et al., 2012), but not the formation of
plaques and NFTs. In transgenic hTau and 3xTg mice, brain

injury accentuates the development of tau pathology and Aβ

accumulation (Tran et al., 2011; Ojo et al., 2013).

Next-Generation AD Models
There is no AD mouse model that recapitulates all aspects of
human AD. Even with the high levels of amyloid protein, the mice
still do not display human-like cognitive deficits. The Aβ plaques
in mice are often diffuse or exhibit fewer crosslinking fibrils even
when they appear condensed. The tau pathology also shows a
certain difference from humans, with a wide and uncontrollable
range of expression levels in some AD model mice. Because
there are dozens of different genes that are associated with
AD, the different combinations of mutations in these genes,
in conjunction with varying environmental stimulators, will
contribute to each unique AD case (Naj and Schellenberg, 2017).
Furthermore, the offspring of AD transgenic and wild mice are
more likely to develop memory loss, indicating there are AD-
associated genetics or environmental factors yet to be elucidated,
which drives the continuing efforts for better mouse models. In
2016, the NIH started the MODEL-AD consortium to engineer
mice with different genetic mutations associated with early- or
late-onset AD (model-ad.org).

Rat Models
Compared to mice, rats are easier to handle and have
larger brain sizes for easier surgical operation and imaging

Frontiers in Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 872509

http://model-ad.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-872509 May 20, 2022 Time: 10:12 # 6

Chen et al. PET in AD Models

TABLE 3 | List of major AD rat models.

# Strain name Genetic modification Genetic
background

Age of AD
pathology first
appear (month)

AD related pathology

1 TgAPPswe hAPP KM 670/671NL Fischer-344 NA No extracellular Aβ deposits

2 Tg6590 hAPP KM 670/671NL Sprague-Dawley 11 m The levels of both Aβ species are
increased 65% in hippocampus
and 40% in cortex of 11-month-old
animals.

3 McGill-R-Thy1-APP hAPP751 with K670N/671L and
V717F

HsdBrl:WH Wistar 6–9 m Homozygotes show
age-dependent accumulation of Aβ

plaques, gliosis, cholinergic
synapse loss. Intracellular Aβ

inclusions appears at postnatal day
7 and Aβ plaques at around 6–9 m

4 Tg1116 hAPP minigene containing
K670N/671L and V717F

Sprague-Dawley NA NA

5 APP21 hAPP double mutant construct
containing K670N/671L and V717F

Fischer-344 NA NA

6 APP31 hAPP double mutant construct
containing the K670N/671L and
V717F

Fischer-344 NA NA

7 Tg478/Tg1116 hAPP with K670N/671L and V717F Sprague-Dawley 17-18 m Aβ for amyloid deposition

8 TgF344-AD APPswe and PS11E9 Fischer-344 6 m Age-dependent accumulation of Aβ

plaques in hippocampus and
cortex with age-dependent cerebral
amyloidosis that precedes
tauopathy, gliosis, apoptotic loss of
neurons in the cerebral cortex and
hippocampus and cognitive
dysfunction. Tau pathology is
reported

9 UKUR25 hAPP with K670N/671L and V717F
and PS1 (M146L)

Wistar NA Intracellular accumulation of Aβ in
hippocampus and cortex without
extracellular amyloid

10 PS/APP
(Tg478/Tg1116/Tg11587)

hAPP695 with K670N/671L and
V717F and PSEN1 with 1E9
(4.6 kb deletion of exon 9)

Sprague-Dawley 7 M Aβ deposition

11 SHR24 Human non-mutated truncated tau
encompassing 3R domains and a
proline-rich region (3R tau151-391)

SHR 9 m Age-dependent progressive
neurofibrillary degeneration in the
isocortex

analysis (Ellenbroek and Youn, 2016). Both genetic and
non-genetic rat AD models have been developed (Table 3).
However, unlike transgenic AD mouse models, not as many
AD rat models are available for scientific research and rats
appear to be more resilient to AD pathology than mice
(Charreau et al., 1996).

Rat Models With the Familial Swedish and Indiana
Mutations
The APP transgenic rats appear to have lower expression levels
of the APP transgene than the mouse AD model (Benedikz
et al., 2009). TgAPPswe is the first APP transgenic rat that
overexpresses human APP with Swedish mutation (K670N and
M671L) (Ruiz-Opazo et al., 2004), with only a 56.8% increase
in the expression level of APP mRNA, 21% increase for Aβ42,
and 6% for Aβ40 in the brain. No AD-related pathology was
found in these animals up to the age of 18 months. The Tg6590
rat generated by Fokesson et al. is another model that carries

human APP with the Swedish mutation. The levels of both Aβ

species are increased by 65% in the hippocampus and 40% in the
cortex of 11-month-old animals. The rats display learning and
memory deficits in the Morris water maze at 9 months and altered
spontaneous behavior measured in open field (Kloskowska et al.,
2010). The McGill-R-Thy1-APP rat model expressed hAPP751
bearing the Swedish and Indiana mutations, with intracellular Aβ

inclusions detected as early as postnatal day 7 and Aβ plaques at
6–9 months of age (Leon et al., 2010). The Tg1116 rats express a
human APP minigene containing both the Swedish and Indiana
familial AD mutations (Flood et al., 2009). APP21 and APP31
express a human APP double mutant construct containing the
Swedish and Indiana AD mutations driven by the ubiquitin-
C promoter. The APP transgene is reported to be expressed in
the brain, in neuronal but not glial cells (Agca et al., 2008).
No pathological or behavioral studies have been published yet.
The double homozygous Tg478/Tg1116 rats were generated by
crossing Tg478 which expresses human APP with the Swedish
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mutation (Flood et al., 2009) and Tg1116. The rats produce
sufficient levels of Aβ for amyloid deposition to occur by the age
of 17–18 months (Flood et al., 2009).

APPswe and PS11E9/TgF344-AD Rats
TgF344-AD rats co-express APPswe and PS11E9 transgenes
and present with age-dependent cerebral amyloidosis that
precedes tauopathy, gliosis, apoptotic loss of neurons in the
cerebral cortex and hippocampus, and cognitive dysfunction
(Cohen et al., 2013).

Rat Model With the Familial APP Mutations V717F
(Indiana) and Swedish APP (APPswe) K670N/671L
and Human PSEN1 With the Finnish M146L Mutation
UKUR25 rats express human APP containing the Swedish and
Indiana (V717F) mutations, and mutated PS1 (M146L). The
main pathological feature was an intracellular accumulation
of Aβ in neurons of the hippocampus and cortex without
extracellular amyloid up to 24 months of age. Mild impairment in
acquisition learning was found in 16-month-old male rats, with
an increase in tau phosphorylation at S396 and S404 ERK2 sites
(Echeverria et al., 2004a,b).

PSAPP (Tg478/Tg1116/Tg11587) Rats
The PSAPP model rats express hAPP695 carrying the Swedish
and London (K670N/M671L and V717I, respectively) mutations
together with PSEN1 carrying the Finnish mutation (PS1,
1E9) and develop Aβ deposition around 7 months of age
(Flood et al., 2009). This strain was created by crossing double
homozygous Tg478/Tg1116 rats with Tg11587 that carries a
human PS-1 transgene with the familial AD mutation M146V.
The homozygous rats produce sufficient levels of Aβ for
amyloid deposition to occur by the age of 7 months. The
triple homozygous transgenic rat, Tg478/Tg1116/Tg11587, has
also been called the PSAPP rat. The compact amyloid deposits
were found to be associated with activated microglia, reactive
astrocytes, and phosphorylated tau immunoreactivity.

AD-Tau Rat Model
Overexpression of human non-mutated truncated tau
encompassing 3R domains led to the first rat model of
progressive cortical neurofibrillary degeneration (Filipcik et al.,
2012). This transgenic rat expresses a truncated form of the
human tau protein (truncated at amino acid positions 151–
391), which is found in the brains of sporadic AD patients
(Benedikz et al., 2009).

Chemical-Induced AD Rat Models
The aforementioned chemicals used to generate AD mouse
models can also be employed in rats to create AD phenotypes
(More et al., 2016; Götz et al., 2018).

Large Animal AD Models
Non-human primates such as rhesus macaques and marmosets
are not known to develop AD but do accumulate Aβ deposits
and show tauopathy in their aged brains (Paspalas et al., 2018;
Haque and Levey, 2019; Arnsten et al., 2021b; Datta et al.,

2021; Leslie et al., 2021). Intracranial injection of Aβ42 and
thiorphan, an inhibitor of neprilysin that is responsible for Aβ

clearance, has been employed to generate an AD model in
middle-aged (16–17 years) rhesus monkeys (Li et al., 2010).
Significant intracellular accumulation of Aβ was found in
the neurons of the basal ganglia, cortex, and hippocampus,
accompanied by neuronal atrophy and loss. Two injections of
an adeno-associated virus expressing a double tau mutation
(AAV-P301L/S320F) in the left hemisphere of rhesus monkeys
result in misfolded tau propagation similar to that in humans.
Tau spreading is accompanied by robust neuroinflammatory
response driven by TREM2 + microglia, with biomarkers of
inflammation and neuronal loss in cerebrospinal fluid and plasma
(Beckman et al., 2021).

Other non-primate large animals used for AD modeling
include domestic animals such as dogs and cats as well as farm
animals including pigs, sheep, and cows. Aged dogs develop
plaque pathology and cerebral amyloid angiopathy (Yu et al.,
2011), as well as a dementia-like syndrome resembling human
AD (Prpar Mihevc and Majdic, 2019; Abey et al., 2021). Tau
dysfunction and tangles have been reported and associated with
cognitive decline (Yu et al., 2011; Schmidt et al., 2015; Smolek
et al., 2016). Cats also develop plaques, tangles, and brain
atrophy along with cognitive decline as they age (Chambers
et al., 2015; Fiock et al., 2020). Two transgenic pig models of
AD have been reported using minipigs. The first one carries
an hAPP transgene with the Swedish mutation driven by the
human BDGFβ promoter, resulting in high levels of brain-specific
Aβ expression (Kragh et al., 2009), and the second minipig
model carries three copies of a transgene expressing the 695
variant of hAPP with the Swedish mutation and a human PSEN1
transgene with the M146L mutation (Jakobsen et al., 2016).
Intraneuronal accumulation of Aβ1−42 was detected in two pigs:
one at 10 months and one at 18 months. Plaque- and tangle-
like pathologies have also been seen after traumatic brain injury
(TBI) in pigs (Hoffe and Holahan, 2019). Tau pathology and
Aβ plaques have been identified in aged sheep and goats as well
(Braak et al., 1994).

PRECLINICAL PET IMAGING IN AD
ANIMAL MODELS

β-Amyloid Imaging
The development and validation of the first-in-class Aβ PET
radiotracer, the thioflavin T-derived Pittsburgh compound B
([11C]PIB or PIB), was a milestone in AD imaging. It not
only allows the direct in vivo visualization and quantification
of Aβ plaque in living subjects (Klunk et al., 2004) but
also paves the road for the development and FDA approval
of its 18F-labeled analog ([18F]flutemetamol), the stilbene
derivative [18F]florbetaben, and the styrylpyridine derivative
[18F]florbetapir, the use of which have become impactful in
AD clinical trials and diagnosis. The intrinsic fluorescent
characteristics of these imaging probes and their analogs allow
for the microscopic assessment of their binding selectivity
and binding preference to different forms of Aβ plaques
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FIGURE 2 | (A) [11C]PIB binding to Aβ deposits varies by mouse strains. APP23: Extensive Aβ deposits; Tg2576: Mild Aβ deposits; APP-swePS1dE9: Extensive Aβ

deposits. This figure was adapted and modified from Snellman et al. J Nucl Med. 2013;54:1434-1441. (B) Uptake of the SV2A PET tracers [11C]UCB-J and
[18F]SynVesT-1 in the brain of APP/PS1 and wild-type mice. The uptake of both tracers was lower in the hippocampus of APP/PS1 mice compared to wild-type
controls.

and Aβ plaques at different locations (e.g., parenchymal and
cerebral amyloid angiopathy, CAA) (Bacskai et al., 2003;
Fodero-Tavoletti et al., 2012).

Many Aβ imaging tracers have been evaluated using multiple
different AD animal models, mainly in AD mice. PIB has been
tested in AD mice of APPswe, APP/PS1, 3 × Tg, 5 × FAD,
Tg2576, and APP23 (Ni, 2021). Initial reports on PIB binding
in Tg2576 and APP/PS1 mice at advanced ages were negative,
even with abundant Aβ pathology (Klunk et al., 2005; Toyama
et al., 2005); while PIB binding in APP23 mice was positive
(Maeda S. et al., 2007). These data led to the hypothesis that
the paucity of high-affinity binding sites for PIB in murine
Aβ plaques requires very high molar activity PIB for successful
imaging in murine AD models. Snellman et al. (2013) compared
PIB uptake longitudinally in the brains of multiple AD mouse
models and found higher PIB uptake in the cortex of APP23
mice compared with the wild-type controls and no difference in
APP/PS1 and Tg2576 mice with their corresponding controls,
consistent with previous results from other groups (Figure 2A).
They also compared the thioflavin-T staining patterns and
found that APP23 mice form large and compact human-like Aβ

deposits, whereas Tg2576 mice and APP/PS1 mice form sparse
fibrillar deposits. The results suggest that PIB binding is highly
dependent on the AD model and the associated higher-order
fibrillar structure rather than simple β sheets. At a microscopic
level, the Aβ plaques formed in early onset autosomal dominant
AD and sporadic AD brains have different levels of non-
fibrillar Aβ species (Querol-Vilaseca et al., 2019), and the Aβ

deposits in familial AD, sporadic AD, and cerebral amyloid
angiopathy manifest different conformations (Condello et al.,
2018). Further understanding of the interactions of the imaging

probes with amyloid plaques of different forms will help with the
development of probes targeting the various forms of misfolded
Aβ proteins in the brain (Biancalana and Koide, 2010).

One of the biggest advantages of small animal PET imaging
is the longitudinal tracking of the pathogenesis and therapeutic
effects of experimental drugs. This was demonstrated by the
longitudinal PET imaging studies in AD animal models (Maeda J.
et al., 2007; Deleye et al., 2017; Snellman et al., 2017). The
challenges in imaging Aβ plaques in AD animal models are due
to the different forms of plaques and disposition patterns in
different animal models and at different ages of the same animals
(Snellman et al., 2013). Other challenges are the quantification of
the PET signals. For the quantitative analysis of human Aβ PET
imaging data, the cerebellum was chosen as the reference region
to generate distribution volume ratio (DVR) or standardized
uptake value ratio (SUVR) because of the lack of specific binding
of PIB in the human cerebellum (Lopresti et al., 2005; Price et al.,
2005). However, there are emerging effective drugs targeting
other pathological pathways and that do not alter Aβ plaque
levels, e.g., Fyn inhibitor and mGluR5 silent allosteric modulator
(SAM) (Kaufman et al., 2015; Haas et al., 2017). Thus, the
objective assessment of their treatment effects needs different
imaging biomarkers that are closely related to synaptic/functional
recovery rather than Aβ plaque levels. The current consensus
considers Aβ oligomers as the primary cause of the neurotoxicity
derived from abnormal amyloidosis. Thus, the development of
an imaging agent targeting Aβ oligomers is highly desirable,
albeit challenging.

Large molecules such as antibodies have been developed
for Aβ PET imaging. Sehlin et al. (2016) and Fang et al.
(2019) engineered the 124I-labeled Aβ antibodies [124I]mAb158
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TABLE 4 | Summary of selected AD tracers.

Imaging target Tracer structure Imaging
characteristics

Major finding Reference

β-Amyloid High binding affinity to
large and compact Aβ

deposits

Milestone in AD imaging Rabinovici et al., 2007

Similar to PIB but with
higher non-specific
binding in brain

FDA approved Zeydan et al., 2021

TAU Binds to both amyloid
plaques and tau tangles

First PET tracer to visualize
both amyloid plaques and tau
tangles in living humans. No
different uptake was found
between Tg2576 and WT litter
mates

Tauber et al., 2013

Neurofibrillary tau
tangles, off-target
binding to MAO-B

First tau selective tracer. Higher
retension in rTg4510 and
APP/PS1 brains

Fodero-Tavoletti et al.,
2011

[18F]THK-5105 was tested
clinically and evaluated in terms
of whether it could selectively
bind to tau aggregates in living
patients with AD

Okamura et al., 2014

Increased SUVR in subbrain
regions in PS19 and biGT mice

Alzghool et al., 2021

PET signal correlated well with
histo and biochemical tau level
in P301S tau mice

Rodriguez-Vieitez et al.,
2017

The most widely studied
first-generation tau radioligand.
Increased uptake in PS19 mice.
More sensitive than
[18F]THK5117 in PS19 strain.
No increase in P301L tau mice

Declercq et al., 2016

tau deposits Clinically detect tauopathies in
human brain. Increased uptake
in rTg4510 mice brain both
in vivo and in vitro

Chiotis et al., 2018

Increased uptake in 6 month
old rTg4510 mice

Su et al., 2020

Increased brain uptake in
P301S mice. Fast brain
penetration pleataued in the
first minute

McMurray et al., 2021

(Continued)
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TABLE 4 | (Continued)

Imaging target Tracer structure Imaging
characteristics

Major finding Reference

Second-generation Tau tracer
with improved specificity. Only
tested in human and healthy
animals

Chotipanich et al., 2020

Guehl et al., 2019

Sanabria Bohórquez
et al., 2019

Wong et al., 2018

Leuzy et al., 2019

Baker et al., 2021

Glucose Glucose metabolism Brain [18F]FDG PET primarily
indicates synaptic activity.
Hypometabolism correlates well
with severity of cognitive
deficits. Contradictory results
found in diverse AD mouse
strains.

Chiaravalloti et al., 2018

SV2A Synaptic vesicle
glycoprotein as a
general biomarker of
synaptic density

Imaging data unavailable Cai et al., 2014

Testing in human showed slow
brain kinetics

Zheng et al., 2022

First tested in human; low
specific binding signal in human
brain

Bahri et al., 2017

High specific binding signal in
non-human primates and
humans. Decreased uptake in
APP/PS1 mice, but no
difference in tg-ArcSwe mice

Xiong et al., 2021

Decreased uptake in APP/PS1
and dKI mice

Naganawa et al., 2021

(Continued)
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TABLE 4 | (Continued)

Imaging target Tracer structure Imaging
characteristics

Major finding Reference

TSPO TSPO protein mainly in
the outer mitochondrial
membrane

Higher [18F]DPA714 uptake
was noted in the cortex and
hippocampus of 12–13 and
15–16-months-old but not
younger AD mice compared
with control mice

Hu et al., 2020

May be useful for tracking
TSPO/neuroinflammation in
early-stage AD but not for
monitoring disease progression
in APP23 mice

Fan et al., 2016

CSF1R CSF1R protein on
microglia, infiltrating
macrophages/
monocytes and
dendritic cells in the
brain

Increased uptake in the brain of
AD mice with overexpression of
APPswe and APP Indiana
mutations

Horti et al., 2019

CSF1R protein mainly
in microglia

Higher sensitivity than
[11C]CPPC in APP-KI mice

Zhou X. et al., 2021

P2 × 7R Purinergic P2 × 7
receptor expressed in
M1 microglia

Elevated uptake in the
LPS-treated site of rat brain
compared with contralateral
hemisphere

Berdyyeva et al., 2019

mGluR5 Seven-transmembrane
G protein-coupled
receptors located in
excitatory synapses
and in glial cells

Contradictory results found in
different AD strains

Varlow et al., 2020

Signal levels correlate with
progressive brain atrophy
during the aging process in
rTg4510 mice

Fang et al., 2017

Cholinergic α7
nAChR

Cholinergic α7 nAChR Uptake was found increased in
aged monkeys

Nakaizumi et al., 2018

Decreased uptake was seen in
aged TgF334 rats

Horti et al., 2014
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and Di-scFv [124I]3D6-8D3, respectively, to detect the soluble
Aβ in the tg-ArcSwe (AβPP E693G) and Swedish (AβPP
KM670/671NL) mouse models with clearly visualized Aβ in the
brain. The brain PET imaging shows a correlation between the
PET signal and the levels of soluble Aβ aggregates. An increased
SUVR of 2.2–3.5 in AD mice brains was reported compared to
the wild-type brains. The evaluations of other amyloid imaging
tracers in AD models have been summarized nicely in a recent
review (Ni, 2021).

Tau PET Imaging
Targeting another hallmark of AD, tau neurofibrillary tangle is
an extremely exciting area of PET tracer development. Tau is
an axonally enriched microtubule-associated protein (MAP) that
accumulates in the temporal and parietal neocortex in AD brains
(Hung et al., 2016; DeTure and Dickson, 2019). Tau exists as
six different isoforms, which contain either 3 or 4 microtubule-
binding repeats (3R or 4R). The hyperphosphorylation and
aggregation of tau with different repeats are involved in different
neurodegenerative diseases, e.g., AD (3R/4R), Pick disease
(3R), and progressive supranuclear palsy (4R). Postmortem
histopathological studies demonstrated that NFTs are a better
index of disease severity and progression than Aβ for patients
with AD (Shoghi-Jadid et al., 2002). Tau pathology appears earlier
than the Aβ plaque in human brains (Arnsten et al., 2021a).
Tau-PET imaging allows the detection of tauopathy and highly
predicts subsequent cognitive decline in both asymptomatic and
symptomatic individuals (Leuzy et al., 2019; Wang and Edison,
2019; Beyer and Brendel, 2021).

First-Generation Tau Radioligands
[18F]FDDNP is the first PET tracer to visualize both amyloid
plaques and tau tangles in living humans (Shin et al., 2011).
Kuntner et al. (2009) compared 13–15-month-old age-matched
wild-type litter mates with Tg2576 mice and found no difference
in regional brain kinetics and DVR values. Later, the so-called
first generation tau radioligand including [18F]THK523, the first
tau selective tracer (Okamura et al., 2005), and other THK
family tracers ([18F]THK5105, [18F]THK5117, [18F]THK5317,
and [18F]THK5351) were developed and evaluated in human
and AD mouse models. Fodero-Tavoletti et al. (2011) found
higher retention of [18F]THK523 in the brains of rTg4510
mice compared with their wild-type littermates or 12-month-old
APP/PS1 mice. Brendel et al. (2016) investigated [18F]THK5117
in Tau-P301S mice (PS19) and bigenic GSK-3β × Tau-P301L
(biGT) mice and found increased SUVR in the brain stem of
aged P301S mice and the entorhinal/amygdaloidal areas of biGT
mice. In a separate study, the same group conducted a head-
to-head comparison of [18F]T807 and [18F]THK5117 in Tau-
P301S (P301S) mice (Brendel et al., 2018). Significantly elevated
[18F]T807 than [18F]THK5117 uptake in the brainstem of P301S
mice was evident at 6 months, and this increased further at
9 months. Thus, [18F]T807 appeared to be more sensitive than
[18F]THK5117 to detect tau pathology in this model. Recently,
[18F]THK5351 PET signal was found to correlate well with
histological and biochemical tau changes, as well as motor,

memory, and learning impairment, in P301S tau mice from
8 months over time (Moreno-Gonzalez et al., 2021).

Nevertheless, due to the off-target binding to monoamine
oxidase-B (MAO-B), the THK family tracers are deemed to have
limited utility in imaging tauopathies in AD (Ng et al., 2017;
Murugan et al., 2019; Bao et al., 2021).

[11C]PBB3 is a pyrinated phenyl- and pyridinyl-butadienyl-
benzothiazole and has been clinically used for in vivo detection of
tauopathies in the human brain. [11C]PBB3 has been tested in the
rTG4510 mouse (Ishikawa et al., 2018) and the PS19 transgenic
mouse model (expressing 4R tau pathology) (Maruyama et al.,
2013). Ni et al. (2018) compared [11C]PBB3 in PS19 and
rTg4510 models and found increased binding in vivo in the
neocortex and hippocampus of rTg4510 mice. In contrast, in vitro
[11C]PBB3 binding was elevated in the brain stem but not
in the hippocampus of PS19 mice. [18F]PM-PBB3, an 18F-
labeled derivative of [11C]PBB3, has been demonstrated to detect
significant tau deposits as measured by SUVR in the rTg4510
mice as early as 6 months of age (Weng et al., 2020). Recently,
McMurray et al. reported the synthesis of [11C]LM229 based
on the backbone of PBB3. [11C]LM229 showed high specificity
for 4R tau aggregated in the brain sections of P301S tau mice
and truncated human 151–351 3R (SHR24) and 4R (SHR72)
tau aggregates in tau transgenic rat brain sections. Preliminary
PET studies with [11C]LM229 in both WT and transgenic P310S
tau mice confirmed BBB penetration by the radiotracer with
maximum brain uptake (%ID/g max; WT = 1.56, P301S = 2.38)
within the first minute, followed by washout during the 90-min
scan (McMurray et al., 2021).

The most widely studied first-generation tau radioligand
[18F]flortaucipir ([18F] T-807 and [18F]AV-1451) did not show
any different retention in the cerebrum of the P301L tau
transgenic mice compared to wild-type mice (Xia et al., 2013;
Declercq et al., 2016), which was attributed to the use of
transgenic mice expressing structurally different tau deposits in
the animals than in humans (Duyckaerts et al., 2008).

Second-Generation Tau Radioligands
Second-generation radiotracers with improved signal-to-
noise ratio, less off-target, and lower non-specific binding
are now available for tau imaging research. These tracers
include [18F]PI2620, [18F]MK6240, [18F]GTP1, [18F]RO-948
(RO6958948), [18F]JNJ311 (JNJ64349311), and [18F]JNJ-067
(JNJ-64326067). Preliminary studies have been carried out in
humans and healthy mice with promising results regarding the
binding selectivity, affinity, and stability (Bao et al., 2021). So far,
these tracers have not been tested in AD animal models.

PET Imaging of Glucose Metabolism
Brain [18F]FDG PET primarily indicates synaptic activity.
[18F]FDG uptake strongly correlates at autopsy with levels of
the synaptic vesicle protein synaptophysin (Rocher et al., 2003).
The degree and regional extent of hypometabolism measured
by [18F]FDG-PET roughly correlate with the overall severity of
cognitive impairment in AD. There is a close correlation between
the regional accumulation of a tau-PET tracer ([18F]AV1451) and
[18F]FDG hypometabolism (Rubinski et al., 2020). Along with
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amyloid imaging, [18F]FDG PET has been applied in multiple AD
rodent models such as APPswe (Tg2576), 5 × FAD, APP/PS1,
3 × Tg, Tg4-42, TASTPM mice, and McGill-R-Thy1-APP rats
(Waldron et al., 2015b; Bouter et al., 2018; Bouter and Bouter,
2019). Varying [18F]FDG PET results were found in Tg2576
mice. No differences in cerebral glucose metabolism were found
in Tg2576 compared to WT mice in Kunter’s study (Kuntner
et al., 2009), while Luo et al. (2012) found an increase in
the FDG uptake in 7-month-old Tg2576, and Coleman et al.
(2017) reported reduced FDG uptake in 18-month-old mice. Two
separate [18F]FDG PET studies using 12-month-old APPPS1-21
mice reached the same conclusion that FDG uptake was reduced
in the brain (Waldron et al., 2015a; Takkinen et al., 2017). Using
APP/PS1 mice, both Poisnel et al. (2012) and Li et al. (2016)
showed an age-dependent increase in glucose metabolism. In
addition, PS2APP mice showed increased [18F]FDG uptake at
5 and 16 month (Brendel et al., 2016) and TASTPM mice were
found to have decreased FDG uptake at 9 and 14 months of age
(Waldron et al., 2015a, 2017; Deleye et al., 2016). Contradictory
results were reported in 5xFAD mice, with Rojas et al. (2013)
reporting increased uptake of [18F]FDG in 11-month-old 5xFAD,
and Macdonald et al. (2014) showing decreased uptake in 13-
month-old mice. Sancheti et al. (2013) also reported decreased
FDG uptake in 3xTg mice.

Clinical FDG PET imaging studies have shown promise in
detecting early AD as neurodegeneration in certain brain regions
(temporoparietal predominantly) is reflected by hypometabolism
of FDG (Cohen and Klunk, 2014), and the hypometabolism
pattern could serve as a predictive biomarker for conversion
from MCI to AD dementia (Sala et al., 2020) earlier than MRI
(LaforceJr., Soucy et al., 2018). However, there has been no
suitable method to distinguish the FDG signal contributed by
neuronal activity and immune cell activation, and thus the FDG
PET signal could theoretically be influenced by two opposing
forces, i.e., hypometabolism and neuroinflammation, at certain
stages of AD pathogenesis and progression. With the recent
development of PET imaging methods for synapse density (see
section “PET Imaging of Synaptic Vesicle Glycoprotein 2A” for
SV2A PET) and neuroinflammation (see section “PET Imaging
of Neuroinflammation” for PET imaging of neuroinflammation),
we are at a stage where we could potentially quantitatively
attribute the FDG signals to synaptic and glial activities. This
is of relevance in cases of MCI patients who show a positive
correlation between Aβ PET and FDG PET.

PET Imaging of Synaptic Vesicle
Glycoprotein 2A
Synaptic Vesicle Glycoprotein 2A is ubiquitously expressed in
the neurons of the central nervous system and is widely used
as one of the synaptic density biomarkers. Loss of synapses
in the hippocampus and prefrontal cortex is implicated as an
early pathological event in AD before the appearance of Aβ

plaques and tau tangles and increasingly worsened during AD
progression (Cai et al., 2019; Jackson et al., 2019).

[11C]Levetiracetam was first developed but was not pursued
in further imaging study (Cai et al., 2014). Nevertheless, it

encouraged the development of SV2A ligands with much higher
affinities, including [11C]UCB-A (Estrada et al., 2016), [18F]UCB-
H (Warnock et al., 2014; Bahri et al., 2017; Becker et al.,
2017), and [11C]/[18F]UCB-J (Cai et al., 2019; Li et al., 2019b).
Among these, [11C]UCB-J exhibited high brain uptake, fast
and reversible tissue binding kinetics, and high specific binding
signals in both non-human primates and humans (Finnema et al.,
2016; Nabulsi et al., 2016). Most recently, [18F]SynVesT-1 (also
known as [18F]SDM-8 (Li et al., 2019a) and [18F]MNI-1126
(Constantinescu et al., 2019) are developed and evaluated in non-
human primates and humans (Li et al., 2021; Naganawa et al.,
2021). Using APP/PS1 mice, Toyonaga et al. showed decreased
[11C]UCB-J uptake as compared to the WT mice, and treatment
with the tyrosine kinase Fyn inhibitor saracatinib reversed this
effect (Toyonaga et al., 2019). Sadasivam et al. (2019, 2021) found
a lower [18F]SynVesT-1 signal in the whole brain of APP/PS1
mice, compared with wild-type mice (Figure 2B). However, in a
study using [11C]UCB-J in the tg-ArcSwe model and wild-type
mice, a small but non-significant difference (∼5%) was found
between the two groups, presumably due to large inter-animal
variability (Xiong et al., 2021).

PET Imaging of Neuroinflammation
Microglia are macrophages in the brain that play an important
role in neuroinflammation in AD. PET imaging of biomarkers
of microglia provides insights into the time course of AD
pathology. However, the diverse phenotypes of activated
microglia and their different roles over the course of the AD
trajectory make it challenging to develop radiotracers specific for
neuroinflammation in AD.

The 18kDa translocator protein (TSPO) has been widely
studied as a biomarker for microglial activation for over
20 years. Early radiotracers had disadvantages of low brain
penetrability, low binding affinity for TSPO, the short half-life
of the radioisotope, and sensitivity of binding affinity to gene
polymorphisms (Zhou R. et al., 2021). [18F]DPA714 is one of the
more recent radiotracers developed for TSPO. [18F]DPA714 was
evaluated in APP/PS1 mice at different months to determine the
role of microglia in the pathogenesis of AD neuroinflammation
(Hu et al., 2020). Higher [18F]DPA714 uptake was noted in the
cortex and hippocampus of 12–13 and 15–16-months-old but
not younger AD mice compared with control mice. Another
longitudinal PET study in APP23 mice used [18F]GE180 for
TSPO imaging and [11C]PIB for assessing amyloid deposition in
ex vivo autoradiography experiments (Lopez-Picon et al., 2018).
The APP23 model was chosen because of high [11C]PIB binding
in the brain of model mice compared with other AD models such
as APP/PS1. AD mice were imaged with [18F]GE-180 at 17, 20,
and 26 months of age. The binding of [18F]GE-180 plateaued in
the frontal cortex and hippocampus regions in the early stage of
AD, but amyloidosis increased throughout the later stages of AD
(17–26 months of age). Thus, [18F]GE-180 appeared to be useful
for tracking TSPO/neuroinflammation in early-stage AD but not
for monitoring disease progression.

Compared with TSPO, colony-stimulating factor 1 receptor
(CSF1R) expression in the brain is predominantly localized to
microglia and low in other cell types. [11C]CPPC was developed
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from a potent CSF1R inhibitor with an IC50 of 0.8 nM (Horti
et al., 2019) and evaluated in a mouse model of AD-related
amyloidosis-overexpressing APP with Swedish and Indiana
mutations (Melnikova et al., 2013). [11C]CPPC had about 30%
higher uptake in the cortex of AD mice compared with control
mice at 40 min post injection. Significantly higher uptake in the
hippocampus and cerebellum was also observed in the AD mice.
Additionally, increased expression of CSF1R after LPS treatment
and about 50% specific binding of [11C]CPPC in LPS-treated
mice were observed relative to sham controls. Autoradiography
studies with [3H]CPPC demonstrated the lack of specificity of
[3H]CPPC in brain tissues of LPS-treated Sprague-Dawley rats
(Knight et al., 2021). In another study, the imaging performance
of [11C]CPPC was compared with that of [11C]GW2580 in
mouse models of acute and chronic neuroinflammation and a
rhesus monkey (Zhou X. et al., 2021). In WT vs. APP-KI mice,
[11C]GW2580 demonstrated higher sensitivity than [11C]CPPC,
shown by a greater increase in [11C]GW2580 uptake in the
neocortex, forebrain, and striatum of APP-KI mice compared
with that in WT based on SUVR measurements at 60–90 min.
Blocking studies in the monkey showed higher specificity for
[11C]GW2580 over [11C]CPPC.

TREM2 is a relatively new biomarker for microglial activation.
Bispecific antibody scaffolds that bind to transferrin to enter
the brain and to TREM2 were chemically conjugated and
radiolabeled with relatively longer-lived radioisotopes. One
example is 124I-mAb1729-scFv8D3CL, which was evaluated in
Arc-Swe transgenic AD mice (Meier et al., 2021). While areas
under the curve (AUC) for 124I-mAb1729-scFv8D3CL at 24–
72 h post injection were higher in caudate, cortex, thalamus,
and hippocampus of AD mice compared with control mice,
significant differences in SUVs were not observed for the
individual imaging timepoints. However, ex vivo binding studies
through autoradiography with the radiotracer showed significant
differences between the animal models. The lack of a significant
difference in vivo was then attributed to the increased blood
residence time of 124I-mAb1729-scFv8D3CL. Thus, radiolabeling
of smaller antibody fragments is desirable to address the slow
pharmacokinetic issue.

Another new biomarker for AD is the purinergic P2X ligand-
gated ion channel type 7 receptor (P2X7R), which is involved in
triggering parts of the AD neurodegenerative processes. P2X7R
activates microglia in acute AD models (Sanz et al., 2009) and
increases the production of chemokines mediated by Aβ peptide
in chronic AD models (Martin et al., 2019). [18F]JNJ-64413739
was evaluated in a rat model of acute neuroinflammation. The
uptake of [18F]JNJ-64413739 was found to be elevated in the
LPS-treated site of the rat brain compared with the contralateral
hemisphere of the brain treated with PBS (Berdyyeva et al.,
2019). Biomarkers for neuroinflammation, such as higher mRNA
levels of P2X7R, TSPO, and Aif1, were associated with the
LPS-treated site. It was acknowledged that LPS treatment as
a model of neuroinflammation is considered extreme and that
this novel tracer warrants evaluation in rodent models of
AD and other neurodegenerative diseases. Other PET tracers
for P2X7R and other biomarkers of neuroinflammation are
reviewed by Zhou R. et al. (2021). So far, the development

of neuroinflammation imaging agents has been focused on
targeting microglial activation, largely ignoring the other glial
cell types. It would be instrumental to be able to distinguish
the protective microglial activation in early AD from the later
destructive phenotype to guide the proper timing of anti-
inflammatory treatments.

PET Imaging of NMDA Receptors
Glutamate is the major excitatory neurotransmitter in the brain
and acts on the ionotropic glutamate receptors (iGluRs) and
metabotropic glutamate receptors (mGluRs) to regulate synaptic
plasticity. iGluRs comprise three subfamilies: α-amino-3-
hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors,
kainate receptors, and NMDARs (Traynelis et al., 2010). mGluRs
are a family of G-protein-coupled receptors with 8 subtypes,
mGluR1-8. Both iGluRs and mGluRs are found to be involved in
synaptic malfunctions in AD (Avila et al., 2017; Foster et al., 2017;
Wang and Reddy, 2017; Liu et al., 2019; Srivastava et al., 2020).

Several imaging tracers for glutamate receptors have been
developed. So far, only the mGluR5 radiotracer [18F]FPEB has
been evaluated in 5 × FAD mice (Lee et al., 2019), APP/PS1
mice (Varlow et al., 2020), and Tg-ArcSwe mice (Fang et al.,
2017), with conflicting results: compared to wild-type animals,
uptake of [18F]FPEB was found to be lower in 5 × FAD mice,
with no difference in Tg-ArcSwe mice, and increased in APP/PS1
mice. Shimojo et al. (2020) observed that radioactivity signals
derived from the other mGluR5 tracer (E)-[11C]ABP688 were
unaltered relative to controls at 2 months of age in rTg4510
mice but then gradually declined with aging in parallel with
progressive brain atrophy.

PET Imaging of Cholinergic Targets
The deficit in cholinergic neurotransmission is a prominent
pathophysiological feature in AD. Dramatic loss of cholinergic
neurons located in the basal forebrain increased levels of
α7 nicotinic acetylcholine receptor (α7 nAChR) (Ikonomovic
et al., 2009; Marutle et al., 2013) and decreased levels of
M1 muscarinic acetylcholine receptor (M1 mAChR) (Yi et al.,
2020) were found in the cortical regions of human AD brains
(Ferreira-Vieira et al., 2016). The following PET imaging agents
for cholinergic targets have been developed: 1) [11C]NS14492
(Ettrup et al., 2011), [11C](R)-MeQAA (Nishiyama et al.,
2015), and [18F]ASEM (Gao et al., 2013) for α7 nAChR; 2)
[11C](+)3-MPB (Yamamoto et al., 2011) and [18F]fluorobenzyl-
dexetimide (Rowe et al., 2021) for mAChR; 3) [11C]LSN3172176
for M1 mAChR (Nabulsi et al., 2019); and 4) [11C]MK-6884 M4
mAChR (Tong et al., 2020). Uptake of the α7 nAChR tracer
[11C](R)-MeQAA was found to be increased in aged monkeys
(Nishiyama et al., 2015), and lower uptake of the other α7 nAChR
tracer [18F]ASEM was seen in aged TgF334 rats compared with
wild-type rats (Chaney et al., 2021). No difference was noted in
the brain uptake of the acetylcholine esterase tracer [11C]MP4A
between the APP23 and wild-type mice at 10–13 months of age
(Heneka et al., 2006).
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Other PET Radiotracers for AD
Altered expression of endogenous cannabinoid receptor 2 (CB2),
histaminergic receptors, sigma receptors, adenosine receptors
(A1A and A2A receptors), and enzymes (BACE1, caspase 3,
aspartryl cathepsin, and TrkB/C), as well as abnormalities in
dopamine and serotonin neurotransmission, have been noted
in AD. These provide additional targets for PET radiotracer
development for AD imaging. The CB2 radiotracers [11C]A-
836339 have been tested in the LPS-induced neuroinflammation
mouse model and the Appswe/PS1/dE9 mouse model (Horti
et al., 2010), while [18F]JHU94620 has been tested in the LPS-
induced neuroinflammation mouse model, which shows high-
affinity binding to CB2R and sufficient selectivity over CB1R.
A few tracers targeting caspase 3 and aspartryl capthepsin have
been tested in AD model mice, with the majority of the tracers
mainly tested in human subjects.

There has been great interest in imaging the compromised
BBB in animal models of amyloidosis and patients with AD,
as there is evidence of damaged BBB at the early stages of
AD in patients and animal models. PET imaging of specific
transporters and receptors expressed at the BBB was recently
reviewed thoroughly by Ni98.

CONCLUSION AND OUTLOOK

Alzheimer’s disease animal models have played essential roles
in the development of PET radiotracers for imaging a diverse
set of biological and pathological biomarkers in AD (Table 4).
In turn, with well-validated PET tracers, PET imaging allows
for longitudinal tracking of pathological phenotypes of AD in
the same animals, boosting the statistical power in mechanistic
studies of AD-related phenotypical and functional changes and
facilitating the development of novel interventions through
treatment effects monitoring. Currently, there is no perfect
AD animal model that can fully recapitulate all features of
human AD. However, with the rapid development in molecular
biological technologies and our improved understanding of
human AD etiology factors, we envision that the generation of
more refined animal models with closer proximity to human AD
pathogenesis will deepen our understanding of this devastating
degenerative disease, further the development of biomarkers
for preclinical diagnosis, and open new avenues for early and
effective interventions.

Currently, PET radiotracers targeting Aβ plaque, tau
pathology, synaptic density, and neuroinflammation have
been tested on several major AD models for their relatively
prominent and consistent pathological phenotypes. To retrieve

the most approximate characteristics of the tracer in humans,
the proper selection of AD models is key to the success of tracer
development, as the neuropathological features vary based on
different AD animal models. The selection of a proper AD model
is also pivotal to the longitudinal and mechanistic studies of
AD and anti-amyloid treatments (Manook et al., 2012; Snellman
et al., 2013, 2017). One important point to bear in mind is that
when choosing AD animals for PET imaging, correlation with
behavioral measures, not just the AD pathologies, should be
presented, and the time frame for imaging should also match
those for the appearance of the biological phenotypes and related
behavioral alterations.

The major advantage of using rat models of AD pathologies
is their relatively large brain size, which reduces the partial
volume effects in quantitative PET imaging analysis (Toyonaga
et al., 2022). Rats are easier to handle than mice, less readily
stressed by humans, and produce more robust behavioral testing
results (Long and Holtzman, 2019). In addition, the APP/PS1 rats
develop tau pathology in the brain, while the APP/PS1 mice with
the same promoter lack tau pathology, indicating the APP/PS1
transgene in rats produces closer neuropathology to humans than
in mice (Pini et al., 2016).

The translation and clinical Aβ, tau, and FDG PET
imaging have transformed our understanding of AD
(Scheltens et al., 2021), generated new insights (Aschenbrenner
et al., 2018), and opened an avenue for the early detection of AD
(Frisoni et al., 2017). With the development of new PET imaging
tracers, we expect to gain a deeper understanding of AD at the
systemic level and hopefully discover and validate new treatment
targets beyond Aβ and tau.
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