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Introduction
Mitochondrial morphology is essential for the functions of the 

organelle. Mitochondria fuse and divide in highly regulated 

manners, and these two activities play a central role in morpho-

genesis of mitochondria (Jensen et al., 2000; Karbowski and 

Youle, 2003). Many components involved in mitochondrial fu-

sion and division are highly conserved in a variety of organisms 

ranging from yeast to humans (Chen and Chan, 2004; Okamoto 

and Shaw, 2005). Among them, Mgm1p is a conserved dynamin-

related GTPase essential for fusion, morphology, inheritance, 

and the genome maintenance of mitochondria in yeast (Jones 

and Fangman, 1992; Shepard and Yaffe, 1999; Sesaki et al., 

2003b; Wong et al., 2003). Mutations in the human homologue of 

Mgm1p, OPA1, are linked to autosomal dominant optic atrophy 

(Alexander et al., 2000; Delettre et al., 2000). There are two 

species of Mgm1p, an 84-kD form (s-Mgm1p) and a 97-kD 

form (l-Mgm1p) (Shepard and Yaffe, 1999). These two isoforms 

exert partially overlapping but distinct functions. Both forms 

are required for mitochondrial morphology and mitochondrial 

DNA (mtDNA) maintenance, whereas only l-Mgm1p is  required 

for mitochondrial fusion (Herlan et al., 2003; McQuibban et al., 

2003; Sesaki et al., 2003a). In addition, these two isoforms have 

distinct localization and topologies (Wong et al., 2000; Sesaki 

et al., 2003b). l-Mgm1p is inserted in the inner membrane with 

a single transmembrane domain. In contrast, s-Mgm1p lacks 

the TM domain and is peripherally associated with both 

the outer and inner membranes (OMs/IMs) in the intermem-

brane space (IMS).

Generation of the two forms of Mgm1p is mediated by a 

unique sorting process called alternative topogenesis (Herlan 

et al., 2004). Mgm1p is synthesized in the cytosol with a prese-

quence followed by two adjacent hydrophobic segments (TM). 

Mgm1p is imported into mitochondria via the translocase of the 

OM, and its fi rst TM segment (TM1) is then inserted into the 

IM-localized TIM23 translocon. After cleavage of the prese-

quence by the matrix-localized processing protease, one of two 

choices is made. In one case (Fig. 1 A, blue arrow), Mgm1p dif-

fuses out of the TIM23 channel into the IM, forming l-Mgm1p. 

Alternatively (Fig. 1 A, yellow arrows), Mgm1p is further trans-

located into TIM23 by the action of the matrix mtHsp70 motor 

and the PAM complex (Herlan et al., 2004). When the second 

TM (TM2) reaches the IM,  Mgm1p is cleaved by the rhomboid 
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protease Pcp1p (Herlan et al., 2003; McQuibban et al., 2003; 

Sesaki et al., 2003a), forming s-Mgm1p. Supporting this 

branched sorting pathway, pulse-chase studies show no precursor–

product relationship between l-Mgm1p and s-Mgm1p (Fig. 1 B; 

Shepard and Yaffe, 1999). Instead, both forms of Mgm1p ap-

pear simultaneously. Here, we identify Ups1p, a novel IMS pro-

tein which regulates the sorting of Mgm1p in the topogenesis 

pathway and mitochondrial morphology.

Results and discussion
Ups1p regulates the steady-state level 
of s-Mgm1p and mitochondrial shape 
in a carbon source–dependent manner
To identify components required for the novel topogenesis path-

way for Mgm1p, we screened yeast mutants for those with al-

tered amounts of l- and s-Mgm1p. In particular, we examined 

the steady-state levels of Mgm1p in 23 yeast knockouts recently 

shown to have mitochondrial morphology defects (Dimmer et al., 

2002; Fig. 1 B). In addition to cells lacking the protease Pcp1p, 

we found that knockouts of YLR193C showed dramatically re-

duced amounts of s-Mgm1p (Fig. 1 C). We named the YLR193C 

gene UPS1 for “unprocessed”. Unlike pcp1∆ cells, where 

s-Mgm1p is virtually absent, ups1 ∆ cells contain small but de-

tectable amounts of s-Mgm1p. Immunoblotting of isolated 

mitochondria showed that l-Mgm1p is located in the mitochon-

dria of ups1∆ cells (Fig. 1 D). In addition, all mitochondrial 

proteins tested (except for the IMS protein Cyb2p) were present 

in similar amounts in wild-type (WT) and ups1∆ mitochondria. 

We also found that the integrity of the OM is not compromised 

in ups1∆ mitochondria in protease studies (Fig. S1 A, available 

at http://www/jcb.org/cgi/content/full/jcb.200603092/DC1).

Interestingly, the level of s-Mgm1p in ups1∆ cells varied 

with carbon sources. When cells were grown in the ferment-

able carbon source glucose (YPD), 53% of Mgm1p was con-

verted to s-Mgm1p in WT cells. In contrast, only 1% of Mgm1p 

was present as s-Mgm1p in ups1∆ cells in YPD (Fig. 2, A 

and B). However, similar amounts of s-Mgm1p were found in WT 

(46%) and ups1∆ cells (47%) when grown in the nonferment-

able carbon sources glycerol and ethanol (YPGE). The carbon 

source dependence of Ups1p for Mgm1p processing suggests 

that yeast cells carry a redundant Ups1p-like activity that is re-

pressed when cells are grown on glucose. In addition to Mgm1p 

processing, Ups1p is also required for normal mitochondrial 

shape (Fig. 2, C and D) and cell growth (Fig. 2 E) in a carbon 

source–dependent manner. Mitochondria in ups1∆ cells in YPD, 

but not in YPGE, showed strikingly altered morphology, including 

fragments, short tubules, and aggregates of fragments (Fig. 2 C). 

These altered morphologies are similar to those seen in pcp1 and 

mgm1 mutants (Herlan et al., 2003; McQuibban et al., 2003; 

 Sesaki et al., 2003a,b). Quantitation of mitochondrial morphology

in cells grown in YPD shows that only �25% of ups1∆ cells 

contained normal tubular mitochondria, unlike WT cells (98%) 

(Fig. 2 D). In contrast, in YPGE, both WT (98%) and ups1∆ 

Figure 1. Identifi cation of UPS1. (A) A model for alternative topogenesis of Mgm1p at the IM. The TIM23 translocon (gray), TM1 (blue), and TM2 (yellow) 
of Mgm1p, the mitochondrial processing peptidase (MPP, green) and Pcp1 protease (green) are shown. (B) WT cells were labeled with [35S]-methionine 
and -cysteine, and chased for the indicated time period. Proteins were examined by immunoprecipitation using anti-Mgm1p antibodies. (C) Cell lysates 
from WT and indicated mutant strains grown in YPGalSuc were analyzed by immunoblotting using anti-Mgm1p antibodies. (D) Isolated mitochondria were 
analyzed by immunoblotting using the indicated antibodies.
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cells (97%) contained normal mitochondrial tubules. Other or-

ganelles including the actin cytoskeleton, the ER, and vacuoles 

showed WT morphology in ups1∆ cells (Fig. S2, available at 

http://www/jcb.org/cgi/content/full/jcb.200603092/DC1).

Although ups1∆ and pcp1∆ cells both contain lower 

amounts of s-Mgm1p, there are clearly differences between the 

two strains. For example, although pcp1∆ cells lack mtDNA 

and are inviable on YPGE, ups1∆ cells contain normal mtDNA 

nucleoids (Fig. 2 C) and are able to grow on nonfermntable me-

dium (Fig. 2 E). Because s-Mgmp1p is required for mtDNA 

maintenance (Herlan et al., 2003; McQuibban et al., 2003; 

 Sesaki et al., 2003a), it is likely that the small but signifi cant 

amounts of s-Mgm1p in ups1∆ cells are suffi cient for mtDNA 

maintenance. Pcp1p has been shown to cleave another IMS pro-

tein, Ccp1p (Esser et al., 2002), and, pcp1∆ cells accumulated 

the intermediate form of Ccp1p (i-Ccp1p; Fig. 2 F). In contrast, 

ups1∆ cells contained normal amounts of the mature form of 

Ccp1p (m-Ccp1p; Fig. 2 F), suggesting that Ups1p specifi cally 

regulates Mgm1p processing and is not simply required for the 

activity of Pcp1.

Human PRELI can substitute 
for yeast Ups1p
UPS1 encodes a 20-kD protein (176 amino acids). Sequence 

analysis predicts that Ups1p contains an MSF1 domain but lacks 

a typical presequence and TM domain (Fig. S2). The MSF1 

 domain consists of �150 residues and is named after the yeast 

Msf1’ protein. Although Msf1’p might be involved in intra-

 mitochondrial protein sorting (Nakai et al., 1993), the exact func-

tion of Msf1’p is unknown. We found that Ups1p is homologous 

to multiple proteins in many organisms, from yeast to humans 

(Fig. 3 A and Fig. S2). In the yeast genome, Ups1p is similar to 

two other proteins: Msf1’p (30% identical) and Ydr185cp (30% 

identical). However, unlike ups1∆ cells, msf1’∆ and ydr185c∆ 

cells contained only slightly reduced amounts of s-Mgm1p (not 

depicted). Humans have four proteins related to Ups1p, with 

PREL1 showing the highest homology (31% identical; Fig. 3 A 

and Fig. S2). The function of PRELI is unknown, but it is highly 

expressed in liver, lymph node, and leukocytes (Guzman-Rojas 

et al., 2000) and has been localized to mitochondria (Fox et al., 

2004). We found that PRELI can functionally replace Ups1p in 

ups1∆ cells. When PRELI is expressed from the constitutive 

PGK1 promoter, the levels of s-Mgm1p in ups1∆ cells were 

indistinguishable from WT cells (Fig. 3 B). PRELI also rescued 

the mitochondrial shape defect (Fig. 3, C and D) and growth 

defect (Fig. 3 E) in ups1∆ cells. Confi rming the mitochondrial 

location of PREL1, we found that a PREL1-GFP fusion protein 

colocalized with mitochondria in HeLa cells (Fig. 3 F). Our ob-

servations indicate that the function of Ups1p is evolutionarily 

conserved among eukaryotes.

Figure 2. Phenotypes of ups1𝚫 cells. (A) Cell lysates from WT and ups1∆ cells grown in YPD or YPGE were analyzed by immnoblotting using antibodies 
to Mgm1p and Tim23p. (B) Mgm1p signals were quantitated by densitometry using NIH image. The percentage of s-Mgm1p was calculated from the ra-
tio of s-Mgmp1/(s-Mgm1p + l-Mgm1p). Values are mean ± SD (n = 3). (C, top panel) Cells expressing mitochondria-targeted Su9-GFP (Westermann 
and Neupert, 2000) were grown in YPD or YPGE to log phase and viewed by differential interference contrast and fl uorescence microscopy. (C, bottom 
panel) Cells were fi xed in 3.7% glutaraldehyde, washed, and stained with 1 μg/ml DAPI. ‘N’ indicates nuclear DNA staining. Bars, 3 μm. (D) Quantita-
tion of mitochondrial morphology (n = 300). (E) Serial dilutions of WT and ups1∆ cells were spotted onto YPD and YPGE and incubated at 30°C for 
2 d and 4 d, respectively. (F) Lysates from cells expressing Ccp1p-HA grown in YPGalSuc were analyzed by immnoblotting using anti-HA antibodies. 
i: i-Ccp1p, m: m-Ccp1p.
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Ups1p is associated with the mitochondrial 
IM in the IMS
Ups1p is peripherally associated with the outside of the mito-

chondrial IM. Subcellular fractionation (Fig. 4 A) and fl uores-

cence microscopy (Fig. 4 B) show that Ups1p is associated with 

mitochondria. Interestingly, truncation studies showed that the 

fi rst 80 residues of Ups1p, but not the fi rst 40 residues, are suffi -

cient for mitochondrial localization (Fig. 4 C). Protease studies 

demonstrated that Ups1p is located in the IMS. We found that 

Ups1p-myc was completely digested by trypsin treatment only 

after the OM was disrupted by osmotic shock, similar to the 

IMS-facing protein Tim23p (Fig. 4 D). In contrast, the surface 

receptor Tom70p was digested by trypsin in intact mitochondria. 

We noticed that after osmotic shock, �50% of Ups1p-myc was 

associated with the mitoplast membrane (Fig. 4 E). To further 

characterize the membrane-bound fraction of Ups1p, mitoplasts 

were treated with 1.5 M sodium chloride or 0.1 M sodium car-

bonate (Fig. 4 F). We found that Ups1p-myc, but not the integral 

protein Tim23p, was completely extracted from the mitoplasts 

with sodium carbonate, suggesting that the association of Ups1p 

with membranes is peripheral. When membrane vesicles from 

Ups1p-myc mitoplasts were separated on sucrose gradients, 

Ups1p-myc cofractionated with the IM protein F1β, but not 

with the OM protein porin (Fig. 4 G). Thus, Ups1p is a mito-

chondrial IMS protein, a half of which is peripherally associ-

ated with the IM.

We also found that Ups1p-myc is present in a protein 

complex of �170 kD using blue-native gel electrophoresis of 

digitonin-solubilized mitochondria (Fig. 4 H). Importantly, the 

Ups1p complex does not contain Fzo1p, Ugo1p, Mgm1p, or 

Pcp1p because the size of the complex did not change in fzo1∆, 
ugo1∆, mgm1∆, or pcp1∆ mitochondria (Fig. 4 I). We also no-

ticed that the level of the Ups1p complex is slightly reduced in 

mgm1∆ mitochondria. This probably refl ects reduced levels of 

Ups1p in mgm1∆ mitochondria (not depicted), suggesting that 

Mgm1p may be important for the stability of Ups1p. Further-

more, we also found no interaction of Ups1p with Fzo1p, Ugo1p, 

or Mgm1p in immunoprecipitation studies (not depicted).

Mgm1G100Dp is converted to s-Mgm1p 
in ups1𝚫 cells
Suggesting that Ups1p functions in the sorting of Mgm1p, we 

fi nd that alterations in the fi rst hydrophobic segment of Mgm1p 

bypass the requirement of Ups1p for the formation of s-Mgm1p. 

In earlier studies, TM1 of Mgm1p was found to be critical for 

proper Mgm1p topogenesis (Herlan et al., 2004).  When the hy-

drophobicity of TM1 was decreased by replacing glycine with 

aspartic acid (Mgm1G100Dp), TM1 was no longer effi ciently ar-

rested in the TIM23 translocon, and very little l-Mgm1p was 

formed. Instead, most of Mgm1G100D is now pulled further 

through the TIM23 channel, allowing access of TM2 to the Pcp1 

protease; most of Mgm1G100D was thereby converted to s-Mgm1p 

Figure 3. The expression of PRELI rescues ups1𝚫 cells. (A) Phylogenetic analysis of Ups1p homologues in S. cerevisiae (Sc), S. pombe (Sp), C. elegans 
(Ce), D. melanogaster (Dm), X. laevis (Xl), M. musculus (Mm), H. sapiens (Hs), and A. thaliana (At). (B–E) ups1∆ cells containing plasmids pRS314 (control), 
pRS314-UPS1 (UPS1), or pRS314-PRELI (PRELI) were grown in YPD. The level of Mgm1p (B), mitochondrial morphology (C and D), and growth (E) were ex-
amined as described in Fig. 2. Bar (in C), 3 μm. Values are mean � SD in panel D. (F) HeLa cells expressing PRELI-GFP were stained with 0.1 μM Mitotracker. 
Bar, 10 μm.
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(Fig. 5 A, lanes 1 and 2). We found that the Mgm1G100D altera-

tion alleviates the need for Ups1p in the production of s-Mgm1p. 

As shown in Fig. 5 A (lane 3), ups1∆ mgm1∆ cells expressing 

WT Mgm1p from a plasmid contained mostly l-Mgm1p, and 

only a small amount of s-Mgm1p was seen. Conversely, when 

the Mgm1G100D protein was expressed in ups1∆ mgm1∆ cells, 

most of Mgm1p was converted to s-Mgm1p (Fig. 5 A, lane 4). 

Also arguing for a role for Ups1p in Mgm1p sorting, we found 

similar amounts of s-Mgm1p in mgm1∆ and ups1∆ mgm1∆ 

cells expressing Mgm1G100Dp (Fig. 5 A, lanes 2 and 4). There-

fore, Ups1p is not simply required for the activity of Pcp1p, or 

for the stability of s-Mgm1p. Our results also suggest that addi-

tional substrates of Ups1p activity exist besides Mgm1p. In 

ups1∆ cells expressing Mgm1G100Dp, normal ratios of l-Mgm1p 

and s-Mgm1p are seen (Fig. 5 B) and Fzo1p and Ugo1p are 

normally expressed (Fig. 5 F), yet these cells contain frag-

mented mitochondria (Fig. 5, C and D) and still show growth 

defects (Fig. 5 E).

We found that Ups1p is not directly required for protein 

import into mitochondria using an in vitro import assay (Fig. S1 C). 

We integrated the GAL1 promoter in front of the UPS1 open reading 

frame and isolated mitochondria from cells grown in YPD for 13 h. 

Immunoblotting shows that Ups1p is undetectable in the Ups1-

depleted mitochondria (Fig. S1 B). In addition, the amount of 

s-Mgm1p is also highly reduced. Using the mitochondria, we 

examined protein import for Mgm1(1–228)-DHFR (Herlan et al., 

2004), the matrix-targeted protein Su9-DHFR, and the IM pro-

teins Tim22p and Tim18p. Mgm1(1–228)-DHFR consists of 

DHFR fused to the fi rst 228 residues of Mgm1p, which contains 

two TM segments and can be cleaved by Pcp1p (Herlan et al., 

2004). We found that the Ups1p-depleted mitochondria show no 

detectable import defect for all proteins we tested. Therefore, 

these data demonstrate that Ups1p is not required for mitochon-

drial protein import, and suggest that the processing defect for 

Mgm1p does not result from protein import defects. In this assay, 

we found similar amounts of the processed form of Mgm1(1–228)-

DHFR in WT and the Ups1p-depleted mitochondria (Fig. S1 C). 

However, in both mitochondria the effi ciency of the cleavage is 

considerably low (�10%; Fig. S1 C) compared with Mgm1p 

processing seen in vivo (�50%; Fig. 1 B). This is consistent with 

Figure 4. Subcellular localization of Ups1p. (A) Cells expressing Ups1p-myc were grown in YPD, homogenized (H), and separated into a mitochondrial 
pellet (M) and a post-mitochondrial supernatant (P) by centrifugation. Cell-equivalent amounts of each fraction were analyzed by immunoblotting with the 
indicated antibodies. (B) ups1∆ cells expressing Ups1p-GFP were stained with 0.1 μM Mitotracker. Bar, 3 μm. (C) WT cells expressing Ups1(1–80)p-GFP 
or Ups1(1–40)p-GFP were stained with Mitotracker. Bar, 3 �m. (D) Ups1p-myc mitochondria (M) and mitoplasts (MP) were incubated with 0.2 mg/ml tryp-
sin for 20 min on ice and analyzed by immunoblotting. (E) The OM of Ups1p-myc mitochondria was disrupted by osmotic shock. The resulting mitoplasts 
were separated into supernatant (S) and pellet (P) fractions by centrifugation, and analyzed by immunoblotting. (F) Mitoplasts were pelleted by centrifuga-
tion, treated with either 1.5 M NaCl, 0.1 M Na2CO3, or buffer, and separated into supernatant (S) and pellet (P) fractions by centrifugation. Each fraction 
was analyzed by immunoblotting. (G) Ups1p-myc mitochondria were sonicated and membrane vesicles were separated on sucrose gradients. Fractions 
were analyzed by immunoblotting. (H and I) Mitochondria from the indicated strains grown in YPD were analyzed by blue-native electrophoresis, followed 
by immunoblotting.
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previous observations that only a minor fraction of Mgm1p(1–228)-

DHFR is processed in vitro (Herlan et al., 2004). The previous 

and our current studies suggest that the sorting of Mgm1p may 

not be a rate-limiting step in in vitro assays. It is possible that the 

protease activity of Pcp1p is highly reduced in these in vitro 

 assays and becomes limiting. Supporting this idea, the mutation 

G100→D in Mgm1p(1–228)-DHFR only slightly increases the 

effi ciency of the processing (approximately twofold) in in vitro 

import assays, whereas in vivo the same mutation converts 

 almost all Mgm1p to s-Mgm1p (Herlan et al., 2004; Fig. 5 A).

Models for Ups1p function
Our study identifi es a novel IMS protein, Ups1p, which regu-

lates the alternative topogenesis of Mgm1p. If, as our results 

suggest, Ups1p plays a role in Mgm1p sorting, then how does it 

achieve this function? In particular, how does it increase the 

yield of s-Mgm1p during import? In the normal sorting of 

Mgm1p, about half of Mgm1p arrest with TM1 in the TIM23 

complex and then diffuse laterally out of the translocon into the 

lipid bilayer of the IM as l-Mgm1p. In one scenario, Ups1p may 

control the gating activity of TIM23, thus preventing all of 

Mgm1 from exiting the import channel, allowing some of 

Mgm1p to be further translocated by TIM23 and processed by 

Pcp1p to form s-Mgm1p. In another scenario, Ups1p may re-

cruit or regulate the mt-Hsp70–containing PAM complex. 

By increasing the activity of PAM, the stop-transfer function of 

TM1 of Mgm1p could be countered, and more molecules could 

be pulled through the TIM23 complex. Arguing against these 

two possibilities, we fi nd that Ups1p does not stably associate 

with the import machinery. Ups1p-myc is found in a complex of 

�170 kD, clearly distinct from the TIM23 complex (90 kD) 

(Rehling et al., 2004), and Ups1p does not coimmunopreciptate 

with known IM import components including Tim23p, Tim50p, 

Tim17p, Tim21p, Pam18p, Hsp70p, and Tim44p (unpublished 

data). In a third scenario, Ups1p may regulate the intramito-

chondrial level of ATP. Consistent with this idea, inactivation 

of Atp6p, a subunit of F0F1-ATP synthase, altered the ratio of 

l-Mgm1p to s-Mgm1p (Herlan et al., 2004). However, the level 

of s-Mgm1p in the atp6 mutants is only slightly decreased 

(Halern et al., 2004). Therefore, the dramatic decrease in the 

s-Mgm1p levels in ups1∆ cells cannot be explained simply by 

reduction in the ATP level. In addition, cells without mtDNA, 

thereby defective in respiration, normally produce s-Mgm1p 

(Fig. 5 A, lane 1). In a fourth model, Ups1p may bind directly to 

Mgm1 to facilitate sorting. Acting like a chaperone, Ups1p may 

stabilize a conformation of Mgm1p that masks the stop-transfer 

function of TM1. Those Mgm1 proteins bound by Ups1p would 

be pulled further toward the matrix and converted to s-Mgm1p. 

Although we found no stable interaction between Ups1p and 

Mgm1p, Ups1p might transiently interact with Mgm1p during 

the topogenesis. Additional studies are clearly needed to clarify 

the role of Ups1p in Mgm1p sorting.

Figure 5. Mgm1G100Dp is converted to s-Mgm1p in ups1𝚫 cells. (A) mgm1∆ and ups1∆ mgm1∆ cells containing pRS314-MGM1 (WT) or pRS314-
 MGM1G100D (G100D) were grown in YPD. The level of Mgm1p was analyzed by immunoblotting. l: l-Mgm1p, s: s-Mgm1p. (B–D) ups1∆ cells containing 
plasmids pRS314 (control), pRS314-UPS1, or pRS314-MGM1G100D were grown in YPD. The level of Mgm1p (B), mitochondrial morphology (C and D), and 
growth (E) were examined as described in Fig. 2. Bar, 3 μm. Values are mean � SD in panel D. (F) Cell lysates were prepared from WT and ups1∆ cells 
expressing HA-Fzo1p from pHS77 (Sesaki et al., 2003b), or myc-Ugo1p from pHS57 (Sesaki and Jensen, 2001), grown in YPD, and analyzed by immuno-
blotting using antibodies to HA, myc, and Tim23p.
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Yeast cells actively remodel their mitochondrial shape and 

number in response to different growth conditions and carbon 

sources (Jakobs et al., 2003). This plasticity is performed, at 

least in part, by regulated fusion and division (Jensen et al., 

2000; Okamoto and Shaw, 2005). Although the precise mecha-

nisms of l-Mgm1p and s-Mgm1p are not known, it is clear that 

both forms of Mgm1p are required for normal mitochondrial 

dynamics (Herlan et al., 2003; McQuibban et al., 2003; Sesaki 

et al., 2003a). By affecting the ratios of the two forms of Mgm1p, 

Ups1p is in an ideal position to control yeast mitochondrial 

shape and number. Because human PREL1 can substitute for 

Ups1p in Mgm1p sorting, it is likely that PREL1 normally acts 

on OPA1, the human homologue of Mgm1p. However, it has 

not been directly tested if the human rhomboid protease cleaves 

OPA1. Alternative topogenesis of the OPA1 isoforms may help 

explain the incredible diversity of mitochondrial shape, number, 

and distribution observed in different mammalian cell types 

(Karbowski and Youle, 2003; Chen and Chan, 2004).

Materials and methods
Strains, media, and genetic methods
Yeast strains used in this study are listed in Table S1. Complete disruption 
of the UPS1 gene was constructed by PCR-mediated gene replacement as 
described previously (Brachmann et al., 1998) using the kanMX4 gene 
from the pRS400 plasmid (Brachmann et al., 1998) with primers 1729 
and 1730, into diploid strain FY833/844 (Winston et al., 1995). Hetero-
zygous diploids were sporulated and dissected to obtain ups1∆ strains. 
ups1∆ dnm1∆ strain was constructed by crossing MATa ups1∆ strain and 
MATα dnm1∆ strain. UPS1-myc-TRP strain, which expresses Ups1p-myc, 
was constructed by homologous recombination in FY833/844 using the 
myc-TRP1 cassette from pFA6a-13myc-TRP1 (Longtine et al., 1998) with 
primers 1731 and 1732. Heterozygous diploids were sporulated and dis-
sected to obtain UPS1-myc strain. GAL1-UPS1 stain, which expresses 
Ups1p from the GAL1 promoter, was constructed by homologous recombi-
nation using the kanMX6-GAL1 cassette from pFA6a-kanMX6-PGAL1 
(Longtine et al., 1998) with primers 1749 and 1750. Yeast cells were 
grown in media including YPD (YP medium containing 2% glucose), YPGE 
(YP medium containing 2% glycerol and 3.2% ethanol), and YPGalSuc 
(YP medium containing 2% galactose and 2% sucrose). Standard genetic 
techniques were used (Adams et al., 1997).

Plasmids
pRS314-PRELI, a CEN-TRP1 plasmid expressing human PRELI from the 
PGK1 promoter, was constructed as follows. The PGK1 promoter was PCR 
amplifi ed from yeast genomic DNA using primers 1995 and 1996, and 
digested with KpnI and XhoI. Human PRELI was PCR amplifi ed from pOTB7-
PRELI (IMAGE ID 3505068; Open Biosystems) using primers 1753 and 
1999, and digested with XhoI and SacII. A DNA fragment carrying the 
TIM23 terminator was obtained by digesting pAA2 (Sesaki and Jensen, 
2001), using SacII and SacI. The DNA fragments were subcloned into 
KpnI/SacII-digested pRS314.

pRS313-Su9-GFP, a CEN-HIS3 plasmid expressing GFP fused to 
the presequence of subunit 9 of the F0-ATPase of Neurospora crassa 
from the ADH1 promoter was constructed as follows. The Su9 prese-
quence (residues 1–69) was PCR amplifi ed from pGEM4-Su9-DHFR us-
ing oligos 1871 and 1872. The PCR fragment was digested with EcoRI 
and XbaI,  and cloned into EcoRI/XbaI-digested pRS313-ADH1-COX4-
GFP (Sesaki and Jensen, 1999) to replace the Cox4p presequence by 
the Su9 presequence.

pRS314-Su9-GFP was constructed by subcloning the ADH1-Su9-
GFP cassette from pRS313-Su9-GFP into pRS314 using XhoI and NotI.

To form pRS314-UPS1, a CEN-TRP1 plasmid expressing Ups1p, 
UPS1 was PCR amplifi ed from yeast genomic DNA using primers 1727 
and 1728, digested with XhoI and NotI, and cloned into pRS314.

To form pRS315-UPS1-GFP, a CEN-LEU2 plasmid expressing Ups1p 
fused to GFP, UPS1 was PCR amplifi ed from pRS314-UPS1 using primers 
1727 and 1994, digested with XhoI and NotI, and cloned into pAA1, 

which encodes GFP. To form truncated versions of Ups1p, primers 2060 for 
Ups1p(1–80) and 2061 for Ups1(1–40)p were used instead of 1994.

To form pRS314-MGM1G100D, glycine at residue 100 of pRS314-
Mgm1p (Sesaki et al., 2003b) was replaced by aspartic acid using 
site-directed mutagenesis according to manufacturer’s instructions (Quick-
Change; Stratagene).

pSP6-MGM1(1–228)-DFHR was constructed as described previously 
(Herlan et al., 2004).

Cell lysates
Cell lysates were prepared as described previously (Herlan et al., 2003). 
In brief, cells (1 OD600 unit) at log phase were collected by centrifugation 
and washed in buffer A (2 mM EDTA, 2 mM PMSF, 100 μM TPCK, and 
protease inhibitor cocktail; Sigma-Aldrich). Cells were resuspended in 
500 μl of buffer A, and 100 μl of lysis buffer (1.85 M NaOH and 106 mM 
β-mercaptoethanol) was added. After incubation for 10 min on ice, 316 μl 
of 100% TCA was added. Samples were incubated for 15 min on ice, 
washed twice with acetone, resuspended in 50 μl SDS-PAGE sample buf-
fer, and boiled for 5 min. Proteins (8.3 μl per lane) were analyzed by SDS-
PAGE and immunoblotting.

Antibodies
Antibodies raised against the COOH-terminal 10 amino acids of Mgm1p 
(Sesaki et al., 2003b) were affi nity purifi ed against the same peptide using 
SulfoLink Coupling Gel (Pierce Chemical Co.) according to the manufacturer’s 
instructions. Antiserum to Ups1p was produced using the peptide corre-
sponding to residues 162–175 (F V I Q K L E E A R N P Q F ) and affi nity purifi ed 
against the same peptide as described above.

Pulse-chase analysis
WT cells were grown in minimal medium lacking methionine and cysteine to 
log phase. Cells were harvested, resuspended in 40 mM KPi, pH 6.0, and 
1% glucose, and labeled for 5 min at 30°C in the presence of 0.1 mCi/ml 
[35S]Translabel (MP Biomedicals). The chase was initiated by adding unla-
beled methionine and cysteine to 20 μM. Cells were collected and processed 
for immunoprecipitation as described previously (Shepard and Yaffe, 1999).

Blue-native gel electrophoresis
600 μg of mitochondria were resuspended on ice in 96 μl of 50 mM 
NaCl, 5 mM 6-aminocaproic acid, 100 mM Bis Tris, pH 7.0, 50 μg/ml 
α2 macroglobulin, and protease inhibitor cocktail (Sigma-Aldrich). Then, 
24 μl of 10% digitonin was added, and mitochondria were solubilized for 
15 min. After centrifugation at 12,500 g for 10 min, 165 μg of mitochon-
drial proteins was separated on 6–16% acrylamide gradient gels (Schagger 
and von Jagow, 1991).

Expression of PRELI-GFP in HeLa cells
HeLa cells were grown in DME (Invitrogen) with 10% fetal calf serum (Atlanta 
Biologicals). The open reading frame of PRELI was PCR amplifi ed from 
pOTB7-PRELI using oligos 1753 and 1760, digested with XhoI and EcoRI, 
and subcloned into XhoI/EcoRI-digested pEGFP-N1. (CLONTECH Laborato-
ries, Inc.). 4 × 105 HeLa cells were transfected with 1 μg pPRELI-GFP using 
 Lipofectamine (Life Technologies, Inc.) following the manufacturer’s directions.

Microscopy
Yeast cells were observed using a microscope (Axioskop; Carl Zeiss Micro-
Imaging, Inc.) with a 100× Plan-Neofl uar objective. Fluorescence and dif-
ferential interference contrast images were captured with a CCD camera 
(Orca ER; Hamamatsu) using OpenLab software version 3.0.8 (Improvi-
sion, Inc.). HeLa cells were viewed using a microscope (Axiovert; Carl 
Zeiss MicroImaging, Inc.) with a 40× Achrostigmat objective. Images were 
captured with a Photometrics CoolSNAP camera (Roper Scientifi c) using 
IPLab software (Scanalytics).

Imports into isolated mitochondria
Mitochondria were isolated from WT and GAL1-UPS1 strains and exam-
ined for protein import as described previously (Ryan et al., 2001).

Immunoprecipitatation
Immunoprecipitation was performed as described previously (Sesaki and 
Jensen, 2004), except that 1% digition was used instead of Triton X-100.

Online supplemental material
Fig. S1 shows that Ups1p is not required for the integrity of the OM, for 
protein import into mitochondria, and for the morphology of actin cytoskel-
eton, the ER and vacuoles. Fig. S2 shows that Ups1p is evolutionarily 
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 conserved among eukaryotes. Table S1 shows yeast strains and PCR 
 primers used in this study. Online supplemental material is available at 
http://www/jcb.org/cgi/content/full/jcb.200603092/DC1.
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