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Early warning signals for critical 
transitions in a thermoacoustic 
system
E. A. Gopalakrishnan1,†, Yogita Sharma2, Tony John1, Partha Sharathi Dutta2 & R. I. Sujith1

Dynamical systems can undergo critical transitions where the system suddenly shifts from one stable 
state to another at a critical threshold called the tipping point. The decrease in recovery rate to 
equilibrium (critical slowing down) as the system approaches the tipping point can be used to identify 
the proximity to a critical transition. Several measures have been adopted to provide early indications 
of critical transitions that happen in a variety of complex systems. In this study, we use early warning 
indicators to predict subcritical Hopf bifurcation occurring in a thermoacoustic system by analyzing the 
observables from experiments and from a theoretical model. We find that the early warning measures 
perform as robust indicators in the presence and absence of external noise. Thus, we illustrate the 
applicability of these indicators in an engineering system depicting critical transitions.

Many complex systems such as ecosystems, climate systems, financial markets and neurons in the mammalian 
cortex exhibit critical transition1–10. In first order transitions, the transition occurs at the bifurcation points (the so 
called tipping points) where the system abruptly shifts from one stable state to another stable state. This state shift 
can have undesirable consequences11 ranging from the extinction of species in ecosystems12,13 to sudden crash of 
economy in financial markets14. The undesirable state following a critical transition creates the need to develop 
early warning measures to detect the proximity of the system under consideration to a critical point or tipping 
point. Early detection of critical transitions has great relevance because it can initiate appropriate management 
strategies to prevent a forthcoming catastrophe15.

Over the years, many early warning measures have been developed to successfully detect critical transitions 
observed in complex systems. These early warning measures perform by exploiting the phenomenon of critical 
slowing down observed in dynamical systems. Dynamical systems display slow recovery from perturbations in 
the vicinity of a tipping point which is known as critical slowing down16,17. The signature of critical slowing down 
can be observed as an increase in variance, lag-1 autocorrelation and conditional heteroskedasticity prior to a 
critical transition12,14,18. Scheffer et al.14, in their pioneering study, proposed a plethora of statistical quantities 
such as recovery rate, variance and autocorrelation to forewarn imminent shifts in ecosystems, collapse of finan-
cial markets, and the onset of asthmatic attacks and epileptic seizures. Thereafter, these early warning measures 
are extensively used to predict critical transitions in ecological models18–20, palaeoclimate records21,22, structural 
behavior23, medicine24, chemical25 and biological systems26,27.

Critical transitions that occur in many engineering systems result in a huge loss of revenue. One such engi-
neering system is the power generating system where combustion of fossil fuels is the source of power28,29. Land 
based gas turbine engines, jet engines used for aviation, and rocket engines fall into this category of combustion 
dependent power generating systems. In a combustion system, the burning of fuel occurs in an unsteady flow 
field. The perturbations in the flow causes fluctuations in the heat release rate which results in the generation 
of sound waves. The sound waves get reflected back to the source, if the entire process occurs in a confinement. 
These reflected waves modify the heat release rate, forming a feedback loop. A positive feedback could be estab-
lished when the pressure fluctuations due to the sound waves and the heat release rate fluctuations are favorably 
phased30. The positive feedback can result in the growth of pressure fluctuations and the system can finally attain 
a state of large amplitude periodic oscillations. The transition to oscillatory behavior occurs as a result of the 
feedback mechanism that exists between the sound waves and the heat release rate. Hence, combustion sys-
tems that exhibit this transition are termed as thermoacoustic systems. The high amplitude periodic oscillations 
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established in the system could cause structural damage, reduce performance of the power generating system or 
even result in disastrous events such as operational failure of space rockets31. Thus, early detection of the transi-
tion to self-sustained oscillations is critical in a combustion system.

In general, physical systems display complex dynamics which makes it difficult to predict the transitions or 
even to describe the nature of the transitions observed in such systems. Therefore, controlled laboratory-scale 
experiments are necessary to verify the robustness of the early warning measures in physical systems. In this 
study, we employ ingenious laboratory-scale experiments along with a theoretical model to study the effective-
ness of the early warning indicators. This is the first attempt to apply these early warning measures to predict 
subcritical Hopf bifurcation in a prototypical thermoacoustic system. The experimental set-up consists of a hori-
zontal duct with a heat source located inside the duct. The experimental system could undergo a transition to 
self-sustained pressure oscillations for suitable choice of its control parameters. In addition to experiments, we 
use a theoretical model derived from the conservation equations of momentum and energy.

In this study, we identify early warning signals such as increase in variance and conditional heteroskedastic-
ity close to a subcritical Hopf bifurcation. We find that these measures are robust even when the system under 
consideration is under the influence of external noise. Many physical systems undergo critical transition from a 
non-oscillatory state to an oscillatory state, which can be described via a subcritical Hopf bifurcation. Hence, our 
study on the viability of the early warning measures to predict transition in a physical system gains considerable 
significance.

Results
Experimental set-up. The experimental set-up consists of a 1 m long duct of 10 cm × 10 cm square 
cross-section (Fig. 1). The duct is open to atmosphere at one end. The other end is connected to a rectangular 
chamber of size much larger than the cross-section dimensions of the duct. This chamber is referred to as decou-
pler32. A blower in the suction mode is used to establish the air flow through the duct. The decoupler isolates the 
duct from the fluctuations upstream. Thus, the pressure at both the ends of the duct are equal to the ambient 
pressure. Therefore, the pressure fluctuations at the boundaries are negligible.

An electrically heated wire mesh located in the upstream half of the duct acts as a source of heat for this 
prototypical system, unlike a flame in practical combustion systems. The voltage drop across the mesh and the 
current flowing through the mesh are measured to estimate the electrical power supplied to the mesh. We used 
loudspeakers to provide external fluctuations in experiments when we studied the robustness of early warning 
measures in the presence of noise.

Summary of the model. The theoretical model considered in this study captures the feedback between 
the fluctuating heat release rate and the sound waves (pressure and velocity fluctuations). This feedback could be 
modified, by varying certain control parameters, resulting in a state shift to large amplitude periodic oscillations. 
The formulation of the model is detailed in the Methods section. The following set of equations, derived from the 
conservation equations of momentum and energy, describes the temporal evolution of the system33.
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The model described in equation (1) represents a nonlinear self-excited oscillator and it displays a transition 
from a non-oscillatory state to an oscillatory state via subcritical Hopf bifurcation for suitable change in control 
parameters. Although the experimental system under study is laminar, aperiodic fluctuations exist in the flow 
field. These fluctuations in the flow field arise from the blower. The flow noise generated from the blower does not 
completely decay in the decoupler. These small amplitude fluctuations convect downstream giving rise to small 
amplitude fluctuations in the flow field. Thus, the base state of the system can be viewed as a laminar flow field 
superimposed with the low amplitude fluctuations arising from the blower. We chose additive Gaussian white 
noise34 to model these background fluctuations in the theoretical model as it captures the dynamics observed in 
experiments qualitatively. This qualitative similarity between the experimental results and the theoretical model, 

Figure 1. Schematic of the experimental set-up. A blower (Rosemount 3051 SFC) is used to provide the mean 
flow and a flow meter is used to measure the flow rate. A DC power supply unit is used to heat the wire mesh. 
We acknowledge Mr. Dileesh M., Junior Technician in the Department of Applied Mechanics, Indian Institute 
of Technology Madras, for providing the schematic.
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when the source of fluctuations is modeled as additive Gaussian white noise, is reported both in the case of a 
prototypical thermoacoustic system34 and in the case of an industrial gas turbine combustor35. Once we include 
the noise, equation (1) becomes:
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where, ε represents strength of the additive Gaussian white noise φ(t). The noise term φ(t) in equation (2) models 
both background fluctuations in the flow field and the external fluctuations imposed by the loud speaker. The 
sources of both these fluctuations; the fluctuations due to flow noise from the blower and the fluctuations induced 
by the loudspeaker; are external to the system. Hence, we use additive noise to model both these fluctuations. The 
non-dimensional intensity of background fluctuations and external fluctuations is referred to as β. The procedure 
to obtain β is detailed in the Methods section. In order to simulate the experimental conditions, we maintained 
the strength of additive Gaussian white noise ε in the model such that the non-dimensional noise intensity β is 
the same as that in the experiments34.

Critical transition associated with a subcritical Hopf bifurcation. A bifurcation analysis was per-
formed in order to characterize the nature of the transition observed in experiments. The control parameter in 
this study, the heater power (K), was increased in a quasi-steady manner and the time series of unsteady pressure 
pertaining to each value of the parameter was recorded. When K was increased above a threshold value A, the 
median of the peak acoustic pressure (P) registered an abrupt increase (see Fig. 2).

In Fig. 2, the abrupt increase in P corresponds to a transition of the system from a non-oscillatory to oscil-
latory state. It is evident from earlier studies that the oscillatory state corresponds to a state of limit cycle oscil-
lations32,34. Once the system reaches the oscillatory state, the parameter K should be reduced to a threshold 
value further below A, to bring the system back to the non-oscillatory state. The threshold values at which the 
transitions occur are different for the forward path (when K is increased) and for the reverse path (when K is 
decreased). This difference in threshold values results in the presence of a bistable regime. The presence of the 
bistable regime indicates that the transition to the oscillatory state observed in the experimental system is subcrit-
ical in nature36. The subcritical nature of Hopf bifurcation prompts us to use early warning measures to predict 
the occurrence of this transition.

In experiments, we have observed a 5% uncertainty in the value of the Hopf point. The uncertainty arises 
because the experimental conditions such as the mean temperature and the speed of sound are not exactly repeat-
able. Thus, in a particular experiment, we can expect the onset of oscillations at any K within the range of approx-
imately 380 ±  20 W.

Critical slowing down indicators at the onset of critical transition. We calculated variance, lag-1 
autocorrelation and also conditional heteroskedasticity of the time series in search for forewarning signals before 
the system reaches the state of self-sustained oscillations. Unlike a laboratory experiment where the control 
parameter is varied in a quasi-static way, the control parameter must be varied continuously as in the case of real 
systems. This prompted us to perform experiments by varying the control parameter in a continuous manner and 
capture the time series depicting the continuous transition from non-oscillatory state to oscillatory state. We var-
ied K by 2 W in every 20 s and recorded the corresponding time series of acoustic pressure. A plot that depicts the 
change in K with time is included as Supplementary Fig. S3. The metric based methods suggested by Dakos et al.19  

Figure 2. The bifurcation diagram obtained from experiments. The non-oscillatory state loses its stability 
at point A (Hopf point) and the system undergoes a transition from non-oscillatory state to large amplitude 
oscillatory state as the parameter K is increased. The system returns to the non-oscillatory state at point C as K 
is reduced. We can observe a bistable region ABCD, where the system can remain either in a stable oscillatory 
state or in a stable non-oscillatory state. The inset shows, the variation of any measure M with control parameter 
μ obtained from the normal form equation associated with subcritical Hopf bifurcation. The stable and unstable 
branches are colored blue and red respectively.
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are adopted to calculate the early warning measures. The time series prior to the transition alone is used for cal-
culating the early warning measures as we require precursors for an impending transition.

In Fig. 3a, the amplitude of the oscillations starts to grow only at around t  =   644 s which marks the occurrence 
of Hopf bifurcation (at K =  394 W). The effects of critical slowing down, which can be observed just before the 
occurrence of the subcritical Hopf bifurcation, will aid in detecting the impending transition. Therefore, we used 
the time series up to t =  640 s to calculate the early warning measures. We can observe a significant increase in the 
value of variance well before the transition, which clearly serves as an early warning signal (Fig. 3). However, the 
lag-1 autocorrelation decreases before the transition, rendering it as a less effective early warning measure (Fig. 3).

We extended our search for effective early warning measures for predicting a subcritical Hopf bifurcation 
also in the theoretical model given by equation (2). We varied the non-dimensional control parameter (k) as a 
function of time, given by k =  1.667 ×  10−3 t, and obtained the corresponding time series of unsteady pressure. 
Here also, we observed a transition to a state of limit cycle oscillations38. The lag-1 autocorrelation and variance 
were calculated using the same procedure that we followed for the time series obtained from experiments. In 
the model, we observe that the values of variance and lag-1 autocorrelation increase well before the transition 
(Fig. 4). Lag-1 autocorrelation shows a decreasing trend in experiments while we observe an increasing trend 
in the model. In experiments, the system has background aperiodic fluctuations, though we have not added any 
external noise in the system. The presence of fluctuations makes autocorrelation a less effective precursor as it is 
established that autocorrelation can increase or decrease in the presence of fluctuations39. In order to use autocor-
relation as a precursor, we need to have multiple realizations of the transition, which may not be feasible when it 
is applied as an early warning measure in a real time system36. The observations from the model and experiments 
make it clear that variance is a more robust early warning measure as compared to lag-1 autocorrelation. Our 
observation of variance being a more robust early warning measure than lag-1 autocorrelation is completely in 
conformity with Ghanavati et al.40.

The robustness of the early warning indicators must be tested in the presence of fluctuations as practical 
combustion systems work in a turbulent environment. Therefore, we added external noise of non-dimensional 
intensity β =  0.2 in the system using loudspeakers34. Here also, we changed the control parameter by 2 W in every 
20 s and recorded the time series of unsteady pressure. We observe that lag-1 autocorrelation shows an increasing 
trend close to the transition and variance shows a concurrent rise indicating the proximity to a critical transition 
(Fig. 5). Our experimental results prove that early warning indicators perform very well even in the presence of 
external fluctuations of intensity one order higher than that of the background fluctuations.

We further tested the robustness of early warning signals using the model (equation (2)). In the model, we 
applied Gaussian white noise such that the non-dimensional intensity is 0.2 to match the experimental condi-
tions. The value of the Hopf point (k =  0.62) does not change since the noise in the model is additive in nature41. 
The parameter k reaches the value of Hopf point only at t =  372. We can notice in Fig. 6(a) that the amplitude 

Figure 3. Early warning signals for a critical transition associated with a subcritical Hopf bifurcation using 
the time series of unsteady pressure obtained from the experiments. (a) Time series depicting transition 
from a stable to an alternate stable state where the heater power K is increased by 2 W in every 20 seconds from 
330 W to 396 W. The oscillations start to grow at around t =  644 s. Plot depicting the change in (b) variance and 
(c) lag-1 autocorrelation as the system approaches the critical transition. The lag-1 autocorrelation and variance 
are calculated using a moving window of half the size of the time series. The black horizontal arrow represents 
the length of the moving window. The thick solid black line indicates the time stamp (t =  640 s) up to which 
the data is used to calculate the early warning measures while the vertical dotted line indicates the time stamp 
from which the early warning measures are calculated. We observe a clear increase in variance, well before the 
transition, whereas the autocorrelation shows a decrease. Although, we have not added external noise to the 
system, the background fluctuations in the system correspond to a non-dimensional noise intensity β =  0.02. A 
concurrent increase or decrease in the values of a measure (variance or autocorrelation) is identified as trend. 
We have adopted Mann-Kendall test37 to calculate the trend.
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starts to grow much before the Hopf point is reached. Therefore, the transition to limit cycle presented in Fig. 6(a) 
represents noise induced tipping in the system. In this case also, we observed a trend similar to that observed in 
experiments, where variance and lag-1 autocorrelation increase well before the transition (Fig. 6). Our results 
show that the early warning measures perform well in forewarning critical transitions irrespective of the presence 
of background and external fluctuations.

We then proceed to calculate conditional heteroskedasticity which was introduced as an early warning indica-
tor by Seekell et al.18. Conditional heteroskedasticity is indicated by the persistence in the conditional variance of 
the error terms. We followed the procedure suggested by Seekel et al.18 to estimate conditional heteroskedasticity 
(refer Methods section for details of the procedure). In this procedure, the time series is modeled as an autore-
gressive process and the residuals are obtained. We then estimate the conditional heteroskedasticity by examining 

Figure 4. Early warning signals for subcritical Hopf bifurcation using the time series generated from 
the model (equation (2)). (a) Time series of acoustic pressure depicting the transition from a stable to an 
alternative stable state. The control parameter k is increased as a function of time, given by k =  1.667 ×  10−3 t, 
from 0 to 1. The parameter reaches the Hopf point (k =  0.62) at t =  372. Plot depicting the change in (b) variance 
and (c) lag-1 autocorrelation as the system approaches the critical transition. We observe increase in variance 
and autocorrelation well before the transition. We maintained the value of ε such that the non-dimensional 
noise intensity is 0.02 to match the experimental conditions. Note that the parameter k and the acoustic pressure 
that we calculate from the model are non-dimensional.

Figure 5. Early warning signals for subcritical Hopf bifurcation in the presence of external fluctuations 
using the time series of unsteady pressure acquired from the experiments. (a) Time series of acoustic 
pressure depicting transition from a stable to an alternate stable state where the heater power K is varied by 
2 W in every 20 s from 330 W to 394 W. Plot depicting the change in (b) variance and (c) lag-1 autocorrelation 
as the system approaches the critical transition. We observe a rise in variance and autocorrelation before the 
transition. We have added external noise to the system such that the non-dimensional noise intensity is β =  0.2.
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the persistence in the conditional variance of the residuals. We adopt conditional heteroskedasticity as an addi-
tional measure along with variance and autocorrelation to early warn the transition.

We consider the time series data used in Figs 3 to 6 to calculate the conditional heteroskedasticity. We identi-
fied the significant number of tests where conditional heteroskedasticity is observed. We find that the cumulative 
number of significant tests (denoted by C) for conditional heteroskedasticity, applied to the time series, increases 
as the critical transition is approached (Fig. 7). The increase in C for all the cases considered in this study ascer-
tains regime shift in the system18.

Discussion
We find that the critical slowing down indicators, e.g., variance and conditional heteroskedasticity, as early warn-
ing signals are able to predict catastrophic transitions in a physical system. These measures are robust even in the 
presence of high intensity noise. In the model, lag-1 autocorrelation shows an increasing trend in the presence 
of low and high intensity noise. However, in experiments, lag-1 autocorrelation shows a decreasing trend (in the 

Figure 6. Early warning signals for subcritical Hopf bifurcation in the presence of high intensity additive 
noise using the time series generated from the model (equation (2)). (a) Time series of unsteady pressure 
depicting the transition from a stable to an alternate stable state. The control parameter k is increased as a 
function of time, given by k =  1.667 ×  10−3 t, from 0 to 1. Plot depicting the change in (b) variance and (c) lag-1 
autocorrelation as the system approaches the critical transition. We observe a clear increase in variance and 
autocorrelation well before the transition. We maintained the value of ε such that the non-dimensional noise 
intensity is 0.2 to match the experimental conditions.

Figure 7. The cumulative number of significant Lagrange multiplier test (C) applied to the time series 
obtained from the experiments and the model. In (a) to (d) the time series used are same as in Figs 3 to 6, 
respectively. The cumulative C increases close to the transition indicating that significant number of tests shows 
conditional heteroskedasticity.
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presence of background fluctuations) as the critical point is approached, though it shows an increasing trend in 
the presence of external noise imposed by a loud speaker. The lack of robustness of autocorrelation as a precursor 
is due to the fact that we are using a single sample path or a single realization36.

This is the first experimental study where we establish the effectiveness of critical slowing down indicators 
in early warning critical transition in a thermoacoustic system. Our findings are highly pertinent as many real 
systems exhibit critical transitions. By implementing the early warning measures in systems such as the one 
considered in the present study, we can prevent critical transitions in real systems. We wish to emphasize that the 
early warning indicators exploit the phenomenon of critical slowing down which happens near any bifurcation. 
Therefore, any transition which can be viewed as a bifurcation can be predicted using the early warning measures.

There are certain limitations to the approach we have adopted in this study. The early warning indicators 
considered in the current study may fail to detect the regime shifts that occur as a result of rapid change in the 
control parameter42. Apart from this, the early warning measures might not detect transitions induced by a finite 
amplitude perturbation in the system. The perturbation can occur at any arbitrary instant of time and can take 
the system to the basin of attraction of the stable limit cycle. Tipping in the system as a result of perturbations 
is not preceded by critical slowing down. Hence, the early warning indicators discussed in this study might not 
detect this transition. We provide an example from our experiments and mathematical model where early warn-
ing measures fail to detect a transition induced by a sudden finite amplitude perturbation (see Supplementary 
material).

Methods
Data acquisition. We use piezoelectric transducers (PCB piezotronics, PCB103B02) to record the variation 
in acoustic pressure. The sensitivity of the pressure transducer is 217.5 mV/kPa and the resolution is 0.2 Pa. The 
output from the pressure transducer is acquired using a data acquisition system (PCI 6221) through a signal 
conditioner. The transducer is mounted 325 mm from the end open to the atmosphere. We add external noise to 
the system through loud speakers (Ahuja AU 60) mounted on the duct 625 mm from the end open to the atmos-
phere35. The white noise signal is created in LabVIEW software and then input to the loud speakers through an 
amplifier. A DC power supply (TDK-Lambda, GEN 8-400) of range 0–8 V and 0–400 A is used to heat the wire 
mesh. The wire mesh is made from mild steel. The uncertainty in the heater power is 0.4 W. The accuracy of the 
flow meter is ± 0.1%. The decoupler has dimensions 1200 mm ×  450 mm ×  450 mm.

Theoretical model. The model is derived from the conservation equations of momentum and energy33. 
In the model, we consider a horizontal duct with a concentrated heat source located inside the duct. An average 
value of temperature in the duct is adopted to model the sound propagation in the duct. We can write the conser-
vation equations of momentum and energy (in one-dimension) as follows43:
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terms involving the fluctuating variables alone are retained and higher order terms are neglected. In addition, the 
low Mach number approximation44 is adopted to obtain the following equations:
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where, λ is the heat conductivity of air, CV is the specific heat at constant volume, LW is the effective wire length, ρ 
and T  are the mean density and temperature of the flow respectively, TW is the temperature of the wire, dW is the 
wire diameter and S is the cross-sectional area of the duct. The unsteady heat release rate is a nonlinear function 
of the velocity fluctuations at the heater location. The heat release rate responds to the velocity fluctuations after a 
delay (τ) which is incorporated in equation (7). The physical reason for this delay is the presence of the thermal 
and the hydrodynamic boundary layers around the wire. Due to the presence of the boundary layer, the heat 
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release rate from the wire responds to the velocity fluctuations after a delay. The following expression can be used 
to estimate the non-dimensional time delay from experiments46.

τ = .c
L

d
u

0 2 ,
(8)

0

0

where c0 is the speed of sound, L is the length of the duct, u0 is the mean speed of the flow and d is the diameter of 
the cylindrical heating wire.

Moreover, a similar delay is expected in our experimental set-up, as we have a mesh type heater (which can be 
viewed as an array of cylindrical wires). In a practical combustion system, this delay can be attributed to factors 
such as the convective time scale (time taken by the fuel air mixture to travel the distance between the fuel injec-
tion point and the flame location), evaporation time scale, mixing time scale and reaction time scale.

The location of the heat source inside the duct is denoted by 
x f . Although the sound propagation is modeled 

as a linear phenomenon, the interaction between heat release rate and the sound waves is nonlinear. Therefore, 
equations (5) and (6) still represent a nonlinear system of equations as the expression for heat release rate is non-
linear33. Equations (5) and (6) are then expressed in terms of non-dimensional quantities by adopting the follow-
ing scales for non-dimensionalization.
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The variables that govern the heat conduction from the wire are encapsulated into a single non-dimensional 
parameter denoted by k. In the analyses using the model, γ=k k M2 / , is used as the control parameter analogous 
to the heater power in experiments. The non-dimensional acoustic pressure and acoustic velocity are represented 
by ′p  and ′u . The acoustic pressure ( ′p ) and the acoustic velocity ( ′u ) are expressed in terms of the natural spatial 
modes of the duct as follows33:
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equation (12) are substituted into equations (10) and (11) to yield equation (1).
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coefficients32,47. ωj =  jπ represents the non-dimensional angular frequency of the jth mode. The non-dimensional 
frequency ωj is obtained by non-dimensionalizing the angular frequency of the jth natural mode of a duct open at 
both ends, ω π=


jc L2 ( /2 )j 0 . ω

 j is non-dimensionalized with c0/L, where c0/L is the travel time of the sound waves 
in the duct. The value of the parameters used for computation are N (number of modes) =  10, dt (step size) =  0.01,  
ωj =  jπ, c1 =  0.1, c2 =  0.06, xf =  0.25 and τ =  0.2.

The amplitude of fluctuations or the noise level in the system (both in experiments and in the theoret-
ical model) is estimated by measuring the rms amplitude of the acoustic pressure when the system is in the 
non-oscillatory state. The noise amplitude (I) is non-dimensionalized by the amplitude of limit cycle attained at 
the Hopf point in the absence of external noise (PH).

β = I P/ (13)H

Here, β is the non-dimensional noise intensity.

Derivation of early warning signals. We performed the statistical analyses using the “Early Warning 
Signals Tool Box” (http://www.early-warning-signals.org/). We used the time series up to the impending critical 
transition to calculate the early warning indicators. For variance and autocorrelation, we calculated the temporal 
trend by estimating the nonparametric Kendall rank correlation (τk)48 Kendall’s τk is a statistical tool used to 
measure the association between two measured quantities. Lag-1 autocorrelation is determined by the autocor-
relation function (ACF) given below:

ρ
σ

=
− + −E P t P P t P[( ( ) )( ( 1) )] ,

(14)
m m

1 2

http://www.early-warning-signals.org/
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where, P(t) is the value of the state variable at time t, and Pm and σ2 are the mean and variance of P(t) within the 
time frame considered. Variance is calculated as:

∑σ = −
=N

P t P1 ( ( ) ) ,
(15)t

N

m
2

1

2

where N  is the number of observations.
We used Lagrange multiplier test to calculate conditional heteroskedasticity49. For this, we fit autoregressive 

model of selected order to the time series.

∑ ξ= + +
=

−P a a P
(16)t

i

q

i t i t0
1

The order is selected according to Akaike information criterion50 which is a measure of the relative goodness 
of the fit. After fitting of model to the time series, we calculated squared residuals (ξt

2) and regressed them one 
time step

∑ξ α α ξ= + − , (17)t i t i
2

0
2

where α0 and αi represent the regression coefficients. The residuals give the error variance relationship which 
shows the properties of conditional heteroskedasticity. We conducted chi square test to compare the values of R2 
(Lagrange multiplier test statistic) to a χ2 distribution so as to identify the number of significant tests where con-
ditional heteroskedasticity is observed.
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