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Abstract

Political optimizer (PO) is a relatively state-of-the-art meta-heuristic optimization technique

for global optimization problems, as well as real-world engineering optimization, which mim-

ics the multi-staged process of politics in human society. However, due to a greedy strategy

during the election phase, and an inappropriate balance of global exploration and local

exploitation during the party switching stage, it suffers from stagnation in local optima with a

low convergence accuracy. To overcome such drawbacks, a sequence of novel PO variants

were proposed by integrating PO with Quadratic Interpolation, Advance Quadratic Interpola-

tion, Cubic Interpolation, Lagrange Interpolation, Newton Interpolation, and Refraction

Learning (RL). The main contributions of this work are listed as follows. (1) The interpolation

strategy was adopted to help the current global optima jump out of local optima. (2) Specifi-

cally, RL was integrated into PO to improve the diversity of the population. (3) To improve

the ability of balancing exploration and exploitation during the party switching stage, a logis-

tic model was proposed to maintain a good balance. To the best of our knowledge, PO com-

bined with the interpolation strategy and RL was proposed here for the first time. The

performance of the best PO variant was evaluated by 19 widely used benchmark functions

and 30 test functions from the IEEE CEC 2014. Experimental results revealed the superior

performance of the proposed algorithm in terms of exploration capacity.

Introduction

Global optimization problems (GOPs) are inevitable in applied mathematics and practical

engineering fields. As a general rule, most GOPs can be formulated as follows:

min f ðxÞ; x ¼ ðx1; x2; . . . ; xnÞ ð1Þ

where f(x) and n denote an objective function and the number of variables, respectively. R is

the real field, x2Q and Q is an n-dimensional rectangle in Rn defined by the following equa-

tion:

Q ¼ Pn
i¼1
½li; ui� ð2Þ

Where l = (l1,. . .,ln), u = (u1,. . .,un), xi2(li, ui), i = 1,. . .,n and [l, u] is the feasible region.
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Over the last two to three decades, meta-heuristic optimization techniques have been

extremely popular in the GOPs field. Generally speaking, meta-heuristic optimization tech-

niques may be divided into four categories: swarm-based, evolution-based, human behavior-

based, and physics-based algorithms [1, 2]. A few well-known and state-of-the-art swarm-

based algorithms primarily include Salp Swarm Optimizer [3], Grey Wolf Optimizer (GWO)

[4], Particle Swarm Optimization (PSO) [5], Ant Colony Optimization [6], and [7–24], etc.

Well-known evolution-based algorithms mainly include biogeography based optimizer [25],

Differential Evolution (DE) [26], Evolutionary Strategy [27], Genetic Programming [28], and

Genetic Algorithm [29]. Known human behavior-based algorithms primarily include Brain

Strom Optimization [30], Soccer League Competition [31], and [32–38], etc. Familiar physics-

based algorithms include Thermal Exchange Optimization [39], Gravitational Search Algo-

rithm [40], Sine Cosine Algorithm (SCA) [41], and [42–50], etc.

Although Sorensen presented a more critical view on such meta-heuristic methods in 2015

[51], this did not prevent researchers from steadily creating new methods based on meta-heu-

ristics. Since No Free Lunch Theory [52] gives the following enlightenment: there are no algo-

rithms which can solve all problems, this motivates researchers develop new meta-heuristic

algorithms ceaselessly. Recently (2020), Askari proposed a new meta-heuristic method called

political optimizer (PO), which was inspired by a multi-staged process of politics and

described a model to solve GOPs [53]. PO is the mathematical mapping of all the major phases

of politics [54–56]; thus, it belongs to human behavior-based algorithms. Experimental results

have demonstrated that PO can solve classical engineering design problems, such as welded

beam and speed reducer design. Results have indicated that the PO had excellent convergence

speed performance, and a good exploration capacity in early iterations.

However, almost all individuals in the canonical PO are concentrated in a narrow area near

the current optimal individual in the final stage of iterative optimization. Therefore, when

solving complex multimodal global optimization problems, the entire population can easily

converge to the local optimum. How to improve the capacity for jumping out of the local opti-

mum in PO is the key technology, and the most important goal of global optimization. There

are two main methods for improving the ability to jump out of the local optimum in PO. The

first involves adjusting the parameters in PO, whereas the second is to introduce new search

operators. However, there is only one parameter n (number of political parties, constituencies,

and party members). According to the canonical PO, n should be set at 8 to obtain an appro-

priate convergence; thus, it is the better choice when introducing new search operators.

Furthermore, canonical PO has an inappropriate balance of global exploration and local

exploitation during the party switching stage. In the canonical PO, the values of λ are linearly

decreased from one to zero; however, it is not appropriate to adopt a linear parameter strategy

to simulate the actual nonlinear search process.

Consequently, a summative conclusion may be drawn as follows. Firstly, the limited global

optima searching capacity of canonical PO makes it stagnate in a local optimum with high

probability and may lead to premature convergence. Second, it is not appropriate to adopt a

linear parameter strategy to simulate the nonlinear search process, which leads to an unsuit-

able balance of global exploration and local exploitation during the party switching stage.

Finally, due to limited iterations, the global optima in canonical PO are difficult to find as

relates to complicated multimodal problems. These conclusions motivated us to make the fol-

lowing innovative implementation, with the main contributions of this work listed as follows:

1. An interpolation strategy was adopted to facilitate the current global optima jump out of

local optima. Interpolation is the process of synthesizing all known data to predict

unknowns, which can take full advantage of certain known data.
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2. If interpolation strategy is utilized solely, the diversity of the population quickly declines.

Therefore, a refraction learning (RL) strategy was adopted to improve the population

diversity.

3. To enhance the capacity of balancing exploration and exploitation during the party switch-

ing stage, a logistic model was proposed to maintain good balance.

4. To the best of our knowledge, PO combined with interpolation strategy and RL was pro-

posed here for the first time.

This paper is further organized as below. Section 2 introduces preliminary knowledge of

canonical PO. The proposed methodology is introduced in Section 3. In Section 4, 19 well-

known and extensively employed benchmark functions and 30 test functions from the IEEE

CEC 2014 were utilized to evaluate the proposed algorithms. Finally, Section 4 also summa-

rizes with concluding remarks.

Political optimizer (PO)

PO is inspired by the western political process of optimization, which involves two aspects. The

first assumption is that all citizens attempt to optimize their goodwill to win the election. The sec-

ond assumption is that all parties try to obtain more seats in parliament. PO is consisted of five

phases, which include party formation and constituency allocation, election campaign, party

switching, interparty election, and parliamentary affairs [53]. The main PO process is shown in

Fig 1, whereas the process of the system to express how the system works is shown in Fig 2.

The entire population can be divided into n political parties, which can be represented as

Eq (3).

P ¼ fP1; P2; P3; . . . ; Png ð3Þ

Every party consists of n party members, as demonstrated in Eq (4).

Pi ¼ fp
1

i ; p
2

i ; p
3

i ; . . . ; pni g ð4Þ

Each party member consists of d dimensions, as shown in Eq (5).

pji ¼ ½p
j
i;1; p

j
i;2; p

j
i;3; . . . ; pji;d�

T
ð5Þ

Each solution can also be an election candidate. Suppose there are n electoral districts as

represented in Eq (6).

C ¼ fC1;C2;C3; . . . ;Cng ð6Þ

It is assumed there are n members in each constituency, as shown in Eq (7).

Cj ¼ fp
j
1; p

j
2; p

j
3; . . . ; pjng ð7Þ

The party leader is defined as the member with the best fitness in a party, as shown in Eq

(8).

q ¼ argmin
1�j�n

f ðpjiÞ; 8i�f1; . . . ; ng

p�i ¼ pqi
ð8Þ

All of the party leaders can be expressed as Eq (9).

P� ¼ fp�
1
; p�

2
; p�

3
; . . . ; p�ng ð9Þ
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Fig 1. Main step of original PO.

https://doi.org/10.1371/journal.pone.0251204.g001
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The winners of the different constituencies are called members of parliament, as shown in

Eq (10).

C� ¼ fc�
1
; c�

2
; c�

3
; . . . ; c�ng ð10Þ

During the election campaign stage, Eq (11) and Eq (12) are employed to update the posi-

tion of potential solutions.

pji;kðt þ 1Þ ¼

if pji;kðt � 1Þ � pji;kðtÞ � m� or pji;kðt � 1Þ � pji;kðtÞ � m�;

m� þ rðm� � pji;kðtÞÞ;

if pji;kðt � 1Þ � m� � pji;kðtÞ or pji;kðt � 1Þ � m� � pji;kðtÞ;

m� þ ð2r � 1Þjm� � pji;kðtÞj;

if m� � pji;kðt � 1Þ � pji;kðtÞ or m� � pji;kðt � 1Þ � pji;kðtÞ;

m� þ ð2r � 1Þjm� � pji;kðt � 1Þj;

ð11Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Fig 2. PO process. (A) Population initialization, different shapes refer to different parties. Quadrilaterals, pentagons, and circles represent political parties P1,

P2, and P3, respectively. Dotted frames C1, C2, and C3 represent different constituencies. (B) Members of various political parties conduct canvassing activities

within their respective constituency. (C) Party leaders (solid) and constituency winners C1’, C2’, and C3’ are determined. (D) Update the positions of party

members according to the constituency winners. (E) Update the positions of party members according to the party leaders. (F) The resultant positions are

synthesized according to the position of the constituency winners and the party leaders. (G)(H) party switch, p3
1

in constituency C3 is exchanged with p1
2

in

constituency C1. (I) election phrase and reassign party leaders and constituency winners. (J) parliamentary affairs: each parliamentarian is updated if its fitness

is improved after being attracted by a random parliamentarian. (K) final positions after one iteration.

https://doi.org/10.1371/journal.pone.0251204.g002
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pji;kðt þ 1Þ ¼

if pji;kðt � 1Þ � pji;kðtÞ � m� or pji;kðt � 1Þ � pji;kðtÞ � m�;

m� þ ð2r � 1Þjm� � pji;kðtÞj;

if pji;kðt � 1Þ � m� � pji;kðtÞ or pji;kðt � 1Þ � m� � pji;kðtÞ;

pji;kðt � 1Þ þ rðpji;kðtÞ � pji;kðt � 1ÞÞ;

if m� � pji;kðt � 1Þ � pji;kðtÞ or m� � pji;kðt � 1Þ � pji;kðtÞ;

m� þ ð2r � 1Þjm� � pji;kðt � 1Þj;

ð12Þ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

To balance exploration and exploitation, party switching is adopted. An adaptive parameter

λ is used, which is linearly decreased from one to zero during the entire iterative process. Each

candidate is selected according to probability λ and exchanged with the worst member of a

randomly selected party, as shown in Eq (13).

q ¼ argmax
1�j�n

f ðpjiÞ ð13Þ

In the election phrase, the winner in a constituency is obtained, as shown in Eq (14).

q ¼ argmin
1�j�n

f ðpjiÞ

c�j ¼ pjq
ð14Þ

Proposed methodology

PO can obtain good convergence when dealing with simple problems; however, it easily falls

into local optima when engaged with multi-peak test benchmark functions. To more efficiently

obtain an optimum, interpolation strategy is introduced into the PO.

Interpolation strategy is based on known discrete points, where the interpolation method

employs the data of known points to obtain other unknown points. It can obtain information

on unknown points by employing the data of known points, so that it can make full use of the

data of the known points to obtain an optimal solution in PO. The introduction of the interpola-

tion can overcome the shortcomings of PO, which include its easily falling into local optima. In

this section, several interpolation strategies were applied to PO, wherein the most suitable interpo-

lation strategy was selected to combine with RL according to the results of various interpolation

strategies.

The interpolation strategy is shown in Fig 3, where quadrilaterals represent known discrete

points, solid lines are continuous functions drawn according to the data of known points, and

circles represent the position where the optimal point is predicted (the lowest point in this

example), where the lowest point is contingent on the constructor method. Following the use

of the interpolation strategy a derived optimal solution is generated and compared with the

solution generated by the original PO. If the solution is better than that generated by the PO, it

will be replaced; otherwise, the solution generated by PO will be retained. This method was

used for each of the interpolation strategies in this section and not be repeated.

Quadratic interpolation PO (QIPO)

Quadratic interpolation is one of the most common strategies used in unconstrained

one-dimensional optimization. In the case that the current optimal solution is known, the

new optimal solution is explored based on other data. By using this approach, the known

data may be employed to calculate the real optimal solution. Quadratic interpolation is a curve
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fitting technique used to construct a quadratic function via the data of known point.

The optimal point, and any two points of the contemporary population are selected to con-

struct the quadratic function, and the optimal point of the quadratic function is obtained by

Eq (15).

Qni ¼
1

2

ðx2
2i � x2

3iÞf1 þ ðx
2
3i � x2

1iÞf2 þ ðx
2
1i � x2

2iÞf3
ðx2i � x3iÞf1 þ ðx3i � x1iÞf2 þ ðx1i � x2iÞf3

� �

ð15Þ

Where x1 = (x11,x12,. . .,x1i) represents the optimal individual of the contemporary popula-

tion, x2 = (x21,x22,. . .,x2i) and x3 = (x31,x32,. . .,x3i) represents the other two individuals of the

contemporary population; f1, f2 and f3 are the fitness values of corresponding individual,

respectively; i = 1,2, . . .,dim, dim is the maximum dimension. Quadratic interpolation is

applied in each iteration, if the fitness value of optimal solution f(Qn) is better than that of the

original optimal individual, the optimal individual is updated; otherwise, the original optimal

individual is retained for the next iteration. The process of quadratic interpolation is shown in

Fig 4.

Initially, PO initializes individuals in the first generation and calculates the fitness of all

individuals. In the next step, it ranks the individuals by fitness and marks the best individual,

and then randomly selects two individuals from all those except the optimal individual. These

three individuals are selected to predict the best individual via interpolation strategy. Finally,

the fitness value of the new individual is compared with the original optimal individual, after

Fig 3. Example of interpolation.

https://doi.org/10.1371/journal.pone.0251204.g003
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which the original individual is either retained or replaced according to the results of the

comparison.

Advance quadratic interpolation PO (AQIPO)

Similar to quadratic interpolation, advance quadratic interpolation utilizes other means to

derive the object function. In such a strategy, the selection of any contemporary population

transforms the constructed quadratic function into an arc function. This enhanced interpola-

tion strategy further improves the accuracy of the results and does not increase the complexity

of the algorithm. The object function f(x) is constructed by individuals x1, x2 and x3, these indi-

viduals, x1 = (x11,x12,. . .,x1i), x2 = (x21,x22,. . .,x2i), x3 = (x31,x32,. . .,x3i); i is the maximum

dimension, whereas f1, f2 and f3 are the fitness values of corresponding individuals,

Fig 4. The QIPO process.

https://doi.org/10.1371/journal.pone.0251204.g004
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respectively, Subsequently, we can obtain the arc equation F(x):

x2 þ F2 x F 1

x2
1
þ f 2

1
x1i f1 1

x2
2i þ f 2

2
x2i f2 1

x2
3i þ f 2

3
x3i f3 1

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

¼ 0 ð16Þ

Expanding this matrix and taking its derivative with respect to x, gives F’(x) = 0, which can

then obtain the optimal solution to the function:

Qni ¼
1

2

ðx2
2i � x2

3iÞf1 þ ðx
2
3i � x2

1iÞf2 þ ðx
2
1i � x2

2iÞf3
ðx2i � x3iÞf1 þ ðx3i � x1iÞf2 þ ðx1i � x2iÞf3

þ
ðf1 � f2Þðf2 � f3Þðf3 � f1Þ

ðx2i � x3iÞf1 þ ðx3i � x1iÞf2 þ ðx1i � x2iÞf3

2

6
6
6
4

3

7
7
7
5

ð17Þ

The fitness value of the optimal solution is compared with that of the optimal individual of

the original population, where the best one is retained, and the position of the individual is

updated. The process of advance quadratic interpolation is similar to quadratic interpolation,

which only requires the replacement of Eq (15) with Eq (17) (Fig 4).

Cubic interpolation PO (CIPO)

There is an issue with quadratic interpolation and its improved strategies, as shown in Fig 5.

The dashed line is the predict line of quadratic interpolation and solid line is the object func-

tion line. Point p is the optimal value inferred by the quadratic interpolation based on the

information of points a, b, and c. There is quite a difference between point p and the object

function point q, and this problem is unavoidable in quadratic interpolation.

To solve this problem, cubic Interpolation was adopted, which constructs a cubic function

and obtains a new optimal solution by four known points, including the individual of the con-

temporary population. As the second derivative of the cubic function is introduced on the

basis of Hermitian interpolation, the precision and stability of cubic interpolation are

improved. Moreover, cubic interpolation utilizes additional data than quadratic interpolation

so as to avoid the false optimum. The cubic interpolation method selects the optimal individu-

als x1 and three other individuals x2, x3 and x4 to represent all the information of the

Fig 5. Cases when QI and AQI deal with multimodal problems.

https://doi.org/10.1371/journal.pone.0251204.g005
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population. The four selected individuals are sequentially arranged (from small to large) to

obtain the following formula:

hki ¼ xðkþ1Þi � xki ð18Þ

According to the continuity of interpolation:

LkiðxkiÞ ¼ yki ð19Þ

Lkiðxðkþ1ÞiÞ ¼ yðkþ1Þi ð20Þ

Differential equation of cubic spline interpolation curve:

L0kiðxðkþ1ÞiÞ ¼ L0
ðkþ1Þiðxðkþ1ÞiÞ ð21Þ

L00kiðxðkþ1ÞiÞ ¼ L00
ðkþ1Þiðxðkþ1ÞiÞ ð22Þ

According to the differential equation of the cubic interpolation curve:

LkiðxÞ ¼ aki þ bkiðx � xkiÞ þ ckiðx � xkiÞ
2
þ dkiðx � xkiÞ

3
ð23Þ

L0kiðxÞ ¼ bki þ 2ckiðx � xkiÞ þ 3dkiðx � xkiÞ
2

ð24Þ

L00kiðxÞ ¼ 2cki þ 6dkiðx � xkiÞ ð25Þ

Combine Eq (18) to Eq (25), it can get a function for each interval by Eq (26):

Qki ¼ 3
hki

hðk� 1Þi þ hik
�
yki � yðk� 1Þi

hðk� 1Þi
þ

hðk� 1Þi

hðk� 1Þiþ hki
�
yðkþ1Þi � yki

hki

 !

ð26Þ

where k = 1, 2, 3; x1, x2, x3 and x4 optimal individuals of the contemporary population and any

other three individuals, respectively. y1, y2, y3 and y4 are the fitness values of the corresponding

individuals, respectively. i is the dimension from 1 to the maximum dimension. Qki represents

the cubic function that corresponds to each subinterval. By connecting the functions of each

subinterval, the continuous function that contains all the above points and the optimal solu-

tion Qki can be calculated. Finally, the fitness value f(Qk) of the new solution is compared with

the fitness of the original optimal individual. If the fitness value of the new solution is better

than that of the original optimal individual, the optimal individual is updated. PO with cubic

interpolation requires more data than other interpolation strategies.

Lagrange interpolation PO (LIPO)

To overcome the shortcomings of the original PO falling into local optima, PO with Lagrange

interpolation was proposed. The principle involves the construction of quadratic functions

from the data of known points, as well as other interpolations but is different from quadratic

and cubic interpolation. Lagrange interpolation is not simply the solving of equations in that

the conic formed by three points can be solved without constructing an equation. It can obtain

the object function from the three quadratic curves via the following solution process:

Considering the unknown formula yki = ax2
ki+bxki+c, the quadratic function may be

obtained by adding three quadratic functions that are derived from the data of the three

known points. When k = 1, y1i = 1, y2i = y3i = 0, the formula contains these points as f1; When

k = 2, y2i = 1, y1i = y3i = 0, the formula contains these points as f2; When k = 3, y3i = 1, y1i = y2i
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= 0, the formula contains these points as f3, thus, the quadratic function that is:

fx ¼ y1if1 þ y2if2 þ y3if3 ð27Þ

Where k = 1,2,3; i = 1, 2, . . ., dim. Lagrange interpolation effectively utilizes the known data

construct function to obtain the optimal value in the simplest form. Once the desired function

is obtained, the optimal value is compared with that of the optimal individual of the original

population. If the adaptive value of the optimal value of the optimal individual of the original

population is better than that of the optimal individual of the original population, the individ-

ual is updated, and the next iteration is carried out.

Newton interpolation PO (NIPO)

The function constructed by Newton interpolation method is similar to Lagrange, where each

additional point does not need to be recalculated, only subsequent newly added points need to

be calculated. The specific operation steps of the Newton interpolation method are as follows:

It assumes that there are three points (x1,f1), (x2,f2), (x3,f3). x1 = (x11,x12,. . ., x1i), x2 = (x21,
x22,. . .,x2i), x3 = (x31,x32,. . .,x3i). i is the maximum dimension in this generation. The first

order mean difference of Newton interpolation formula is obtained:

f ½x1i; x2i� ¼
f ðx1iÞ � f ðx2iÞ

x1i � x2i
ð28Þ

The second-order mean difference can be obtained after adding a point:

f ½x1i; x2i; x3i� ¼
f ½x1i; x2i� � f ½x2i; x3i�

x1i � x3i
ð29Þ

Therefore, the function of Newton interpolation method can be obtained as follows:

f ðxiÞ ¼ f ðx1iÞ þ f ½x1i; x2i�ðx � x1iÞ þ f ½x1i; x2i; x3i�ðx � x1iÞðx � x2iÞ ð30Þ

Thus, we can find the optimal solution Q from the function. The optimal solution is com-

pared with the optimal individual in the original population. If the fitness value f(Q) of the

optimal solution is better than the fitness value of the original optimal individual, the optimal

individual is updated. Otherwise, the optimal individual of the original population is retained,

and the next iteration is carried out.

Refraction learning

If only the interpolation strategy is utilized, the diversity of the population will quickly decline.

Therefore, a RL strategy was proposed to assist with finding a potentially better area and maintain-

ing the diversity of PO. RL was proposed by Long (2019) [57, 58], which has a strong and broad

searching capacity. As seen in Fig 6, the lower bound of the search is a and the upper bound of

the search is b. Y indicates the normal. A is the incident point and B is the refraction point. The

length of AO is L and that of BO is L’. α is the incident angle and θ is the refraction angle.

Based on Fig 6, we can calculate sin(α) and sin(θ) as follows:

sinðaÞ ¼
aþb

2
� X�

� �

L
ð31Þ

sinðyÞ ¼
X�0 � aþb

2

� �

L0
ð32Þ
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From above two formulas, the refraction index p is obtained as:

p ¼
sinðaÞ
sinðyÞ

¼
ððaþ bÞ=2 � X�Þ=L
ðX�0 � ðaþ bÞ=2Þ=L0

ð33Þ

Assuming x ¼ L
L0, the above formula is rewritten as:

xp ¼
ððaþ bÞ=2 � X�Þ
ðX�0 � ðaþ bÞ=2Þ

ð34Þ

The n-dimensional space obtains:

X�0j ¼
aj þ bj

2
þ
aj þ bj

2xp
�
X�j
xp

ð35Þ

As shown in Fig 6, Y indicates the normal. A is the incident point and B is the refraction

point. The length of AO is L and that of BO is L’. α is the incident angle and θ is the refraction

angle. As shown in Eq (35), where X�j is the jth dimension of solution X
�

; X�0j is the jth dimen-

sion of the opposite solution X�0; aj is the lower bound of the jth dimension;bj is the upper

bound of the jth dimension.

Adaptive parameter based on logistic model

Obtaining a good balance between exploration and exploitation is the key component of opti-

mization techniques. Global exploration involves the exploration of new potential areas. Con-

sequently, it is critical to maintain the diversity of the population. Local exploitation involves

searching for a high-precision solution in a small area, which is revealed through global explo-

ration. Excessive global exploration leads to a slower convergence speed, whereas excessive

local exploitation results in premature convergence.

According to Askari, adaptive parameter λ should be adopted to obtain an improved bal-

ance between exploration and exploitation during the party switching stage [53]. In canonical

PO, the λ values are linearly decreased from one to zero. However, it is not appropriate to

Fig 6. The principle of refraction learning.

https://doi.org/10.1371/journal.pone.0251204.g006
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adopt a linear parameter strategy to reflect and simulate the actual nonlinear search process.

As is well acknowledged, at the onset of iterative optimization, a robust global search capacity

is required to examine as many potential areas as possible. At the conclusion of the iterative

optimization, a strong localized search ability is required to improve accuracy. During the

party switching stage in PO, the larger the λ value, the stronger of global exploration. For the

early iteration, a larger λ value can produce a larger step, which leads to stronger global explo-

ration. At this stage, the declining speed of λ needs to be larger. For the late iteration, a smaller

λ value can produce a smaller step, which leads to stronger local exploitation. However, the

smaller λ value leads to a poorer population diversity and results in a higher probability at

local optimum. At this stage, we require population jumping out of local optimum; thus, the

decline speed of λ needs to be smaller. Suppose the maximum of λ is λmax and the minimum

of lamuda is λmin. Assume the initial decline speed of λ is k, after which it gradually slows

down during the entire iterative process. Such a changing law of λ conforms to the logistic

model [59], as shown in Eq (36):

dlðtÞ
dt
¼ k � 1 �

lðtÞ
lmin

� �

� lðtÞ

lð0Þ ¼ lmax

ð36Þ

8
><

>:

We can employ means of separation variables to solve Eq (36), after which adaptive param-

eter adjustment based on a logistic model is obtained, as shown in Eq (37):

lðtÞ ¼
lmin

1þ
lmin
lmax
� 1

� �
� e� kt

ð37Þ

where t is the iteration count, and k is the initial decline speed. Assuming that t equals zero in

Eq (37), we can then obtain λ(0) = λmax. If t is allowed to approach infinity, then λ(1) = λmin

is obtained.

Each of the above interpolation strategies is applied to PO. The fitness of individuals pre-

dicted by interpolation are compared with the fitness of optimal individuals obtained by the

original PO. The optimal interpolation strategy is selected to combine with refraction strategy.

The flow chart of the CRLPO algorithm is illustrated in Fig 7.

Computation complexity

CRLPO preserves the canonical framework and main operations of PO, adding only RL with

cubic interpolation following parliamentary affairs. Assuming the dimension of the objective

function is D the population size is M and the maximum number of iterations is T. The main

steps of CRLPO are election campaign, party switching, parliamentary affairs, and refraction

learning. The time complexity of the election campaign is O(TMD). The time complexity of

party switching is O(TM). The time complexity of parliamentary affairs is OðT
ffiffiffiffiffi
M
p

DÞ. The

time complexity of refraction learning, and cubic interpolation are both O(TD). The overall

time complexity of CRLPO is OðCRLPOÞ � OðTMDÞ þ OðT
ffiffiffiffiffi
M
p

DÞ þ OðTMÞ þ OðTDÞ:As

the latter of above equation is a low order item, it can be omitted. Therefore, the overall time

complexity of CRLPO is almost the same as that of the original PO. In summary, the improve-

ment in PO does not add significant calculation costs.
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Fig 7. The flow chart of CRLPO.

https://doi.org/10.1371/journal.pone.0251204.g007
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Results and analysis

Benchmark and functions

To test the effectiveness of CRLPO, we benchmarked the CRLPO in this section with 19 classi-

cal and popular benchmark functions used by a many researchers [53, 60–64]. There were two

categories of benchmark functions adopted: unimodal and multimodal.

As unimodal functions have no local optimum, they are quite suitable for the evaluation of

exploitation capacities. Conversely, multimodal benchmark functions possess many local opti-

mums and only one global optimum. Therefore, they are quite suitable for evaluating the

exploration abilities of algorithms. The main characteristics of the test functions are listed as

follows:

Performance metrics

To evaluate the experimental results, several performance indicators were adopted in this

paper, such as best fitness, worst fitness, mean fitness, and fitness variance. These performance

indicators were defined as follows:

BestFitness ¼ MinðExpResltiÞ; i ¼ 1 . . .NR ð38Þ

WorstFitness ¼ MaxðExpResltiÞ; i ¼ 1 . . .NR ð39Þ

MeanFitness ¼
1

NR

XNR

i¼1

ðExpResltiÞ ð40Þ

std ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNR

i¼1

ðExpReslti � MeanFitnessÞ2

NR

s

ð41Þ

Where NR indicates the total number of independently repeated experiments, ExpReslt
indicates the output function fitness of each independent experiment, and i is the current

count of repeated experiments.

Comparative results of interpolation strategy on benchmark functions

Table 1

In experiment 1, to compare all above interpolation strategies in Sect III, all of the methods

with the interpolation strategy were set at the same parameters: the population size was 64 and

the maximum number of iterations was 417.

Fig 8 shows the convergence process of different interpolation strategies applied in PO with

10 dimensions. To further verify the performance, interpolation strategies are applied in PO

with 30 and 50 dimensions. The convergence curves with 30 and 50 dimensions are depicted

in Figs 9 and 10, respectively, which show the convergence processes of various interpolation

strategies applied to the PO algorithm. The experimental results revealed the same conclusion;

cubic interpolation has better performance than other interpolation strategies in different

dimensions.

If interpolation strategy is utilized solely, the diversity of the population quickly declines;

therefore, RL strategy was adopted to improve the diversity of the population.

Thus, on the basis of PO with the cubic interpolation strategy (CIPO), the RL strategy was

applied into the CIPO, and we can assume that it enhances the performance of the algorithm.

The CIPO algorithm with RL is referred to as CRLPO.
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Fig 8. Convergence curve on 6 representative benchmark functions with 10 dimensions.

https://doi.org/10.1371/journal.pone.0251204.g008

Fig 9. Convergence curve on 6 representative benchmark functions with 30 dimensions.

https://doi.org/10.1371/journal.pone.0251204.g009
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Experiments were conducted to compare the differences between RLPO and CRLPO under

the same circumstances. As shown in Fig 11, the curve with square pattern represents the itera-

tion of the PO algorithm using the RL strategy. It can be seen from Fig 11 that the convergence

accuracy of the results were improved. For example, the RLPO algorithm requires 140 itera-

tions to attain the convergence point with function 11, while following the addition of the

cubic interpolation strategy, it requires only 50 iterations to reach the convergence point. Con-

sequently, the cubic interpolation can improve the performance of the RLPO. The same results

can be found in dimension 30 and dimension 50 as shown in Figs 12 and 13.

The above experimental results proved that the performance of CRLPO was better than

that of RLPO. In the next section, CRLPO will be compared with other algorithms to evaluate

its performance.

Experiments on test functions: Table 1

For the sake of evaluating the performance of CRLPO, it and other state-of-the-art algorithms

were run thirty times on each benchmark function with 30, 100, and 1000 dimensions from

Table 1. The CRLPO was compared with eight algorithms, including PO [53], GWO [4], HHO

[15], PSO [5], SCA [41], DE [25], WOA [2], and RLGWO [58].

For the purpose of fairness, we set the same common parameters for all algorithms: popula-

tion size was 64 and the maximum number of iterations was 417. As to other specific parame-

ters of all algorithms, we set them as follows: for the PO algorithm, the party number n = 8; for

the GWO algorithm, parameter a was linearly decreased between two and zero; for the HHO

algorithm, parameter E1 was linearly decreased between two and zero; for the PSO algorithm,

wMax = 0.9; wMin = 0.2, c1 = 2, c2 = 2; in SCA algorithm, parameter r1 was linearly decreased

between two and zero; for the DE algorithm, F = 0.5, Cr = 0.01; for the WOA algorithm,

Fig 10. Convergence curve on 6 representative benchmark functions with 50 dimensions.

https://doi.org/10.1371/journal.pone.0251204.g010
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parameter a was linearly decreased between two and zero, and parameter a2 was linearly

decreased between -1 and -2; for the RL-GWO algorithm, p = 100, ξ = 1000; for the CRLPO

algorithm, party number n = 8, p = 100, ξ = 1000;

In experiment 2, CRLPO and other eight algorithms were run independently thirty times

on 19 benchmark functions from Table 1 with 30 dimensions. Table 2 summarizes the average

(Ave) and standard deviation (Std), and the results of the Friedman’s test (Ave.R denotes aver-

age rank and Ova.R represents overall rank). Table 3 summarizes the p-values of the Wilcoxon

rank-sum test at a 0.05 significance level for CRLPO against the other eight algorithms.

According to Table 2, CRLPO outperformed PO, PSO, DE, and GWO on 2, 3, 4, and 5

benchmark test functions, respectively. Furthermore, CRLPO was similar to PO on 1, 9, 10, 11,

12, and 13 benchmark test functions. With respect to WOA, SCA, HHO and RLGWO,

CRLPO found better results than these four algorithms on 6, 7, 12, and 13 benchmark test

functions, respectively. In addition, CRLPO was similar to HHO and RLGWO on 14 and 19

Fig 11. Convergence graph of CRLPO on 4 representative benchmark functions with 10 dimensions.

https://doi.org/10.1371/journal.pone.0251204.g011
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benchmark test functions, respectively. However, it was surpassed by HHO, PO, and WOA

in only one case. Additionally, CRLPO was similar to WOA and HHO on 18 and 19 bench-

mark test functions, respectively. According to Table 2, CRLPO did the best on the Friedman’s

test.

As is well known, the Wilconxon rank-sum test is one of the most frequently used statistical

significance analyses; therefore, it was employed to evaluate the performance of CRLPO. As

shown in Table 3, the results of a pair-wise comparison of CRLPO and other algorithms were

demonstrated at a 0.05 significance level with 30 dimensions. In Table 3,“+” represents the

number of functions in CRLPO that significantly outperformed an optimization technique, “-”

indicates the number of functions where CRLPO was statistically surpassed by an optimization

technique, and “�” denotes the number of CRLPO functions that were similar to an algorithm.

As illustrated in Table 3, the larger number in the “+” field and the lower number in “-” field

revealed that CRLPO was statistically significant and relatively better than other optimization

techniques.

Fig 12. Convergence graph of CRLPO on 4 representative benchmark functions with 30 dimensions.

https://doi.org/10.1371/journal.pone.0251204.g012
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Fig 14 demonstrates the evolutionary process of the mean of the optimal value on 6 repre-

sentative benchmark functions with 30 dimensions. As shown in Fig 14, CRLPO converged

faster than did the other eight optimization techniques for all six representative cases. To ulte-

riorly observe and study the scalability of CRLPO, the proposed algorithm was tested with

problems with higher dimensions. In experiment 3 CRLPO and the eight other algorithms

were run independently 30 times on 19 benchmark functions (Table 1) with 100 dimensions.

Table 4 summarizes the average (Ave) and standard deviation (Std) and the results of the

Friedman’s test with 100 dimensions. Table 5 summarizes the p-values of the Wilconxon rank-

sum test at a 0.05 significance level for CRLPO against the other eight algorithms with 100

dimensions.

According to Table 4, CRLPO outperformed PO, PSO, DE, and GWO on 2, 3, 4, and 7

benchmark test functions, respectively. Further, CRLPO was similar to PO on 1, 5, 6, 9, 10, 11,

12, and 13 benchmark test functions. With respect to WOA, SCA, HHO, and RLGWO,

CRLPO found better results than these four algorithms on 15, 19, 12, and 5 benchmark test

Fig 13. Convergence graph of CRLPO on 4 representative benchmark functions with 50 dimensions.

https://doi.org/10.1371/journal.pone.0251204.g013
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functions, respectively. In addition, CRLPO was similar to HHO and RLGWO on 8 and 16

benchmark test functions, respectively. However, it was not surpassed by HHO, PO, or WOA

in any case. Moreover, CRLPO was similar to WOA on 9 and 11 benchmark test functions.

According to Table 4, CRLPO did the best on the Friedman’s test.

Table 2. Experimental results of 19 benchmark functions from Table 1 with 30 dimensions.

F Results PO PSO DE GWO WOA SCA HHO RLGWO CRLPO

f1 Ave 0:00Eþ 00 3.90E-05 3.17E+03 1.14E-29 6.01E-75 9.50E+00 2.51E-89 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 3.31E-05 5.78E+02 1.60E-29 1.98E-74 2.29E+01 1.17E-88 0.00E+00 0.00E+00

f2 Ave 1.14E-179 2.34E+00 2.11E+01 1.25E-17 9.54E-47 1.61E-02 5.51E-45 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 5.04E+00 2.48E+00 7.89E-18 1.68E-46 1.87E-02 2.13E-44 0.00E+00 0.00E+00

f3 Ave 9.79E-280 4.91E+01 4.11E+04 4.88E-07 2.84E+04 6.64E+03 9.12E-73 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 1.48E+01 4.64E+03 1.17E-06 1.06E+04 3.99E+03 4.14E-44 0.00E+00 0.00E+00

f4 Ave 5.74E-159 8.32E-01 4.56E+00 1.88E-07 3.44E+01 2.64E+01 1.00E-44 0:00Eþ 00 0:00Eþ 00
Std 2.99E-158 1.82E-01 9.04E+05 1.60E-07 2.80E+01 9.18E+00 3.26E-44 0.00E+00 0.00E+00

f5 Ave 8.95E-01 7.14E+01 1.13E+06 2.66E+01 2.74E+01 1.81E+04 4.75E-03 2.70E+01 0:00Eþ 00
Std 4.90E+00 4.91E+01 4.88E+05 7.36E-01 3.45E-01 4.95E+04 5.30E-03 9.19E-01 0.00E+00

f6 Ave 0:00Eþ 00 2.58E-05 2.98E+03 3.10E-01 4.79E-02 9.51E+00 4.68E-05 4.79E-01 0:00Eþ 00
Std 0.00E+00 2.47E-05 6.59E+02 2.55E-01 5.7678–02 8.06E+00 7.02E-05 2.83E-01 0.00E+00

f7 Ave 2.77E-04 3.23E+00 1.39E+00 1.25E-03 2.57E-03 7.04E-02 6:29E � 05 4.58E-04 4.30E-04

Std 1.43E-04 4.16E+00 2.71E-01 5.45E-04 2.75E-03 6.66E-02 5.75E-05 3.73E-04 0.00E+00

f8 Ave -1.23E+04 -5.94E+03 -7.58E+03 -6.37E+03 -1.08E+04 -3.91E+03 � 1:26Eþ 04 -6.19E+03 � 1:26Eþ 04
Std 9.01E+02 1.29E+03 3.05E+02 6.55E+02 1.60E+03 2.58E+02 7.00E-01 6.45E+02 0.00E+00

f9 Ave 0:00Eþ 00 9.04E+01 1.35E+02 3.07E+00 0.00E+00 2.64E+01 0:00Eþ 00 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 2.77E+01 1.46E+01 4.32E+00 0.00E+00 2.58E+01 0.00E+00 0.00E+00 0.00E+00

f10 Ave 8:88E� 16 6.98E-03 1.25E+01 7.05E-14 4.32E-15 1.21E+01 8:88E� 16 8:88E� 16 8:88E� 16
Std 0.00E+00 8.57E-03 8.30E-01 6.57E-15 2.87E-15 9.24E+00 0.00E+00 0.00E+00 0.00E+00

f11 Ave 0:00Eþ 00 4.93E-03 2.81E+01 2.07E-03 8.92E-03 9.68E-01 0:00Eþ 00 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 5.78E-03 5.82E+00 4.79E-03 2.75E-02 2.36E-01 0.00E+00 0.00E+00 0.00E+00

f12 Ave 1:57E� 32 3.46E-03 2.42E+04 2.39E-02 7.24E-03 2.76E+04 3.62E-06 2.40E-02 1:57E� 32
Std 5.56E-48 1.89E-02 3.87E+04 1.46E-02 9.95E-03 1.05E+05 4.55E-06 1.49E-02 0.00E+00

f13 Ave 1:34E� 32 4.05E-03 5.56E+05 2.85E-01 1.70E-01 1.92E+04 3.75E-05 4.69E-01 1:34E� 32
Std 5.56E-48 5.37E-03 4.03E+05 1.57E-01 1.39E-01 5.82E+04 8.31E-05 2.65E-01 0.00E+00

f14 Ave 9.40E-01 1.69E+01 1.42E+01 4.56E+00 1.10E+00 6.09E+00 9:00E� 01 9:00E� 01 9:00E� 01
Std 4.98E-02 4.88E+00 6.78E-01 5.75E+00 5.98E-01 1.23E+00 4.52E-16 4.52E-16 9.00E-01

f15 Ave 3.70E-16 2.68E+01 7.97E+01 4.26E-03 6.00E-46 1.39E+00 3.37E-47 0:00Eþ 00 0:00Eþ 00
Std 2.02E-15 7.56E+00 4.22E+00 1.92E-03 2.74E-45 2.25E+00 9.78E-47 0.00E+00 0.00E+00

f16 Ave 4.07E-193 2.57E+44 2.78E+48 4.39E-12 3.69E-03 6.83E-01 5.55E-11 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 1.40E+45 1.52E+49 2.41E-11 1.18E-02 2.32E+00 3.77E+04 0.00E+00 0.00E+00

f17 Ave 6.65E-03 1.68E+00 3.55E+01 3.50E-01 1.23E-01 9.16E-01 1.15E-43 0:00Eþ 00 0:00Eþ 00
Std 2.53E-02 1.14E-01 1.52E+00 5.57-E02 7.74E-02 5.26E-01 4.73E-43 0.00E+00 0.00E+00

f18 Ave -1.96E+03 -3.23E+03 -2.82E+03 -2.42E+03 � 3:77Eþ 03 -6.18E+02 -1.17E+03 -9.53E+02 -1.17E+03

Std 4.62E-13 9.53E+01 4.59E+01 1.05E+02 2.35E+02 2.79E+01 2.27E-03 5.46E+01 0.00E+00

f19 Ave -7.00E-01 6.05E-41 1.05E-37 2.49E-41 -2.00E-01 2.50E-10 � 1:00Eþ 00 � 1:00Eþ 00 � 1:00Eþ 00
Std 4.66E-01 1.71E-40 1.29E-37 4.34E-41 4.07E-01 1.58E-10 0.00E+00 0.00E+00 0.00E+00

Ave.R 2.63 6.58 8.11 5.47 5.05 7.84 2.79 3.00 1.42

Ova.R 2 7 9 6 5 8 3 4 1

https://doi.org/10.1371/journal.pone.0251204.t002
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Table 3. p-values of the Wilconxon rank-sum test at 0.05 significance level for CRLPO against other eight algorithms on 19 benchmark functions from Table 1 with

30 dimensions.

F PO DE PSO WOA GWO SCA HHO RLGWO

P-value P-value P-value P-value P-value P-value P-value P-value

f1 NAN 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f2 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f3 3.90E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f4 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f5 NAN 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.77E-06 1.78E-06 1.78E-06

f6 NAN 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06

f7 3.92E-02 1.78E-06 1.78E-06 3.60E-06 1.78E-06 2.27E-04 1.78E-06 6.27E-04

f8 NAN 1.78E-06 1.78E-06 2.59E-04 1.78E-06 NAN 1.77E-06 1.77E-06

f9 NAN 1.78E-06 1.78E-06 NAN 1.67E-06 NAN 1.78E-06 NAN

f10 NAN 1.78E-06 1.77E-06 5.53E-05 1.52E-06 NAN 1.78E-06 NAN

f11 NAN 1.78E-06 1.65E-06 NAN NAN NAN 1.78E-06 NAN

f12 NAN 1.78E-06 1.78E-06 1.77E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06

f13 NAN 1.78E-06 1.55E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06

f14 4.88E-04 1.78E-06 1.78E-06 3.13E-02 1.78E-06 NAN 1.78E-06 NAN

f15 3.07E-04 1.78E-06 1.78E-06 1.78E-06 1.77E-06 1.78E-06 1.78E-06 NAN

f16 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f17 NAN 1.78E-06 1.71E-06 1.00E-06 8.90E-07 1.78E-06 1.78E-06 NAN

f18 4.47E-08 1.74E-06 1.77E-06 1.53E-06 1.76E-06 NAN 1.78E-06 1.78E-06

f19 3.91E-03 4.47E-08 4.47E-08 1.00E-06 4.47E-08 NAN 1.78E-06 NAN

+ 9 19 19 17 18 12 19 7

- 0 0 0 0 0 0 0 0

� 10 0 0 2 1 7 0 12

https://doi.org/10.1371/journal.pone.0251204.t003

Fig 14. Convergence graph of CRLPO and eight other algorithms on six representative benchmark functions with 30 dimensions.

https://doi.org/10.1371/journal.pone.0251204.g014
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Table 5 shows the results of pair-wise comparisons of CRLPO and other algorithms demon-

strated at a 0.05 significance level with 100 dimensions. As illustrated in Table 5, the larger

number in “+” field and the lower number in “-” field show that CRLPO was statistically signif-

icant and relatively better than the other optimization techniques.

Table 4. Experimental results of 19 benchmark functions from Table 1 with 100 dimensions.

F Results PO PSO DE GWO WOA SCA HHO RLGWO CRLPO

f1 Ave 0:00Eþ 00 2.50E-05 3.40E+04 3.39E-29 1.62E-70 1.06E+04 6.04E-84 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 2.20E-05 3.09E+03 6.45E-29 8.84E-70 7.29E+03 3.22E-83 0.00E+00 0.00E+00

f2 Ave 4.26E-178 2.01E+00 1.34E+02 1.01E-17 3.39E-45 7.57E+00 2.69E-65 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 4.84E+00 7.36E+00 6.39E-18 1.50E-44 6.37E+00 1.46E-43 0.00E+00 0.00E+00

f3 Ave 1.52E-241 4.85E+01 2.98E+05 1.00E-06 8.59E+05 2.49E+05 1.05E-65 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 1.49E+01 2.89E+04 3.99E-06 2.30E+05 6.08E+04 5.49E-65 0.00E+00 0.00E+00

f4 Ave 4.59E-156 8.47E-01 8.49E+01 1.94E-07 7.32E+01 8.97E+01 1.17E-42 0:00Eþ 00 0:00Eþ 00
Std 1.99E-155 1.98E-01 1.83E+00 1.98E-07 2.28E+01 2.04E+00 4.83E-42 0.00E+00 0.00E+00

f5 Ave 0:00Eþ 00 8.49E+01 3.47E+07 2.67E+01 9.78E+01 1.32E+08 1.16E-02 9.76E+01 0:00Eþ 00
Std 0.00E+00 8.97E+01 7.33E+06 7.82E-01 3.15E-01 6.09E+07 1.90E-02 7.74E-01 0.00E+00

f6 Ave 0:00Eþ 00 5.28E-05 3.36E+04 4.17E-01 1.49E+00 9.78E+03 1.01E-04 8.31E+00 0:00Eþ 00
Std 0.00E+00 9.11E-05 3.21E+03 3.44E-01 5.13E-01 6.65E+03 1.69E-04 7.73E-01 0.00E+00

f7 Ave 2.77E-04 1.53E+00 5.05E+01 1.46E-03 2.23E-03 1.27E+02 7.81E-05 6.62E-04 2:97E� 05
Std 2.40E-04 3.36E+00 1.31E+01 5.95E-04 2.45E-03 5.14E+01 7.33E-05 6.14E-04 0.00E+00

f8 Ave -4.15E+04 -5.86E+03 -2.01E+04 -6.17E+03 -3.81E+04 -7.12E.+03 � 4:19Eþ 04 -1.64E+04 � 4:19Eþ 04
Std 2.16E+03 1.27E+03 5.62E+02 5.74E+02 4.57E+03 5.56E+02 9.29E-01 3.02E+03 0.00E+00

f9 Ave 0:00Eþ 00 9.15E+01 7.02E+02 2.60E+00 0:00Eþ 00 2.32E+02 0:00Eþ 00 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 3.16E+01 1.64E+01 3.83E+00 0.00E+00 8.47E+01 0.00E+00 0.00E+00 0.00E+00

f10 Ave 8:88E� 16 3.03E-02 1.64E+01 6.86E-14 4.91E-15 1.84E+01 8:88E� 16 8:88E� 16 8:88E� 16
Std 0.00E+00 1.20E-01 3.39E-01 7.34E-15 2.42E-15 4.58E+00 0.00E+00 0.00E+00 0.00E+00

f11 Ave 0:00Eþ 00 1.48E-02 3.13E+02 2.15E-03 0:00Eþ 00 1.05E+02 0:00Eþ 00 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 1.63E-02 2.45E+01 5.10E-03 0.00E+00 4.47E+01 0.00E+00 0.00E+00 0.00E+00

f12 Ave 4:71E� 33 7.01E-07 2.73E+07 2.35E-02 1.45E-02 2.81E+08 9.62E-07 1.63E-01 4:71E� 33
Std 1.39E-48 1.06E-06 1.17E+07 1.15E-02 4.52E-03 1.27E+08 1.42E-06 3.85E-02 0.00E+00

f13 Ave 1:35E� 32 2.95E-03 9.37E+07 3.15E-01 1.12E+00 5.24E+08 4.13E-05 8.76E+00 1:35E� 32
Std 5.57E-48 4.94E-03 2.41E+07 1.17E-01 5.02E-01 2.04E+08 4.25E-05 4.88E-01 0.00E+00

f14 Ave 9.50E-01 1.71E+01 1.42E+01 4.26E+00 1.45E+00 2.88E+01 9:00E� 01 9:00E� 01 9:00E� 01
Std 5.09E-02 4.90E+00 7.93E-01 5.65E+00 1.33E+00 2.51E+00 4.52E-16 4.52E-16 0.00E+00

f15 Ave 5.55E-179 2.85E+01 7.89E+01 3.73E-03 1.48E-45 2.38E+01 5.90E-46 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 7.46E+00 5.64E+00 2.48E-03 7.62E-45 1.29E+01 2.22E-45 0.00E+00 0.00E+00

f16 Ave 6.79E-195 5.31E+41 1.32E+47 3.48E-17 3.52E-03 2.91E+35 2.75E-18 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 2.01E+42 4.62E+47 1.89E-16 1.62E-02 1.43E+36 1.51E-17 0.00E+00 0.00E+00

f17 Ave 3.33E-03 1.64E+00 3.57E+01 3.33E-01 1.27E-01 1.08E+01 1.50E-44 0:00Eþ 00 0:00Eþ 00
Std 1.82E-02 1.38E-01 1.37E+00 6.06E-02 6.40E-02 3.40E+00 4.26E-44 0.00E+00 0.00E+00

f18 Ave -3.87E+03 -3.18E+03 -2.82E+03 -2.42E+03 -3.70E+03 -1.49E+03 � 3:92Eþ 03 -2.44E+03 � 3:92Eþ 03
Std 2.58E+02 1.13E+02 4.91E+01 1.26E+02 3.34E+02 8.85E+01 1.17E-02 1.42E+02 0.00E+00

f19 Ave -7.00E-01 1.25E-40 1.23E-37 2.94E-41 -3.33E-01 5.03E-29 � 1:00Eþ 00 � 1:00Eþ 00 � 1:00Eþ 00
Std 4.66E-01 1.89E-40 1.13E-37 1.03E-40 4.79E-01 1.10E-28 0.00E+00 0.00E+00 0.00E+00

Ave.R 2.32 6.37 8.11 5.79 5.11 7.89 3.00 2.95 1.00

Ova.R 2 7 9 6 5 8 4 3 1

https://doi.org/10.1371/journal.pone.0251204.t004
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Fig 15 demonstrates an evolutionary process of the mean of the optimal value on six repre-

sentative benchmark functions with 100 dimensions. As shown in Fig 15, CRLPO converged

faster than the eight other optimization techniques in all six representative cases.

To further observe and study the scalability of CRLPO with large-scale problems, in experi-

ment 4, CRLPO and the eight other algorithms were run independently thirty times on 19

benchmark functions (Table 1) with 1000 dimensions.

Table 6 summarizes the average (Ave) and standard (Std) deviation and results of the Fried-

man’s test with 1000 dimensions. Table 7 summarizes the p-values of the Wilconxon rank-

sum test at a 0.05 significance level for CRLPO against the eight other algorithms with 1000

dimensions.

According to Table 6, CRLPO outperformed PO, PSO, DE, and GWO on 2, 3, 4, and 7

benchmark test functions, respectively. In addition, CRLPO was similar to PO on 1, 5, 6, 10,

11, 12, 13, 18, and 19 benchmark test functions. With respect to WOA, SCA, HHO, and

RLGWO, CRLPO found better results than these four algorithms on 8, 10, 12, and 18 bench-

mark test functions, respectively. Furthermore, CRLPO was similar to HHO and RLGWO on

9 and 17 benchmark test functions, respectively. However, it was not surpassed by HHO, PO,

and WOA ion any case. Additionally, CRLPO was similar to HHO and 11 and 14 benchmark

test functions. According to Table 6, CRLPO did the best on the Friedman’s test.

As shown in Table 7, the results of a pair-wise comparison of CRLPO and the other algo-

rithms were demonstrated at a 0.05 significance level with 1000 dimensions. As illustrated in

Table 7, the larger number in “+” field and the lower number in “-” field show that CRLPO

was statistically significant and relatively better than the other optimization techniques.

Table 5. p-values of the Wilconxon rank-sum test at 0.05 significance level for CRLPO against other eight algorithms on 19 benchmark functions from Table 1 with

100 dimensions.

Function PO DE PSO WOA GWO SCA HHO RLGWO

P-value P-value P-value P-value P-value P-value P-value P-value

f1 NAN 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f2 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f3 3.90E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f4 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f5 NAN 1.78E-06 7.15E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06

f6 NAN 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06

f7 9.41E-03 1.78E-06 1.78E-06 3.98E-06 1.97E-06 9.94E-04 1.78E-06 8.46E-04

f8 1.49E-07 1.77E-06 1.78E-06 1.74E-06 1.78E-06 NAN 1.78E-06 1.76E-06

f9 NAN 1.78E-06 1.78E-06 NAN 1.67E-06 NAN 1.78E-06 NAN

f10 NAN 1.78E-06 1.77E-06 5.53E-05 1.52E-06 NAN 1.78E-06 NAN

f11 NAN 1.78E-06 1.71E-06 NAN NAN NAN 1.78E-06 NAN

f12 4.47E-08 1.78E-06 1.78E-06 1.77E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06

f13 NAN 1.78E-06 1.72E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06

f14 4.88E-04 1.78E-06 1.78E-06 3.13E-02 1.78E-06 NAN 1.78E-06 NAN

f15 3.07E-04 1.78E-06 1.78E-06 1.78E-06 1.77E-06 1.78E-06 1.78E-06 NAN

f16 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f17 NAN 1.78E-06 1.78E-06 1.00E-06 8.90E-07 1.78E-06 NAN NAN

f18 4.47E-08 1.78E-06 1.74E-06 1.33E-04 1.76E-06 NAN 1.75E-06 1.76E-06

f19 3.91E-03 4.47E-08 4.47E-08 1.00E-06 4.47E-08 NAN 4.47E-08 NAN

+ 11 19 19 17 18 12 18 7

- 0 0 0 0 0 0 0 0

� 8 0 0 2 1 7 1 12

https://doi.org/10.1371/journal.pone.0251204.t005

PLOS ONE Political optimizer with interpolation strategy for global optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0251204 May 6, 2021 25 / 40

https://doi.org/10.1371/journal.pone.0251204.t005
https://doi.org/10.1371/journal.pone.0251204


Fig 16 demonstrates an evolutionary process of the mean of the optimal value on six repre-

sentative benchmark functions with 1000 dimensions. As shown in Fig 16, CRLPO converged

faster than the eight other optimization techniques in all six representative cases. To summa-

rize, it was concluded that CRLPO had excellent scalability on test functions with 30D, 100D,

and 1000D.

Experiments on test functions from IEEE CEC 2014

To further evaluate the performance of CRLPO, other more complex 30 test functions from

IEEE CEC 2014 were adopted. The IEEE CEC 2014 test suite can be separated into four catego-

ries. The first category (FC01- FC03) is unimodal functions, the second category (FC04- FC16)

is multimodal functions, the third category (FC17- FC22) is hybrid functions, whereas the

fourth category (FC23- FC30) is composition functions. The detailed problem definitions of

30 test functions from IEEE CEC 2014 were demonstrated in [65]. The search range of 30 test

functions were defined as [–100, 100], and their dimensions were defined as 30.

To investigate the effectiveness of CRLPO, it was compared with nine state-of-the-art opti-

mization techniques, including RW-GWO [66], CMA-ES [67], CLPSO [68], CoDE [69],

MoABC [70], DGSTLBO [71], HCSA [72], LX-BBO [73], and RLGWO [58]. The parameter

settings of the nine algorithms were the same as described in their original papers. To maintain

the fairness of comparison, the same maximum number of function evaluations was set, which

was 3.00E+10. CRLPO was run independently on 30 test functions.

The experimental results of the other nine optimization techniques were reviewed [58]. The

error values (F(x)-F(x0)) were compared following 30 independent runs, where x is best posi-

tion after an algorithm ends and x0 is the global optima. Table 8 shows the average of the error

value (Ave), standard deviation (Std), and the results of the Friedman test. If an algorithm

Fig 15. Convergence graph of CRLPO as well as eight other algorithms on six representative benchmark functions with 100 dimensions.

https://doi.org/10.1371/journal.pone.0251204.g015
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exhibited the best performance on a test function, the Ave results are displayed in bold face

with a gray background.

As illustrated in Table 8, CRLPO performed better than CMA-ES, CLPSO, CoDE, MoABC,

and DGSTLBO on 2,7,9,19, and 23 benchmark functions, respectively. On the contrary,

CMA-ES, CoDE, and DGSTLBO outperformed CRLPO on 1, 8, and 3 benchmark functions,

Table 6. Experimental results of 19 benchmark functions from Table 1 with 1000 dimensions.

F Results PO PSO DE GWO WOA SCA HHO RLGWO CRLPO

f1 Ave 0:00Eþ 00 3.41E+04 2.05E+06 5.43E-01 6.37E-71 4.85E+05 6.01E-81 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 1.68E+03 3.64E+04 1.55E-01 1.80E-70 1.30E+05 3.29E-80 0.00E+00 0.00E+00

f2 Ave 1.43E-175 1.39E+03 4.33E+03 1.11E+00 2.00E-43 INF 1.48E-44 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 6.48E+01 6.94E+01 5.90E-01 7.14E-43 NAN 4.34E-44 0.00E+00 0.00E+00

f3 Ave 2.88E-128 1.80E+06 2.02E+07 1.24E+06 1.06E+08 2.51E+07 1.92E-38 0:00Eþ 00 0:00Eþ 00
Std 1.58E-127 3.95E+05 1.44E+06 2.64E+05 3.57E+07 4.38E+06 9.10E-38 0.00E+00 0.00E+00

f4 Ave 3.76E-153 3.02E+01 9.92E+01 7.53E+01 8.51E+01 9.95E+01 2.41E-43 0:00Eþ 00 0:00Eþ 00
Std 1.54E-152 9.06E-01 1.79E-01 3.45E+00 2.02E+01 1.19E-01 1.27E-42 0.00E+00 0.00E+00

f5 Ave 0:00Eþ 00 2.38E+08 8.49E+09 1.08E+03 9.92E+02 4.64E+09 9.46E-02 9.97E+02 0:00Eþ 00
Std 0.00E+00 1.82E+07 2.11E+08 2.90E+01 5.54E-01 6.89E+08 1.52E-01 1.43E-01 0.00E+00

f6 Ave 0:00Eþ 00 3.41E+04 2.04E+06 1.94E+02 3.25E+01 5.22E+05 1.52E-03 2.08E+02 0:00Eþ 00
Std 0.00E+00 1.27E+03 2.20E+04 2.61E+00 6.89E+00 1.57E+05 2.30E-03 2.46E+00 0.00E+00

f7 Ave 3.10E-04 2.37E+05 1.22E+05 1.20E-01 1.51E-03 7.06E+04 9.93E-05 8.55E-04 3:67E� 06
Std 1.72E-04 7.38E+03 3.21E+03 2.50E-02 1.51E-03 1.39E+04 8.72E-05 1.05E-03 0.00E+00

f8 Ave -4.15E+05 -4.08E+04 -7.97E+04 -9.49E+04 -3.82E+05 -2.29E+04 � 4:19Eþ 05 -9.86E-04 � 4:19Eþ 05
Std 2.16E+04 8.75E+03 2.38E+03 2.14E+04 5.00E+04 1.65E+03 8.24E+00 4.93E+03 0.00E+00

f9 Ave 3.32E+01 1.39E+04 1.42E+04 2.51E+02 6.06E-14 1.85E+03 0:00Eþ 00 0:00Eþ 00 0:00Eþ 00
Std 1.82E+02 3.32E+02 1.18E+02 4.86E+01 3.32E-13 6.08E+02 0.00E+00 0.00E+00 0.00E+00

f10 Ave 8:88E� 16 1.52E+01 2.06E+01 2.88E-02 4.44E-15 1.98E+01 8:88E� 16 8:88E� 16 8:88E� 16
Std 0.00E+00 2.90E-01 2.07E-02 3.84E-03 2.09E-15 3.00E+00 0.00E+00 0.00E+00 0.00E+00

f11 Ave 0:00Eþ 00 1.43E+02 1.84E+04 4.56E-02 0:00Eþ 00 4.67E+03 0:00Eþ 00 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 1.44E+01 2.54E+02 4.53E-02 0.00E+00 1.32E+03 0.00E+00 0.00E+00 0.00E+00

f12 Ave 4:71E� 34 6.04E+06 2.00E+10 1.20E+00 3.29E-02 1.42E+10 3.48E-07 8.13E-01 4:71E� 34
Std 8.70E-50 1.35E+06 6.67E+09 2.88E-01 1.20E-02 2.23E+09 4.24E-07 1.90E-02 0.00E+00

f13 Ave 1:35E� 32 6.13E+07 3.74E+10 1.18E+02 1.74E+01 2.27E+10 1.78E-04 9.96E+01 1:35E� 32
Std 5.57E-48 7.29E+06 9.98E+08 5.02E+00 6.08E+00 4.70E+09 2.35E-04 1.61E-01 0.00E+00

f14 Ave 9.80E-01 2.78E+02 3.14E+02 7.20E+01 9:00E� 01 3.57E+02 9:00E� 01 9:00E� 01 9:00E� 01
Std 4.07E-02 5.81E+00 3.19E+00 1.30E+02 4.97E-16 3.92E+00 4.52E-16 4.52E-16 0.00E+00

f15 Ave 1.26E-176 1.53E+03 2.09E+03 1.20E+00 7.97E-45 2.68E+02 1.85E-42 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 5.23E+01 2.24E+01 1.59E+00 2.72E-44 8.89E+01 8.76E-42 0.00E+00 0.00E+00

f16 Ave 1.24E-196 1.50E+256 INF 3.39E-03 2.47E-07 INF 8.76E-20 0:00Eþ 00 0:00Eþ 00
Std 0.00E+00 INF NAN 1.96E-02 6.67E-07 NAN 4.73E-19 0.00E+00 0.00E+00

f17 Ave 3.33E-03 2.90E+01 1.66E+02 1.97E+00 1.03E-01 6.74E+01 6.82E-45 0:00Eþ 00 0:00Eþ 00
Std 1.82E-02 7.40E-01 9.59E-01 1.41E-01 6.68E-02 1.26E+01 1.50E-44 0.00E+00 0.00E+00

f18 Ave � 3:92Eþ 04 -1.07E+04 -1.27E+04 -1.34E+04 -3.82E+04 -8.42E+03 � 3:92Eþ 04 -1.35E+04 � 3:92Eþ 04
Std 2.96E-11 6.49E+02 4.08E+02 7.60E+02 2.13E+03 4.58E+02 1.33E-01 8.70E+02 0.00E+00

f19 Ave � 1:00Eþ 00 2.65E-316 6.55E-279 3.40E-319 0.00E+00 1.03E-248 � 1:00Eþ 00 � 1:00Eþ 00 � 1:00Eþ 00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Ave.R 2.32 7.16 8.37 5.89 4.53 7.95 2.63 2.68 1.00

Ova.R 2 7 9 6 5 8 3 4 1

https://doi.org/10.1371/journal.pone.0251204.t006
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respectively. Compared with MoABC, RW-GWO, and RLGWO, CRLPO exhibited improved

and similar results on 1, 2, 7, 13, and 25 benchmark functions, respectively. In contrast,

MoABC, RWGWO, and RLGWO beat CRLPO on 8, 4, and 6 benchmark functions, respec-

tively. According to Table 8, CRLPO ranked first for the Friedman test.

Based on the analysis of the experimental results (Tables 2–8), it was concluded that the pro-

posed CRLPO achieved competitive performance compared with other state-of-the-art algorithms.

Effectiveness evaluation of two components of CRLPO

As described in section three, there were two components that comprised CRLPO (refraction

learning, and adaptive parameter based on logistic model). To evaluate the effectiveness of

these two components, additional experiments were required to be implemented. Firstly, we

adopted RL only without adaptive parameters based on a logistic model in canonical PO. In

this situation, parameter adjustment based on linear model in original PO was adopted, where

such algorithm is defined as CRLPO-I. Secondly, we adopted an adaptive parameter based on

a logistic model only without RL in canonical PO, where such an algorithm is defined as

CRLPO-II. If both components are not adopted (parameter adjustment based on linear

model), such algorithm is defined as RLPO-III. If both components and cubic interpolation

are adopted, such algorithm is defined as CRLPO, as designed in section three.

Each algorithm was independently run on 19 test functions (Table 1) thirty times. The set-

ting of the population size, as well as the maximum number of iterations were the same as

those of section 4.3. As shown in Table 9, “+” represents the number of functions where an

Table 7. p-values of the Wilconxon rank-sum test at 0.05 significance level for CRLPO against other eight algorithms on 19 benchmark functions from table 1 with

1000 dimensions.

Function PO DE PSO WOA GWO SCA HHO RLGWO

P-value P-value P-value P-value P-value P-value P-value P-value

f1 NAN 1.72E-06 1.77E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f2 1.78E-06 1.74E-06 1.71E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f3 1.78E-06 1.77E-06 1.77E-06 1.78E-06 1.77E-06 1.78E-06 1.78E-06 NAN

f4 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f5 NAN 1.78E-06 1.77E-06 1.78E-06 1.70E-06 3.18E-05 1.77E-06 1.78E-06

f6 NAN 1.63E-06 1.77E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06

f7 2.60E-02 1.78E-06 1.78E-06 1.46E-05 1.78E-06 1.68E-02 1.78E-06 1.22E-03

f8 NAN 1.77E-06 1.78E-06 1.01E-02 1.78E-06 NAN 1.78E-06 1.77E-06

f9 NAN 1.03E-06 1.62E-06 NAN 1.78E-06 NAN 1.78E-06 NAN

f10 NAN 1.78E-06 1.78E-06 3.17E-06 1.78E-06 NAN 1.78E-06 NAN

f11 NAN 1.66E-06 1.78E-06 NAN 1.78E-06 NAN 1.78E-06 NAN

f12 NAN 1.75E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06

f13 NAN 1.77E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.77E-06 1.78E-06

f14 1.00E-06 1.78E-06 1.78E-06 NAN 1.78E-06 NAN 1.78E-06 NAN

f15 4.88E-04 1.61E-06 1.74E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f16 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 1.78E-06 NAN

f17 NAN 1.78E-06 1.78E-06 7.20E-07 1.36E-06 1.78E-06 1.78E-06 NAN

f18 NAN 1.68E-06 1.74E-06 3.23E-06 1.76E-06 NAN 1.78E-06 1.72E-06

f19 NAN 4.47E-08 4.47E-08 4.47E-08 4.47E-08 NAN 4.47E-08 NAN

+ 7 19 19 16 19 12 19 7

- 0 0 0 0 0 0 0 0

� 12 0 0 3 0 7 0 12

https://doi.org/10.1371/journal.pone.0251204.t007
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optimization technique significantly outperformed CRLPO, “-” indicates the number of func-

tions where an optimization technique was statistically surpassed by CRLPO, and “�” denotes

the number of functions where CRLPO was similar to an algorithm. As illustrated in Table 9,

the larger number in the “-” field and the lower number in “+” field reveal that CRLPO was sta-

tistically significant and relatively improved over the other algorithms.

As shown in Table 9, compared with CRLPO, CRLPO-II showed a poorer performance on

12 benchmark functions and did not have a better performance on any benchmark function.

The reason was that CRLPO-II uses only a nonlinear conversion parameter strategy. Further-

more, CRLPO-II can easily be trapped into a local optimum. However, the nonlinear conver-

sion parameter strategy cannot assist it with jumping out of local optimum. Consequently,

there were significant differences in performance between CRLPO-II and CRLPO.

Additionally, compared with CRLPO, CRLPO-I had a similar performance on 12 bench-

mark functions and did not have a better performance on any benchmark function. Such a

phenomenon was attributed to that fact that RL was more effective for improving the explora-

tion capacity during the search process. Consequently, there are no significant differences in

performance between CRLPO-I and CRLPO.

Moreover, compared with CRLPO, CRLPO-III showed a poorer performance on 11 bench-

mark functions and did not have better performance on any benchmark function. CRLPO-III

could also be easily trapped into a local optimum. However, the linear conversion parameter

strategy could not help it to jump out of local optimum. Consequently, there were significant

differences in performance between CRLPO-III and CRLPO.

To summarize, we concluded that the two mentioned components were mutually beneficial

for enhancing the performance of PO. Further, the adaptive parameters based on a logistic

model resulted in fast convergence, while a RL strategy enhanced the exploration capacity.

Fig 16. Convergence graph of CRLPO as well as eight other algorithms on six representative benchmark functions with 1000 dimensions.

https://doi.org/10.1371/journal.pone.0251204.g016
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Table 8. Comparison of CRLPO and nine selected algorithms on 30 test functions with 30 dimensions from IEEE CEC 2014.

F Results CMA-ES CLPSO CoDE MoABC DGSTLBO HCSA LX-BBO RWGWO RLGWO CRLPO

F1 Ave 9:42Eþ 04 1.48E+08 1.21E+07 2.81E+07 1.04E+07 3.50E+07 1.01E+07 8.02E+06 1.78E+07 2.69E+06

Std 7.89E+04 2.57E+07 4.48E+06 1.01E+07 8.61E+06 2.49E+07 3.81E+06 3.31E+06 9.62E+06 1.37E+06

F2 Ave 2.55E+10 6.81E+09 1.89E+07 2.88E+04 4.59E+06 1.95E+07 5.34E+04 2.23E+05 1.14E+08 9:35Eþ 03
Std 3.85E+09 1.12E+09 9.45E+06 4.11E+04 1.11E+07 5.49E+07 2.14E+04 5.51E+05 3.86E+07 1.11E+04

F3 Ave 1.45E+04 9.86E+04 4.16E+03 1.06E+04 1:44Eþ 01 3.10E+04 1.64E+04 3.16E+02 2.66E+04 6.29E+03

Std 5.66E+03 1.68E+04 1.89E+03 3.66E+03 1.68E+01 1.36E+04 1.71E+04 4.34E+02 1.79E+03 3.56E+02

F4 Ave 2.52E+03 9.77E+02 1.44E+02 1.59E+02 1.46E+02 2.03E+02 9.99E+01 3:41Eþ 01 1.69E+03 5.46E+01

Std 5.36E+02 1.39E+02 1.55E+01 2.76E+01 3.78E+01 6.69E+01 2.85E+01 1.80E+01 2.38E+02 3.00E+01

F5 Ave 2.00E+01 2.11E+01 2.10E+01 2.04E+01 2.10E+01 2.00E+01 3:06Eþ 00 2.05E+01 2.01E+01 2.02E+01

Std 2.63E-05 4.87E-02 6.56E-02 3.53E.02 4.34E-02 2.28E-03 7.87E-01 7.46E-02 3.41E-02 1.54E-01

F6 Ave 4.09E+01 5.08E+01 5.57E+01 3.78E+01 1.67E+01 3.23E+01 1.69E+01 9.84E+00 3:64Eþ 00 4.62E+00

Std 2.13E+00 2.46E+00 2.67E+00 2.65E+00 3.45E+00 3.27E+00 3.12E+00 3.49E+00 9.55E-01 3.47E+00

F7 Ave 2.31E+02 6.32E+01 1.20E+00 5.72E-01 1.01E+00 1.79E+00 1.76E-01 2.53E-01 1.62E+02 1:30E� 03
Std 2.83E+01 8.63E+00 7.20E-02 1.36E-01 1.50E+00 2.19E+00 8.56E-02 1.43E-01 2.65E+01 3.47E-03

F8 Ave 2.83E+02 2.92E+02 2.30E+02 1:26Eþ 01 7.67E+01 1.71E+02 5.53E+01 4.38E+01 3.43E+01 2.69E+01

Std 2.21E+01 1.87E+01 1.45E+01 1.74E+00 2.45E+01 3.46E+01 3.78E+02 8.48E+00 3.75E+01 7.32E+00

F9 Ave 3.28E+02 4.73E+02 3.80E+02 2.58E+02 9.84E+01 2.80E+02 7.66E+01 6.33E+01 1.21E+02 4:71Eþ 01
Std 3.47E+01 2.13E+01 1.89E+01 2.83E+01 3.08E+01 5.16E+01 1.61E+01 1.30E+01 0.00E+00 1.26E+01

F10 Ave 2.61E+02 7.62E+03 7.26E+03 2:29Eþ 02 2.39E+03 2.66E+03 1.26E+04 9.61E+02 1.58E+03 1.12E+03

Std 1.06E+02 5.19E+02 3.84E+02 1.07E+02 4.71E+02 5.34E+02 1.16E+04 2.72E+02 3.11E+02 6.88E+02

F11 Ave 1:69Eþ 02 1.14E+04 1.218+04 5.74E+03 3.93E+03 4.13E+03 1.23E+04 2.68E+03 2.47E+03 2.63E+03

Std 1.98E+02 5.09E+02 4.27E+02 3.27E+02 5.45E+02 5.35E+02 3.42E+02 3.68E+02 2.39E+02 8.23E+02

F12 Ave 3.03E-01 2.67E+00 2.47E+00 4.71E-01 2.75E+00 5.11E-01 1:11E� 02 5.45E-01 2.80E-01 4.57E-02

Std 2.18E+00 3.28E-01 2.74E-01 5.73E-02 2.62E-01 2.56E-01 1.75E-18 1.66E-01 8.37E-02 4.81E-02

F13 Ave 5.51E+00 7.61E-01 6.53E-01 4.51E-01 4.71E-01 4.81E-01 6.55E-01 2:80E� 01 2:80E� 01 3.43E-01

Std 3.07E-01 8.47E-02 6.56E-02 4.11E-02 1.13E-01 1.17E-01 1.56E-01 6.30E-02 1.30E-01 4.30E-02

F14 Ave 7.53E+01 1.60E+01 4.31E-01 2.98E-01 2.88E-01 3.08E-01 6.20E-01 4.23E-01 240E� 01 4.15E-01

Std 8.08E+00 3.71E+00 8.50B-02 2.50E-02 4.92E-02 5.64E-02 2.96E-01 2.1SE-01 1.14E-01 1.95E-01

F15 Ave 1.02E+04 3.31E+03 3.78E+01 3.14E+01 3.75E+01 9.80E+01 1.55E+01 8.81E+00 3:68Eþ 00 1.24E+01

Std 3.24E+04 1.93E+03 2.26E+00 6.02E+00 2.19E+01 3.02E+01 5.50E+00 1.51E+00 2.06E+00 1.98E+00

F16 Ave 1.38E+01 2.24E+01 2.28E+01 1.97E+01 1.11E+01 1.27E+01 1.08E+01 1.03E+01 4:48Eþ 00 1.21E+01

Std 5.31E-01 2.33E-01 3.26E-01 4.02E-01 6.62E-01 5.01E-01 5.84E-01 6.11E-11 1.48E-01 2.09E-01

F17 Ave 5:49Eþ 03 1.77E+07 1.81E+05 1.01E+07 1.67E+05 1.48E+06 1.46E+06 5.71E+05 1.50E+06 3.00E+05

Std 3.62E+03 4.74E+06 1.24E+05 4.96E+06 2.13E+05 1.21E+06 9.34E+05 4.10E+05 2.49E+06 2.10E+05

F18 Ave 1.52E+09 2.51E+07 3.62E+03 9.92E+03 8:71Eþ 02 7.67E+03 2.90E+03 6.52E+03 1.90E+06 2.28E+04

Std 3.93E+08 8.22E+06 2.31E+03 9.94E+03 1.02E+03 6.70E+03 4.27E+03 4.62E+03 8.25E+05 6.87E+03

F19 Ave 2.98E+02 9.23E+01 3.62E+01 3.33E+01 2.71E+01 5.33E+01 5.19E+03 1.14E+01 6.12E+00 5:44Eþ 00
Std 4.25E+01 1.19E+01 1.08E+01 1.06E+01 2.86E+01 3.63E+01 5.67E+03 2.03E+00 2.03E+00 1.10E+00

F20 Ave 4.61E+03 5.17E+04 5.04E+02 3.96E+04 4:28Eþ 02 3.93E+04 2.61E+04 6.27E+02 2.07E+04 6.31E+03

Std 3.88E+03 1.06E+04 3.17E+02 1.29E+04 1.77E+02 2.20E+04 1.56E+04 1.12E+03 8.70E+03 2.38E+03

F21 Ave 6:86Eþ 03 5.71E+06 2.12E+04 7.30E+06 2.20E+04 3.54E+05 1.11E+06 2.58E+05 1.44E+05 1.27E+05

Std 2.76E+03 2.15E+06 1.61E+04 4.36E+06 2.22E+04 3.48E+05 7.95E+05 1.76E+05 6.25E+04 5.23E+04

F22 Ave 1.61E+03 1.36E+03 1.44E+03 1.14E+03 3.14E+02 9.47E+02 1.88E+03 2.08E+02 1:86Eþ 02 2.17E+02

Std 9.15E+01 1.71E+02 1.59E+02 1.89E+02 1.41E+02 3.31E+02 2.04E+02 1.29E+02 6.93E+01 1.72E+02

(Continued)
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Table 8. (Continued)

F Results CMA-ES CLPSO CoDE MoABC DGSTLBO HCSA LX-BBO RWGWO RLGWO CRLPO

F23 Ave 5.79E+02 3.90E+02 3.55E+02 3.57E+02 3.15E+02 3.29E+02 4.11E+02 3.15E+02 2:00Eþ 02 2:00Eþ 02
Std 4.94E+01 8.19E+00 1.77E-01 7.30E+00 4.43E-01 7.51E+00 6.43E+01 2.77E-01 0.00E+00 0.00E+00

F24 Ave 2.12E+02 3.39E+02 2.83E+02 2.71E+02 2.00E+02 2.78E+02 1.48E+04 2:00Eþ 02 2:00Eþ 02 2:00Eþ 02
Std 7.49E+00 6.72E+00 1.80E+00 1.78E+00 9.68E-04 3.11E+01 8.37E+03 3.04E-03 0.00E+00 0.00E+00

F25 Ave 2.12E+02 2.46E+02 2.18E+02 2.22E+02 2.02E+02 2.23E+02 5.29E+02 2.04E+02 2:00Eþ 02 2:00Eþ 02
Std 2.97E+00 5.30E+00 1.94E+00 2.80E+00 3.62E+02 9.39E+00 4.37E+01 1.18E+00 0.00E+00 0.00E+00

F26 Ave 1.2SE+02 1.10E+02 1.04E+02 1.01E+02 1.10E+02 1.00E+02 2:13Eþ 00 1.00E+02 1.00E+02 1.36E+02

Std 5.51E+01 2.83E+01 1.82E+01 6.758–02 3.15E+01 1.63E-01 3.46E+00 7.36E-02 6.37E-02 4.79E+01

F27 Ave 1.07E+03 1.33E+03 1.28E+03 1.08E+03 7.94E+02 4.27E+02 1:96Eþ 02 4.09E+02 2.00E+02 2.00E+02

Std 2.30E+02 3.66E+02 1.47E+02 3.78E+02 2.15E+02 1.96E+01 1.04E+02 6.09E+00 0.00E+00 0.00E+00

F28 Ave 2.79E+03 3.02E+03 1.92E+03 2.15E+03 1.43E+03 3.49E+03 1.94E+03 4.34E+02 2:00Eþ 02 2:00Eþ 02
Std 5.92E+02 4.20E+02 1.26E+02 3.42E+02 4.37E+02 5.48E+02 5.49E+02 8.45E+00 0.00E+00 0.00E+00

F29 Ave 3.52E+04 4.10E+05 2.00E+04 3.32E+03 3.08E+06 5.44E+05 1.98E+07 2.14E+02 2:00Eþ 02 2:00Eþ 02
Std 5.34E+03 1.64E+05 7.15E+03 1.46E+03 4.99E+06 2.61E+06 3.96E+06 2.37E+00 0.00E+00 0.00E+00

F30 Ave 6.48E+05 6.00E+04 1.97E+04 1.61E+04 6.47E+03 2.49E+04 6.96E+06 6.69E+02 2:00Eþ 02 2:00Eþ 02
Std 1.31E+05 1.52E+04 2.00E+03 4.10E+03 3.43E+03 2.26E+04 1.03E+07 2.14E+02 0.00E+00 0.00E+00

Ave.R 6.8 8.63 6.3 5.73 4.85 6.6 5.9 3.3 3.7 2.86

Ova.R 9 10 7 5 4 8 6 2 3 1

https://doi.org/10.1371/journal.pone.0251204.t008

Table 9. Experimental results of effectiveness evaluation of two components of CRLPO on 19 test functions from Table 1 with 100 dimensions.

F CRLPO-I CRLPO- II CRLPO- III CRLPO

Ave±Std Ave±Std Ave±Std Ave±Std

f1 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00
f2 0:00Eþ 00 � 0:00Eþ 00 1.55 E-228±0.00E+00 4.26E-178±0.00E+00 0:00Eþ 00 � 0:00Eþ 00
f3 0:00Eþ 00 � 0:00Eþ 00 5.63 E-221±0.00E+00 1.52E-241±0.00E+00 0:00Eþ 00 � 0:00Eþ 00
f4 0:00Eþ 00 � 0:00Eþ 00 8.14 E-208±0.00E+00 4.59E-156±1.99E-155 0:00Eþ 00 � 0:00Eþ 00
f5 3.25 E+00±1.78 E+01 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00
f6 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00
f7 3.15 E- 04±2.02 E- 04 2.16 E- 04±1.60 E -04 2.77E-04±2.40E-04 2:97Eþ 05 � 0:00Eþ 00
f8 -4.18E- 04±7.40 E-12 -40713.9054±3745.349 -4.15E+04±2.16E+03 � 4:19Eþ 04 � 0:00Eþ 00
f9 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00

f10 8:88E� 16 � 0:00Eþ 00 8:88E� 16 � 0:00Eþ 00 8:88E� 16 � 0:00Eþ 00 8:88E� 16 � 0:00Eþ 00
f11 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00
f12 4.71E-33±1.39E-48 4.71E-33±7.24 E-49 4:71E� 33 � 0:00Eþ 00 4:71E� 33 � 0:00Eþ 00
f13 1.34 E -32±5.56E-48 1.34 E -32±2.88 E-48 1:35E� 32 � 0:00Eþ 00 1:35E� 32 � 0:00Eþ 00
f14 9.00E-01±4.51 E-16 9.46E-01±5.07 E-01 9.50E-01±5.09E-02 9:00E� 01 � 0:00Eþ 00
f15 0:00Eþ 00 � 0:00Eþ 00 5.06 E-177±0.00E+00 5.55E-179±0.00E+00 0:00Eþ 00 � 0:00Eþ 00
f16 0:00Eþ 00 � 0:00Eþ 00 1.25 E-191±0.00E+00 6.79E-195±0.00E+00 0:00Eþ 00 � 0:00Eþ 00
f17 0:00Eþ 00 � 0:00Eþ 00 0:00Eþ 00 � 0:00Eþ 00 3.33E-03±1.82E-02 0:00Eþ 00 � 0:00Eþ 00
f18 -3.91 E+03±1.85E-12 -3.91 E+03±1.85 E-12 -3.87E+03±2.58E+02 � 3:92Eþ 03 � 0:00Eþ 00
f19 � 1:00Eþ 00 � 0:00Eþ 00 -8.66E-01± 3.45E-01 -7.00E-01±4.66E-01 � 1:00Eþ 00 � 0:00Eþ 00

+/-/� 0/7/12 0/12/7 0/11/8 /

https://doi.org/10.1371/journal.pone.0251204.t009
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Sensitivity analysis of the parameters of ξ and p
As described in the first portion of section three, RL is highly effective and was adopted to

enhance global exploration. Nevertheless, the parameters in RL such as ξ and p have essential

impacts on the performance of CRLPO. Consequently, to evaluate the impacts of ξ and p on

the performance of CRLPO, additional experiments needed to be done. Firstly, let both ξ and

p be larger than 1000. We found that, in such case, the performance of CRLPO was almost

Table 10. Experimental results of CRLPO for 19 test functions with typical combinations of ξ and p(Dim = 30).

F Results ξ = 1 ξ = 1 ξ = 1 ξ = 1 ξ = 10 ξ = 100 ξ = 1000

p = 1 p = 10 p = 100 p = 1000 p = 1000 p = 1000 p = 1000

f1 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 Mean 7.50E-232 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f3 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f4 Mean 1.43E-208 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f5 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f6 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 Mean 3.25E-04 1.63E-04 8.37E-05 1.33E-04 1.51E-04 4.30E-04 5.63E-05

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f8 Mean -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f9 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f10 Mean 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f11 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f12 Mean 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f13 Mean 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f14 Mean 1.00E+00 9.00E-01 9.00E-01 9.00E-01 9.00E-01 9.00E-01 9.00E-01

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f15 Mean 9.84E-230 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f16 Mean 7.26E-208 3.17E-290 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f17 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f18 Mean -1.17E+03 -1.17E+03 -1.17E+03 -1.17E+03 -1.17E+03 -1.17E+03 -1.17E+03

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f19 Mean -1.40E-43 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

https://doi.org/10.1371/journal.pone.0251204.t010

PLOS ONE Political optimizer with interpolation strategy for global optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0251204 May 6, 2021 32 / 40

https://doi.org/10.1371/journal.pone.0251204.t010
https://doi.org/10.1371/journal.pone.0251204


unchanged. Therefore, we selected the parameters of ξ and p in the range of from 1–1000. Sec-

ondly, to reduce the number of experiments, we selected a few typical values (e.g., 1, 10, 100,

and 1000). Naturally, there were 16 combinations of ξ and p.

According to Eqs (34) and (35), we concluded that the combinations of both ξ = 1 p = 10

and ξ = 10 p = 1 had the same experimental results, and other combinations had the same

effects. Therefore, as shown in Table 10, there were only seven representative combinations.

The setting of population size, as well as the maximum number of iterations were the same as

Table 11. Experimental results of CRLPO for 19 test functions with typical combinations of ξ and p (Dim = 100).

F Results ξ = 1 ξ = 1 ξ = 1 ξ = 1 ξ = 10 ξ = 100 ξ = 1000

p = 1 p = 10 p = 100 p = 1000 p = 1000 p = 1000 p = 1000

f1 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 Mean 1.78E-231 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f3 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f4 Mean 2.64E-211 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f5 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f6 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 Mean 5.84E-04 9.39E-05 2.51E-04 1.87E-04 8.90E-05 2.97E-05 1.79E-04

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f8 Mean -4.19E+04 -4.19E+04 -4.19E+04 -4.19E+04 -4.19E+04 -4.19E+04 -4.19E+04

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f9 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f10 Mean 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f11 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f12 Mean 4.71E-33 4.71E-33 4.71E-33 4.71E-33 4.71E-33 4.71E-33 4.71E-33

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f13 Mean 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f14 Mean 1.00E+00 9.00E-01 1.00E+00 9.00E-01 9.00E-01 9.00E-01 9.00E-01

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f15 Mean 2.53E-232 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f16 Mean 1.74E-209 1.2885e-311 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f17 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f18 Mean -3.92E+03 -3.92E+03 -3.92E+03 -3.92E+03 -3.92E+03 -3.92E+03 -3.92E+03

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f19 Mean 3.08E-72 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

https://doi.org/10.1371/journal.pone.0251204.t011
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those of section 4.3. The dimensions were set to 30D, 100D, and 1000D, respectively (Tables

10–12).

As illustrated in Tables 10–12, compared with ξ = 100 and p = 1000, CRLPO with ξ = 1 and

p = 1 achieved a poorer performance on most of benchmark functions. For functions 12, 13,

and 18 similar results were obtained for CRLPO with all combinations of p and ξ. Conse-

quently, observing the results of all combinations of p and ξ, it was concluded that the parame-

ter setting of ξ = 100 and p = 1000 for CRLPO was appropriate.

Table 12. Experimental results of CRLPO for 19 test functions with typical combinations of ξ and p (Dim = 1000).

F Results ξ = 1 ξ = 1 ξ = 1 ξ = 1 ξ = 10 ξ = 100 ξ = 1000

p = 1 p = 10 p = 100 p = 1000 p = 1000 p = 1000 p = 1000

f1 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 Mean 6.45E-234 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f3 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f4 Mean 5.89E-204 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f5 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f6 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f7 Mean 4.61E-06 3.18E-05 4.57E-05 2.75E-04 1.23E-04 3.68E-06 2.95E-04

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f8 Mean -4.19E+05 -3.01E+05 -4.19E+05 -4.19E+05 -3.01E+05 -4.19E+05 -4.19E+05

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f9 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f10 Mean 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f11 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f12 Mean 4.71E-34 4.71E-34 4.71E-34 4.71E-34 4.71E-34 4.71E-34 4.71E-34

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f13 Mean 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f14 Mean 1.00E+00 9.00E-01 9.00E-01 9.00E-01 9.00E-01 9.00E-01 9.00E-01

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f15 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f16 Mean 5.01E-207 6.42e-323 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f17 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f18 Mean -3.92E+04 -3.92E+04 -3.92E+04 -3.92E+04 -3.92E+04 -3.92E+04 -3.92E+04

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f19 Mean -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00

St.dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

https://doi.org/10.1371/journal.pone.0251204.t012
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The effect of interpolation strategy on RLPO

The RLPO with Cubic interpolation, Quadratic interpolation, Advance quadratic interpola-

tion, Lagrange interpolation and Newton interpolation are defined as CRLPO, QIRLPO,

AQIRLPO, LIRLPO and NIRLPO, respectively. In order to further explore the effect of inter-

polation strategy on RLPO, 17 test functions from [51] were adopted. All of the PO variants

were run thirty times on each benchmark function with 10 and 30 dimensions, respectively.

The experimental results are demonstrated as Tables 13 and 14, which indicate that Cubic

interpolation can more efficiently enhancing the performance of RLPO overall.

Table 13. Experimental results of RLPO with various interpolation strategies on 17 test functions from [51] (Dim = 10).

F Result RLPO NIRLPO LIRLPO QIRLPO AQIRLPO CRLPO

F1 Ave 4.722E-131 8.842E-132 4.525E-129 3.787E-134 2.052E-134 1:030E� 134
Std 2.585E-130 4.509E-131 2.476E-128 1.976E-133 7.919E-134 1.784E-134

F2 Ave 6.015E-04 7.130E-04 4.767E-04 6.039E-04 1.583E-66 2:816E� 74
Std 4.520E-04 5.147E-04 4.132E-04 4.311E-04 8.645E-66 4.877E-74

F3 Ave 6.589E-206 8.442E-199 6:388E� 207 7.188E-203 1.578E-128 1.340E-142

Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 7.456E-128 0.000E+00

F4 Ave 1.473E-67 1.960E-67 1.990E-66 1.421E-67 1.173E-61 8:035E� 74
Std 5.489E-67 7.478E-67 7.417E-66 7.411E-67 5.834E-61 5.235E-68

F5 Ave 2.343E-64 1.626E-64 7.485E-63 1.084E-62 4.580E-04 0:000Eþ 00
Std 5.261E-64 4.460E-64 3.515E-62 4.157E-62 2.105E-03 0.000E+00

F6 Ave 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F7 Ave -3.500E+01 -3.500E+01 -3.500E+01 -3.500E+01 4:452E� 04 7.621E-04

Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.497E-04 0.000E+00

F8 Ave 1.334E-125 2:582E� 130 4.542E-124 1.398E-128 4.185E+03 4.190E+03

Std 7.304E-125 1.074E-129 2.417E-123 7.469E-128 2.528E+01 0.000E+00

F9 Ave 3.931E-66 1.917E-70 1.985E-67 5.938E-69 0:000Eþ 00 0:000Eþ 00
Std 2.153E-65 7.884E-70 1.086E-66 1.660E-68 0.000E+00 0.000E+00

F10 Ave 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00
Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F11 Ave 8.575E-04 1.225E-05 1.417E-05 7.327E-04 0:000Eþ 00 0:000Eþ 00
Std 4.697E-03 6.707E-05 6.490E-05 3.071E-03 0.000E+00 0.000E+00

F12 Ave 3.872E-68 2.747E-69 6.358E-67 1.130E-68 1.163E-68 1:091E� 70
Std 1.586E-67 1.102E-68 3.104E-66 3.901E-68 3.660E-68 8.452E-70

F13 Ave 8.663E-02 8.958E-02 8.185E-02 9.229E-02 8.205E-02 9:584E� 03
Std 2.556E-02 2.901E-02 2.806E-02 2.803E-02 2.326E-02 8.846E-03

F14 Ave 2.904E-52 3.356E-55 3.409E-56 1:951E� 57 1.924E+00 9.980E-01

Std 1.590E-51 1.261E-54 1.863E-55 6.877E-57 2.791E+00 0.000E+00

F15 Ave 4.550E-42 2.239E-48 4.570E-47 7.477E-48 2.233E-48 2:523E� 52
Std 1.437E-41 5.293E-48 1.436E-46 2.133E-47 4.839E-48 0.000E+00

F16 Ave -9.000E-01 -9.000E-01 � 1:000Eþ 00 � 1:000Eþ 00 � 1:000Eþ 00 � 1:000Eþ 00
Std 3.162E-01 3.162E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F17 Ave 9.843E+02 1.098E+03 6.819E+02 2:765Eþ 02 6.299E+02 3.877E+02

Std 1.946E+03 1.736E+03 8.266E+02 3.782E+02 7.329E+02 1.243E+02

Ave.R 3.5882 3.0000 3.2353 2.8235 3.1765 1.7647

Ova.R 6 3 4 2 5 1

https://doi.org/10.1371/journal.pone.0251204.t013
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Conclusion

A novel variant of PO (referred to as CRLPO) was proposed to enhance current metaheuristic

methods. Inspired by the advantages of interpolation strategy and the phenomenon of refrac-

tion in nature, a sequence of novel PO variants was suggested and the best variant with inter-

polation strategy and RL strategy was proposed to form a hybrid with the original PO. We

observed that CRLPO improved the diversity of the population and was beneficial for assisting

PO with jumping out of local optimums. CRLPO was evaluated on 19 well-known benchmark

functions with 30D, 100D, 1000D, and 30 benchmark functions from IEEE CEC 2014. The

Table 14. Experimental results of RLPO with various interpolation strategies on 17 test functions from [51] (Dim = 30).

F Result RLPO NIRLPO LIRLPO QIRLPO AQIRLPO CRLPO

F1 Ave 1.636E-132 7.809E-124 5.162E-127 3.362E-132 5.227E-132 7:827E� 146
Std 4.964E-132 2.470E-123 1.632E-126 9.074E-132 1.591E-131 0.000E+00

F2 Ave 7.540E-04 4.975E-04 5.179E-04 8.141E-04 4.851E-04 9:400E� 77
Std 6.858E-04 2.044E-04 6.437E-04 7.773E-04 1.990E-04 0.000E+00

F3 Ave 4.486E-207 5:99E� 215 2.087E-214 2.433E-208 1.026E-209 6.176E-143

Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F4 Ave 3.356E-69 3.007E-69 9.063E-67 6.231E-67 1.400E-65 3:370E� 72
Std 8.983E-69 9.501E-69 2.847E-66 1.970E-66 4.421E-65 0.000E+00

F5 Ave 1.052E-61 2.948E-61 7.220E-60 7.789E-62 2:432E� 62 8.983E-04

Std 3.204E-61 8.823E-61 2.107E-59 2.187E-61 5.361E-62 0.000E+00

F6 Ave 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00
Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F7 Ave -1.550E+02 -1.550E+02 -1.550E+02 -1.550E+02 -1.550E+02 4:140E� 04
Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F8 Ave 2:559E� 124 2.757E-108 3.833E-120 4.812E-110 2.644E-124 4.190E+03

Std 8.087E-124 8.717E-108 1.211E-119 1.522E-109 6.135E-124 0.000E+00

F9 Ave 2.486E-66 6.960E-67 6.162E-70 2.220E-68 9.355E-68 0:000Eþ 00
Std 5.520E-66 1.488E-66 1.334E-69 5.913E-68 2.231E-67 0.000E+00

F10 Ave 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00 0:000Eþ 00
Std 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

F11 Ave 2.632E-03 7.307E-01 8.218E-21 1.290E+00 1.580E-01 0:000Eþ 00
Std 8.324E-03 2.311E+00 2.599E-20 4.064E+00 4.216E-01 0.000E+00

F12 Ave 3.840E-67 5.352E-67 7.510E-65 7.563E-67 7.624E-63 3:213E� 68
Std 8.183E-67 1.234E-66 2.055E-64 2.347E-66 2.411E-62 8.451E-68

F13 Ave 1.854E-01 1.859E-01 1.873E-01 1.893E-01 1:780E� 01 1.978E-01

Std 1.187E-02 2.328E-02 1.394E-02 1.219E-02 1.418E-02 3.714E-03

F14 Ave 6.332E-66 5.775E-63 3.493E-63 7.112E-65 5:914E� 66 2.521E+00

Std 9.936E-66 1.410E-62 1.069E-62 1.281E-64 1.049E-65 0.000E+00

F15 Ave 3.414E-24 1.456E-21 9.524E-19 1.653E-24 2.313E-24 4:762E� 26
Std 1.079E-23 4.148E-21 3.012E-18 5.225E-24 7.284E-24 8.248E-26

F16 Ave -9.217E-01 -8.994E-01 -1.000E+00 -7.902E-01 -9.219E-01 � 6:192E� 01
Std 2.477E-01 3.160E-01 6.952E-15 4.176E-01 2.471E-01 4.573E-01

F17 Ave 7.118E+02 1.416E+03 2.556E+03 2.273E+02 5.156E+02 4:346Eþ 02
Std 1.077E+03 2.076E+03 3.875E+03 3:175Eþ 02 1.081E+03 5.671E+02

Ave.R 2.8823 3.3529 3.8235 3.1176 2.8235 2.5294

Ova.R 3 5 6 4 2 1

https://doi.org/10.1371/journal.pone.0251204.t014
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experimental results confirmed that CRLPO exhibited better, or at least competitive perfor-

mance, when compared with selected state-of-the-art optimization techniques.
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