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� TMEM16A Ca2+-activated Cl� channel
involves in many inflammatory
diseases.

� Inflammatory mediators and
pathogens promote TMEM16A
expression and activity.

� TMEM16A activates diverse
inflammatory signaling pathways in
inflammatory diseases.

� TMEM16A plays multiple roles in
inflammatory processes and pain.

� Cell type-dependent mechanisms
underlie the roles of TMEM16A in
inflammation.
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Background: Transmembrane protein 16A (TMEM16A) Ca2+-activated Cl� channels have diverse physio-
logical functions, such as epithelial secretion of Cl� and fluid and sensation of pain. Recent studies have
demonstrated that TMEM16A contributes to the pathogenesis of infectious and non-infectious inflamma-
tory diseases. However, the role of TMEM16A in inflammation has not been clearly elucidated.
Aim of review: In this review, we aimed to provide comprehensive information regarding the roles of
TMEM16A in inflammation by summarizing the mechanisms underlying TMEM16A expression and acti-
vation under inflammatory conditions, in addition to exploring the diverse inflammatory signaling path-
ways activated by TMEM16A. This review attempts to develop the idea that TMEM16A plays a diverse
role in inflammatory processes and contributes to inflammatory diseases in a cellular environment-
dependent manner.
Key scientific concepts of review: Multiple inflammatory mediators, including cytokines (e.g., interleukin
(IL)-4, IL-13, IL-6), histamine, bradykinin, and ATP/UTP, as well as bacterial and viral infections, promote
TMEM16A expression and/or activity under inflammatory conditions. In addition, TMEM16A activates
diverse inflammatory signaling pathways, including the IP3R-mediated Ca2+ signaling pathway, the NF-
jB signaling pathway, and the ERK signaling pathway, and contributes to the pathogenesis of many
ew Area,
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inflammatory diseases. These diseases include airway inflammatory diseases, lipopolysaccharide-
induced intestinal epithelial barrier dysfunction, acute pancreatitis, and steatohepatitis. TMEM16A also
plays multiple roles in inflammatory processes by increasing vascular permeability and leukocyte adhe-
sion, promoting inflammatory cytokine release, and sensing inflammation-induced pain. Furthermore,
TMEM16A plays its diverse pathological roles in different inflammatory diseases depending on the dis-
ease severity, proliferating status of the cells, and its interacting partners. We herein propose cellular
environment-dependent mechanisms that explain the diverse roles of TMEM16A in inflammation.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Transmembrane protein 16A (TMEM16A) belongs to the 10-
member TMEM16 family (including TMEM16A-K), which functions
as a Ca2+-activated Cl� channel (TMEM16A and TMEM16B), a Ca2+-
activated cation channel (TMEM16F), or a lipid scramblase
(TMEM16C-K) [1]. TMEM16A was first discovered to be a novel
Ca2+-activated Cl� channel in 2008 [2–4]; it was found to mediate
Ca2+-activated Cl� currents in many cells, including airway and
intestinal epithelial cells [5–9], acinar cells of exocrine glands such
as salivary and pancreatic glands [4,10,11], smooth muscle cells of
the airway [12–14], endothelial cells [15,16], interstitial cells of
Cajal (ICC) [12,17], and dorsal root ganglion (DRG) neurons [18–
20]. Considering its wide cellular distribution, it is predictable that
TMEM16A has many physiological roles, including fluid secretion
of epithelial cells, contraction of smooth muscle, transmission of
nociceptive signals, and gastrointestinal mobility (reviewed in
[1,21–26]).

As a Ca2+-activated Cl� channel, TMEM16A is mainly expressed
in the plasma membrane, where TMEM16A plays its physiological
and pathological roles through Cl� transport. The expression levels
of TMEM16A differ greatly among distinct cells. For example, in
airways, TMEM16A is mainly expressed in mucin-secreting goblet
cells, but is less expressed in ciliated epithelial cells, especially
under inflammatory conditions [6,13,27]. In addition, the cellular
localization of TMEM16A varies between different cell types. For
example, TMEM16A is mainly expressed in the apical plasma
membrane of acinar cells of the salivary gland and exocrine pan-
creas [12,28] and airway epithelial cells [12], but in the basolateral
membrane of colonic epithelial cells [29]. The cell type-dependent
expression of TMEM16A indicates that TMEM16A may exert differ-
ent cellular functions in different cells, and thus may play a cell
type-dependent role in different disease conditions.

In the past decade, increasing evidence has revealed that
TMEM16A dysfunction contributes to a wide range of diseases,
including various cancers [30,31], pain [32–34], cardiovascular dis-
eases such as hypertension [16] and pulmonary hypertension [35],
respiratory diseases such as cystic fibrosis (CF) [27,36], asthma
[13,37,38], chronic rhinosinusitis [39], and gastrointestinal dis-
eases such as eosinophilic esophagitis [40], steatohepatitis [41],
and acute pancreatitis [10]. Inflammation plays a dominant patho-
logical role in many of these TMEM16A-associated diseases, such
as CF, asthma, acute pancreatitis, steatohepatitis, and eosinophilic
esophagitis. In addition, several studies have reported that
TMEM16A upregulation contributes to the pathogenesis of infec-
tious diseases such as rotaviral diarrhea [42–44], and lipopolysac-
charide (LPS)-induced sepsis [45]. Therefore, TMEM16A appears to
underlie the pathogenesis of infectious and non-infectious
inflammation-associated diseases.

In this article, we review recent findings involving TMEM16A,
focusing on its role in inflammation. This review summarizes the
mechanisms underlying the upregulation of TMEM16A expression
and functions in inflammation and discusses the diverse inflamma-
tory signaling pathways activated by TMEM16A. TMEM16A plays
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important roles in inflammatory processes by increasing vascular
permeability and leukocyte adhesion in endothelial cells [15], pro-
moting inflammatory cytokine release from tissue cells [6,10,41],
and sensing inflammation-induced nociceptive stimuli in DRG
neurons [19,20,46,47]. In this review, we highlight the diverse
roles of TMEM16A in inflammation and propose cellular
environment-dependent mechanisms underlying these roles in
inflammatory diseases.
Structure of TMEM16A

Several studies have investigated the topology of TMEM16A
channels using site-directed mutagenesis in combination with
cysteine-scanning accessibility, and topology models with eight
transmembrane helices have been proposed [4,48]. The TMEM16A
topology with ten transmembrane helices (TM1-10) was first iden-
tified in 2014 based on the crystal structure of the fungal
TMEM16A scramblase nhTMEM16 [49], and was later confirmed
by the cryo-electron microscopy (EM) structures of the
mTMEM16A Ca2+-activated Cl� channel [50,51]. The cryo-EM
structures of the TMEM16A Cl� channel have revealed a homod-
imeric architecture, in which each monomer contains one indepen-
dent ion-conducting pore and two Ca2+-binding sites (Fig. 1A). The
pore, which is surrounded by TM3-7, forms an hourglass shape
with a wide intracellular vestibule and a smaller extracellular ves-
tibule that is connected by a restricted neck region [51]. Ten pore-
lining residues on TM3-7 were identified to be important for the
anion selectivity of TMEM16A channels [50]. The Ca2+binding sites
are formed by five conservative acidic amino acids (E654, E702,
E705, E734, and D738) on TM6-8 [50,51] (Fig. 1B), consistent with
earlier electrophysiology and mutagenesis data [48,52]. The Ca2+-
binding sites are located in proximity to the cytosolic end of the
pore within the membrane.

The cryo-EM structures of the TMEM16A channel in the apo-
and Ca2+-bound forms reveal the mechanisms underlying Ca2+-
dependent gating of TMEM16A channels. The apo- and Ca2+-
bound structures show that Ca2+ binding to the TMEM16A channel
mainly induces a conformational rearrangement of TM6 [50,51]. In
the closed state without Ca2+ binding, the cytosolic end of TM6
bends around the glycine hinge residue (G644), resulting in nar-
rowing of the pore [50,51]. When Ca2+ binding occurs, the cytosolic
end of TM6 straightens to dilate the pore, thus rendering the chan-
nel in the open state [50,51,53] (Fig. 1C).
Multiple mechanisms for upregulated TMEM16A expression in
inflammation

TMEM16A expression is upregulated by various inflammatory
mediators such as interleukin (IL)-4, IL-13, and IL-6 in inflamma-
tory diseases such as asthma [13,37], eosinophilic esophagitis
[40], chronic rhinosinusitis [39,54], and acute pancreatitis [10]. It
is also upregulated by pathogenic virulence factors such as bacte-
rial pyocyanin [55] and lipopolysaccharide (LPS) [56–58]. Here,
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Fig. 1. Cryo-EM structure of TMEM16A and Ca2+-dependent gating of TMEM16A channels. A. The homodieric structure of Ca2+-bound TMEM16A with ten transmembrane
helices (PDB: 5OYB). B. The structure of the Ca2+-binding site, which is formed by five conservative amino acids (E654, E702, E705, E734, and D738) on TM6-8. Purple spheres:
Ca2+ ions. The figures were generated using PyMol (https://pymol.org/2/). C. Schematic illustration showing Ca2+-dependent gating of TMEM16A channels. Closed state (no
Ca2+ binding): TM6 bends around the glycine hinge residue (G644), resulting in a narrowing of the pore. Open state: Ca2+ binding straightens the cytosolic end of TM6 to dilate
the pore.
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we summarize multiple mechanisms for regulating TMEM16A
expression in inflammation (Fig. 2).

The IL-4/IL-13/STAT6 signaling pathway

The identification of TMEM16A as a Ca2+-activated Cl� channel
by Caputo et al. [2] is based on a previous finding that the Th2 cyto-
kine IL-4 promotes the Ca2+-activated Cl� current in human bron-
chial epithelial cells [59]. Caputo et al. found that TMEM16A
mediates the Ca2+-activated Cl� current in epithelial cells treated
with IL-4 [2]. This was the first evidence showing that TMEM16A
expression is upregulated under inflammatory conditions. Subse-
quently, several studies have confirmed that IL-4 promotes
TMEM16A expression in airway epithelial cells [60–62], biliary
epithelial cells [63], and cholangiocytes [64]. Mazzone et al. found
that IL-4 promoted TMEM16A expression via STAT6, which binds
to the STAT6 binding site on the promoter region of the TMEM16A
gene [61]. Similar to IL-4, the Th2 cytokine IL-13 also promotes
TMEM16A expression via STAT6 in human airway epithelial cells
[65,66], cholangiocytes [64], and esophageal epithelial cells [40].
Therefore, IL-4 and IL-13 upregulated TMEM16A expression in
epithelial cells by increasing the transcription of the TMEM16A
gene via STAT6.

Asthma is a Th2-mediated inflammatory airway disease charac-
terized by goblet cell hyperplasia and mucus hypersecretion.
55
TMEM16A overexpression induced by IL-4 or IL-13 predominantly
occurs in mucin-secreting goblet cells, where TMEM16A plays a
critical role in goblet cell hyperplasia and mucus secretion
[6,13,62]. Huang et al. found that TMEM16A expression was upreg-
ulated in goblet cells in Th2-high asthmatic patients, in animal
models of asthma induced by ovalbumin, or in transgenic mice
overexpressing IL-13 [13]. Increased TMEM16A expression level
was also observed in a guinea pig asthma model induced by IL-
13 and ovalbumin challenge [37]. Therefore, TMEM16A expression
is upregulated by IL-13 in asthma.

Chronic rhinosinusitis with nasal polyps (CRSwNP) is also a
Th2-mediated inflammatory disorder characterized by persistent
high levels of IL-4 and IL-13 [67]. TMEM16A expression was upreg-
ulated in the sinonasal mucosa tissues of patients with CRSwNP,
and IL-13 promoted TMEM16A expression in human sinonasal
epithelial cells [39]. Eosinophilic esophagitis is another Th2-
mediated inflammatory disease with a characteristic feature of
intraepithelial eosinophil infiltration and basal zone hyperplasia
(BZH). TMEM16A expression was enhanced in the basal layer of
the esophagus in patients with eosinophilic esophagitis, and IL-
13 upregulated TMEM16A expression in esophageal cells via STAT6
[40]. TMEM16A knockdown reduced IL-13-induced proliferation of
esophageal cells, suggesting that TMEM16A overexpression
induced by IL-13 contributes to esophageal epithelial proliferation
and BZH in eosinophilic esophagitis [40].

https://pymol.org/2/


Fig. 2. Multiple mechanisms for regulating TMEM16A expression in inflammation. TMEM16A expression is upregulated in epithelial cells by Th2 cytokine IL-4/IL-13/STAT6
signaling activation in many inflammatory airway diseases, such as asthma, CRSwNP, eosinophilic esophagitis. In acute pancreatitis, the proinflammatory cytokine IL-6
increases TMEM16A expression level in pancreatic acinar cells via the IL-6R/STAT3 signaling pathway. EGF promotes TMEM16A upregulation in airway epithelial cells via the
PI3K signaling pathway. LPS induced TMEM16A expression in intestinal epithelial cells via the NF-jB signaling pathway. In addition, TMEM16A expression is regulated by
miR-9 in many inflammatory diseases such as CF, IPF, and LPS-induced sepsis.
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The IL-6/STAT3 signaling pathway

The proinflammatory cytokine IL-6 contributes to the patho-
genesis of acute pancreatitis [68]. In acute pancreatitis, inflamma-
tory mediators such as IL-6 are released from pancreatic acinar
cells following activation of inflammatory pathways (e.g., the
nuclear factor-jB (NFjB) signaling pathway), subsequently caus-
ing local pancreatic injury and inducing a systemic inflammatory
response [69]. TMEM16A is expressed in many pancreatic tissues,
including pancreatic acinar cells [10,12,28,70], and functions as a
Cl� channel and/or HCO3

– transporter [5,71]. As an HCO3
– trans-

porter, TMEM16A is implicated in a cell model of acute pancreatitis
induced by a supramaximal concentration of cholecystokinin, in
which TMEM16A inhibition contributes to luminal acidosis [71].
TMEM16A expression has been found to be upregulated in pancre-
atic acinar cells in mouse and cell models of cerulein-induced acute
pancreatitis, accompanied by increased serum and pancreatic
levels of IL-6 [10]. IL-6 treatment increases TMEM16A expression
levels in pancreatic acinar cells via the IL-6R/STAT3 signaling path-
way [10]. The STAT3-dependent mechanisms underlying
TMEM16A overexpression are consistent with our previous find-
ings showing TMEM16A upregulation via EGFR/STAT3 signaling
activation in breast cancer cells [72]. Since TMEM16A overexpres-
sion also activates NF-jB signaling to increase IL-6 release from
pancreatic acinar cells, TMEM16A expression and NFjB/IL-6 may
form a positive feedback loop, resulting in a sustained inflamma-
tory response and high TMEM16A expression level in acute
pancreatitis.
The EGFR signaling pathway

Upregulation of TMEM16A expression by EGFR signaling activa-
tion has been reported in cancer cells [72,73]. High TMEM16A
expression correlated with high EGFR expression in breast cancer
[72] or non-small cell lung cancer [74]. EGFR signaling activation
promotes TMEM16A expression in head and neck squamous cell
56
carcinoma (HNSCC) cells overexpressing EGFR [73], and in breast
cancer cells via EGFR/STAT3 signaling activation [72]. Furthermore,
EGF increases TMEM16A expression in non-cancer cells, including
intestinal epithelial cells [8] and human nasal epithelial cells [54].
A recent study has shown that EGF promoted TMEM16A upregula-
tion via the PI3K signaling pathway. TMEM16A also mediated EGF-
induced mucin secretion in human nasal epithelial cells from
patients with CRSwNP [54], suggesting that EGFR-mediated
increases in TMEM16A expression is important for mucin secretion
in airway inflammatory diseases. Since abnormal EGF/EGFR signal-
ing is associated with many inflammatory airway diseases such as
asthma, CF, and chronic obstructive pulmonary disease (COPD)
[75], EGFR signaling activation may contribute to TMEM16A over-
expression in these inflammatory diseases.
The LPS/NF-jB signaling pathway

Bacterial infection is one of the main causes of many inflamma-
tory diseases (e.g., acute lung injury and inflammatory bowel dis-
ease) involving airway and intestinal epithelial cells, wherein
TMEM16A is important for fluid and mucus secretion [5–7,13].
TMEM16A expression is upregulated in airway epithelial cells,
intestinal epithelial cells, and RAW264.7 macrophages following
LPS treatment [56–58]. Mechanistically, LPS activates NF-jB sig-
naling by binding to the TLR4 receptor [76]. Recently, Sui et al.
reported that NF-jB knockdown inhibited LPS-induced upregula-
tion of TMEM16A expression in intestinal epithelial cells [58], sug-
gesting that LPS upregulates TMEM16A expression via the NF-jB
signaling pathway.
microRNAs

miRNAs are small non-coding RNAs that repress gene expres-
sion by targeting the 30 untranslated region (UTR) of the target
gene. TMEM16A overexpression due to downregulation of micro-
RNAs has been observed in many cancers. For example, TMEM16A
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overexpression is caused by miR-132, miR-9, and miR-144 down-
regulation in colorectal cancer [77–79], and by miR-381 downreg-
ulation in gastric cancer [80]. Regulation of TMEM16A by miR-9
has been reported in many inflammatory conditions such as
idiopathic pulmonary fibrosis (IPF) [81] and CF [82], as well as in
LPS-induced sepsis [45]. Bioinformatics and luciferase reporter
assays have demonstrated that miR-9 directly binds to the 30

UTR of TMEM16A mRNA and inhibits TMEM16A expression
[81,82]. A target site blocker that inhibits the binding of miR-9 to
the 30 UTR region of TMEM16A mRNA increased TMEM16A-
mediated Cl� currents, promoted mucus clearance, and increased
airway epithelial cell migration in CF [82]. In addition, miR-9-
mediated TMEM16A downregulation promoted inflammation,
increased proliferation, and inhibited apoptosis in fibroblasts in
mice with IPF [81]. Furthermore, miR-9 knockdown ameliorated
LPS-induced sepsis by inhibiting TGF-b signaling by targeting
TMEM16A [45]. Therefore, miR-9 is an important regulatory mech-
anism for TMEM16A expression in many inflammatory diseases,
such as CF, IPF, and LPS-induced sepsis.
TMEM16A activation by various inflammatory inducers and
mediators via Ca2+

The inflammatory response is initiated by many exogenous
inducers, such as bacterial and viral pathogens [83]. In addition,
a wide range of inflammatory mediators such as histamine, leuko-
trienes (LT), and bradykinin are produced by inflammatory cells or
secreted by tissue cells during inflammation [83]. It is known that
bacterial or viral pathogens can cause an increase in [Ca2+]i [84],
and many inflammatory mediators promote IP3R-mediated Ca2+

release from the endoplasmic reticulum (ER) by activating their
corresponding Gq protein-coupled receptors (GqPCRs) [85,86].
Recent studies have demonstrated that TMEM16A can be activated
by [Ca2+]i elevation induced by bacterial or viral pathogens, or by
inflammatory mediators via IP3R-mediated Ca2+ release following
GqPCR activation (Fig. 3).
TMEM16A activation following bacterial or viral infection

Several studies have shown that TMEM16A Cl� channel activity
is increased in infectious diseases such as rotaviral diarrhea [42–
44]. TMEM16A has been reported to mediate Cl� secretion in colo-
nic epithelial cells [5]. Ousingsawat et al. reported that the rota-
virus toxin NSP4, which is known to activate PLC to increase
[Ca2+]i [87], activated TMME16A Cl� channels in colonic epithelial
cells and TMEM16A-overexpressing HEK293 cells [43]. TMEM16A
inhibition by many compounds such as red wine extract [88],
trans-delta-viniferin [89], and shikonin [42] relieved rotaviral diar-
rhea. Therefore, rotaviral endotoxin induces excessive fluid secre-
tion by activating TMEM16A Cl� channels in colonic epithelial
cells.

Notably, Lee et al. reported that cAMP-induced Cl� currents
were significantly decreased in the colonic epithelial cells of mice
with TMEM16A gene deletion independent of CFTR, suggesting
that TMEM16A mediates cAMP-activated Cl� currents in colono-
cytes [9]. Furthermore, fluid secretion induced by cholera toxin,
which stimulates an increase in intracellular cAMP, was reduced
in TMEM16A-deficient colonocytes [9], suggesting that TMEM16A
mediates cholera toxin-induced fluid secretion. Since cAMP can
promote Cl� secretion in intestinal cells by elevating [Ca2+]i [90],
it is possible that cAMP activates TMEM16A channels via increas-
ing [Ca2+]i. Therefore, cholera toxin activates TMEM16A Ca2+-
activated Cl� channels via cAMP-induced increases in [Ca2+]i.

Bacterial infection commonly occurs in CF, and Pseudomonas
aeruginosa is the most prevalent bacterium that deteriorates lung
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function in CF [91]. TMEM16A expression is upregulated in bron-
chial epithelial cells treated with pyocyanin, the virulence factor
of P. aeruginosa [55]. Furthermore, pyocyanin can induce an
increase in [Ca2+]i and promote TMEM16A-mediated Cl� secretion
in bronchial epithelial cells [55]. Thus, pyocyanin can activate
TMEM16A Cl� channels by elevating [Ca2+]i.
TMEM16A activation by inflammatory mediators via GqPCRs

Histamine is a major proinflammatory mediator that is mainly
released from mast cells and basophiles under inflammatory con-
ditions, such as allergic rhinitis and asthma [92]. TMEM16A
expression level was increased in patients with allergic rhinitis,
and histamine promoted TMEM16A-mediated Cl� secretion in air-
way epithelial cells, especially upon IL-4 treatment [60].
Histamine-stimulated TMEM16A activation is likely mediated by
the GqPCR H1R, because H2R or H3R agonists do not induce fluid
secretion [60]. In addition, histamine activates TMEM16A channels
in airway smooth muscle cells [38]. Therefore, TMEM16A can be
activated by histamine under inflammatory conditions.

The inflammatory mediators 5-HT, thromboxane A2, and LTD4
induce an increase in [Ca2+]i by activating their corresponding
GqPCRs, In addition to histamine, Wang et al. reported that these
mediators induced airway smooth muscle contraction by activat-
ing TMEM16A Cl� channels [38]. In addition, Jin et al. found that
bradykinin activated TMEM16A Cl� channels via the G-protein
coupled B2 receptor in DRG neurons [93]. Lee et al. reported that
inflammatory soups containing a mixture of bradykinin, histamine,
prostaglandin E2, and serotonin, which function as agonists of their
corresponding GqPCRs, induced membrane depolarization in DRG
neurons. This effect was absent in TMEM16A-knockout DRG neu-
rons [19], suggesting that these inflammatory mediators induced
Cl� efflux by activating TMEM16A channels. Therefore, TMEM16A
can be activated by many inflammatory mediators via GqPCRs.

Intracellular ATP can be passively released from damaged cells
under inflammatory conditions [94]. ATP can increase [Ca2+]i by
activating Gq-protein-coupled P2Y receptors. Activation of
TMEM16A Cl� channels by ATP or UTP via P2Y receptors has been
demonstrated in oocytes with heterologous expression of
TMEM16A and P2Y1 receptors [95] or in TMEM16A-
overexpressing HEK293 cells [96]. TMEM16A activation by ATP
or UTP has been observed in many epithelial cells, including airway
epithelial cells [13,37,97–99], colonic epithelial cells [100], cholan-
giocytes [64], and supporting cells of the mouse olfactory epithe-
lium [101], and mediates ATP/UTP-induced Cl� secretion in these
epithelial cells.
Activation of diverse inflammatory signaling pathways by
TMEM16A

TMEM16A can activate diverse signaling pathways in distinct
cells [30,31]. In cancer cells, TMEM16A activates mitogen-
activated protein kinase (MAPK) signaling in HNSCC [102], NF-jB
signaling in glioma [103], EGFR/Ca2+ signaling in pancreatic cancer
[104], and EGFR/STAT3 signaling in breast cancer [72]. In non-
cancer cells, TMEM16A promotes reactive oxygen species (ROS)
generation in endothelial cells by directly binding to Nox2 NADPH
oxidase [16], activates the p38/JNK signaling pathway in podocytes
[105], and regulates Ca2+ signaling via receptor- (ROCE) and store-
(SOCE) operated Ca2+ entry in pulmonary arterial smooth muscle
cells [106]. TMEM16A can also activate signaling pathways in
many inflammatory diseases. For example, TMEM16A increases
[Ca2+]i via IP3R-mediated Ca2+ release, and promotes excessive
mucus secretion from goblet cells in airway inflammatory diseases
[6,27]. TMEM16A also activates NF-jB signaling and promotes the



Fig. 3. TMEM16A activation by various inflammatory inducer and mediators. TMEM16A is activated by rotavirus toxin NSP4 via PLC-mediated Ca2+ release from the ER, by
cholera toxin via cAMP-mediated increases in [Ca2+]i, and by pyocyanin via increasing [Ca2+]i. In addition, many inflammatory mediators including histamine, 5-HT,
thromboxane A2 (TXA2), LTD4, ATP/UTP, and bradykinin activate TMEM16A via increasing IP3R-mediated Ca2+ release by acting on their corresponding GqPCRs.
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pathogenesis of acute pancreatitis [10] and steatohepatitis [41].
TMEM16A promotes mucus hypersecretion in inflammatory air-
way diseases [65] and aggravates LPS-induced epithelial barrier
dysfunction [58] by activating the ERK1/2 signaling pathway. In
this review, we summarize the diverse inflammatory signaling
pathways activated by TMEM16A (Fig. 4).

IP3R-mediated Ca2+ signaling

TMEM16A is localized to the ER-plasma membrane contact
sites, where many Ca2+ channels (e.g., IP3R, TRP channels, STIM1
and Orai channels) and receptors (e.g., GPCRs, EGFR) are located
to regulate Ca2+ signaling [107,108]. Jin et al. first found that
TMEM16A forms a complex with IP3R and GPCR (including B2R
and PAR-2) in DRG cells, and is activated by IP3R-mediated Ca2+

release following GqPCR activation [93]. Similarly, the activation
of TMEM16A by IP3R-mediated Ca2+ release has been observed in
HeLa [109] and AR42J cells [10]. The importance of TMEM16A acti-
vation by IP3R-medicated Ca2+ release was further demonstrated
by a recent study showing that IP3R mediates TMEM16A activation
via TRPV1 [110].

The direct interaction of TMEM16A with IP3R suggests that
TMEM16A also controls IP3R-mediated Ca2+ signaling elicited by
GqPCR activation [111]. Increasing evidence has shown that
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TMEM16A promotes [Ca2+]i via IP3R-mediated Ca2+ release. For
example, Schreiber et al. reported that increases in [Ca2+]i induced
by the muscarinic agonist carbachol was inhibited in isolated colo-
nic crypt cells from TMEM16A-knockout mice [29]. Conditional
knockout or pharmacological inhibition of TMEM16A impaired
Ca2+ transients in ICC [17,112], and TMEM16A knockdown inhib-
ited IP3R-mediated Ca2+ release from the ER in HeLa cells [109],
human bronchial epithelial cells [98], and M1 cells [113]. Wang
et al. recently found that TMEM16A inhibition by its inhibitor
T16Ainh-A01 blocked IP3R-induced Ca2+ release in AR42J cells trea-
ted with the cholesystokinin receptor agonist cerulein [10].

Increases in TMEM16A expression and function contribute to
the development of inflammatory diseases by promoting IP3R-
mediated Ca2+ signaling. For example, TMEM16A expression is
upregulated in mucin-secreting goblet cells in asthma [13,27].
Increases in TMEM16A expression level and function facilitate
IP3R-mediated Ca2+ release elicited by ATP, and thus lead to subse-
quent exocytosis of mucus-containing granules [6,27]. Therefore,
TMEM16A may promote excessive mucus secretion from goblet
cells in many inflammatory airway diseases such as asthma, CF,
and COPD. Our recent findings demonstrating that TMEM16A pro-
motes acute pancreatitis represent a second example showing the
role of TMEM16A in inflammatory diseases, which it achieves by
facilitating IP3R-mediated Ca2+ release [10]. TMEM16A expression



Fig. 4. TMEM16A-mediated activation of diverse inflammatory signaling pathways in distinct cells in many inflammatory diseases. TMEM16A directly interacts with IP3R and
increases [Ca2+]i via IP3R-mediated Ca2+ release, thus promoting excessive mucus secretion from goblet cells in airway inflammatory diseases such as asthma, COPD, and CF.
TMEM16A-mediated Ca2+ elevation activates NF-jB signaling in pancreatic acinar cells (PACs) and promotes the pathogenesis of acute pancreatitis. TMEM16A activates the
NF-jB signaling pathway in endothelial cells by increasing ROS generation in ischemic stroke. TMEM16A-mediated Cl� efflux facilitates high fat diet (HFD)/TLR4-induced NF-
jB activation in hepatocytes by reducing intracellular Cl� concentration, and thus contributes to the pathogenesis of steatohepatitis. TMEM16A activates the ERK1/2 signaling
to promote mucus synthesis and release in goblet cells and thus is important for mucus hypersecretion in inflammatory airway diseases such as asthma. TMEM16A
aggravated LPS-induced epithelial barrier dysfunction in intestinal epithelial cells by activating the ERK1/2 signaling pathway.
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level is increased in cell and mouse models of cerulein-induced
acute pancreatitis [10]. TMEM16A knockdown or inhibitors
blocked IP3R-mediated Ca2+ release and subsequent activation of
NF-jB signaling in pancreatic acinar cells, and reduced pancreatic
tissue damage in vivo [10]. Therefore, TMEM16A promotes acute
pancreatitis by maintaining sustained Ca2+ elevation and NF-jB
activation [10], which are key contributors to the pathogenesis of
acute pancreatitis [114].

The NF-jB signaling pathway

The NF-jB signaling pathway regulates the expression of vari-
ous proinflammatory genes and plays a key role in many inflam-
matory diseases [115]. NF-jB signaling activation by TMEM16A
was first reported in glioma cells [103]. Subsequently, TMEM16A
has been found to activate the NF-jB signaling pathway in many
different cells. For example, TMEM16A activates NF-jB signaling
to promote mucus production in human airway epithelial cells
[66]. TMEM16A knockdown inhibits oxygen-glucose deprivation/
reoxygenation (OGDR)-induced NF-jB activation in brain endothe-
lial cells [15], suggesting that TMEM16A is important for OGDR-
induced NF-jB activation. Furthermore, Guo et al. found that high
fat diet (HFD)-induced NF-jB signaling activation was increased by
hepatocyte-specific transgenic overexpression of TMEM16A [41],
suggesting that TMEM16A promotes NF-jB signaling activation
in steatohepatitis. Wang et al. have previously found that
TMEM16A activates the NF-jB signaling pathway in pancreatic
acinar cells in mice with acute pancreatitis [10].

The mechanisms underlying NF-jB activation by TMEM16A
have been investigated in acute pancreatitis [10]. Sustained Ca2+

elevation is an important initiator of acute pancreatitis, and Ca2+

is required for NF-jB activation in pancreatic acinar cells [114].
TMEM16A directly interacts with IP3R [10,93,109], and promotes
IP3R-mediated Ca2+ release [10,109]. TMEM16A inhibition by
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T16Ainh-A01 blocked IP3R-mediated Ca2+ release in AR42J cells
[10], suggesting that TMEM16A facilitates IP3R-mediated Ca2+ in
AR42J cells. Furthermore, TMEM16A activated NF-jB signaling in
pancreatic acinar cells during cerulein-induced acute pancreatitis;
this effect was blocked by the Ca2+ chelator BAPTA-AM, suggesting
that TMEM16A activates NF-jB signaling by increasing [Ca2+]i via
IP3R [10].

NF-jB activation by TMEM16A overexpression has also been
observed in human brain microvascular endothelial cells, since
TMEM16A knockdown reduced NF-jB activation induced by OGDR
[15]. However, the mechanisms underlying NF-jB activation by
TMEM16A in endothelial cells remain unclear. Since TMEM16A is
not co-immunoprecipitated with p65/NF-jB [15], TMEM16A may
not activate NF-jB signaling via direct interaction. OGDR can
induce IP3R-mediated Ca2+ release [116], which is controlled by
TMME16A [10,109]. Thus, TMEM16A may mediate OGDR-
induced NF-jB signaling activation in endothelial cells by promot-
ing IP3R-mediated Ca2+ release, similar to the mechanism in AR42J
cells. In agreement with this idea, Ca2+ has been found to activate
NF-jB signaling in human cerebral microvascular endothelial cells
[117]. In addition, Ma et al. found that TMEM16A promoted ROS
generation via Nox2-containing NADPH oxidase in vascular
endothelial cells [16]. ROS can activate NF-jB signaling in many
cells, including endothelial cells [118,119]. Therefore, TMEM16A
may activate the NF-jB signaling pathway via ROS.

NF-jB activation by TMEM16A also occurs in hepatocytes
[41]. Guo et al. reported that hepatocyte-specific TMEM16A
overexpression promoted HFD-induced TLR4/NF-jB signaling
activation, suggesting that TMEM16A enhances NF-jB signaling
activation to promote inflammation in hepatocytes [41]. How-
ever, the mechanisms underlying this effect are not known. Since
decreases in intracellular Cl� concentration promote NF-jB sig-
naling activation [120], it is hypothesized that TMEM16A-
mediated Cl� efflux facilitates NF-jB activation by reducing the
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intracellular Cl� concentration [41]. Therefore, TMEM16A may
activate NF-jB signaling in hepatocytes by reducing intracellular
Cl� concentration, thus contributing to the pathogenesis of
steatohepatitis.

The extracellular signal-regulated kinase (ERK) signaling pathway

ERK 1/2 belongs to the MAPK family that regulates many cellu-
lar processes, such as proliferation, migration, and apoptosis, and is
an important oncogenic driver of human cancers [121,122].
TMEM16A is preferentially coupled to the ERK/MAPK signaling
cascade in cancers [31], and several studies have reported that
TMEM16A overexpression activates ERK1/2 signaling in breast
cancer [123], HNSCC [102], colorectal cancer [124], and hepatoma
[125]. Recent studies have also shown that TMEM16A activates
ERK1/2 signaling in inflammatory diseases [58,65]. For example,
Qin et al. reported that TMEM16A inhibition by genetic silencing
or pharmacological inhibitors decreased ERK1/2 phosphorylation
in airway epithelial cells, and TMEM16A-mediated ERK1/2 signal-
ing activation is important for mucus hypersecretion in inflamma-
tory airway diseases such as asthma [65]. In addition, Sui et al.
reported that TMEM16A aggravated LPS-induced epithelial barrier
dysfunction in intestinal epithelial cells via ERK1/2 signaling acti-
vation [58], suggesting that TMEM16A-mediated activation of the
ERK signaling pathway contributes to inflammatory intestinal
diseases.
Multifunctional roles of TMEM16A in inflammatory processes

Inflammation is an adaptive response that is triggered by harm-
ful exogenous stimuli such as pathogens, toxic compounds, aller-
gens, and irritants, or by endogenous molecules released from
damaged cells and tissues [83]. Acute inflammation consists of
multiple biological processes, including increased vascular perme-
ability, local exudation formation, leukocyte infiltration and accu-
mulation, and inflammatory mediator release from immune and
tissue cells [126]. TMEM16A overexpression contributes to
increased vascular permeability and leukocyte recruitment in
endothelial cells [15], and activates many inflammatory signaling
pathways (e.g., Ca2+ signaling and NF-jB signaling) to promote
the release of inflammatory cytokines from epithelial cells
(Fig. 4). We developed the idea that TMEM16A is involved in
inflammatory processes by increasing vascular permeability and
leukocyte adhesion, and by promoting the release of proinflamma-
tory cytokines from tissue cells (Fig. 5).

TMEM16A promotes endothelial permeability and leukocyte adhesion
in inflammation

The vascular endothelium, which constitutes the innermost
layer of the blood vessels, controls the transport of fluid, ions,
nutrients, and macromolecules across the vessel wall. During
inflammation, the permeability of endothelial cells is increased to
allow extravasation of blood components (e.g., plasma proteins,
fluids, and leukocytes), resulting in excessive accumulation of fluid
and inflammatory cells surrounding the tissue. Tight junctions,
which are composed of claudins and occludins, mediate cell–cell
interactions and are important for controlling the permeability of
endothelial cells [127]. Recently, Liu et al. reported that TMEM16A
was upregulated in brain endothelial cells, and the TMEM16A inhi-
bitor CaCCinh-A01 reduced cerebral infarct size and improved neu-
rological function in a mouse model of ischemic stroke [15].
Downregulation of TMEM16A expression reduced transendothelial
permeability in in vivo and in vitro models of ischemia/perfusion
injury, accompanied by an increase in the expression levels of
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zonula occludens (ZO)-1, occludin, and claudin-5 [15]. Thus,
TMEM16A overexpression contributes to increased endothelial cell
permeability by disrupting tight junctions during ischemic stroke.
However, the mechanisms underlying TMEM16A-mediated tight
junction dysfunction in endothelial cells remain unclear. Sui et al.
found that TMEM16A overexpression disrupted tight junctions by
activating the ERK1/ELK1 signaling pathway in LPS-treated colonic
epithelial cells [58]. It remains to be determined whether
TMEM16A promotes endothelial permeability by activating the
ERK1/ELK1 signaling pathway.

NF-jB signaling activation promotes the expression of adhesion
molecules, including intercellular adhesion molecule-1 (ICAM-1),
which is important for regulating endothelial adhesion,
transendothelial migration, and extravasation of circulating leuko-
cytes during inflammation [128]. TMEM16A overexpression has
been reported to activate NF-jB signaling and subsequently pro-
mote ICAM-1 expression in brain endothelial cells [15]. Further-
more, TMEM16A knockdown reduced OGDR-induced adhesion of
leukocytes to endothelial cells by decreasing ICAM-1 expression
[15], suggesting that TMEM16A promotes extravasation of circu-
lating leukocytes via NF-jB/ICAM-1 signaling activation.

TMEM16A promotes inflammatory response by increasing
proinflammatory cytokine release

TMEM16A activates the NF-jB signaling pathway, which regu-
lates the expression of proinflammatory cytokines in inflammatory
diseases [115]. TMEM16A expression was upregulated in the hep-
atocytes of mice fed a HFD, and hepatocyte-specific TMEM16A
overexpression promoted the expression of inflammatory cytoki-
nes such as IL-6, IL-1b, and TNF-a in HFD-treated mice [41]. Since
conditional TMEM16A knockout reduced NF-jB signaling activa-
tion via a reduction in proinflammatory cytokines, TMEM16A in
hepatocytes may aggravate the inflammatory response by promot-
ing the production and release of proinflammatory cytokines via
NF-jB signaling in steatohepatitis [41].

Wang et al. have previously reported that TMEM16A overex-
pression induces IL-6 secretion in pancreatic acinar cells by acti-
vating the NF-jB signaling pathway [10]. TMEM16A inhibition by
genetic silencing or its inhibitor T16Ainh-A01 inhibited NF-jB acti-
vation and reduced IL-6 secretion in in vitro and in vivo models of
cerulein-induced acute pancreatitis [10], suggesting that
TMEM16A aggravates acute pancreatitis by activating NF-jB sig-
naling and promoting proinflammatory cytokine release.

Benedetto et al. reported that TMME16A knockdown reduced
IL-8 release in Calu3 epithelial cells, indicating that TMEM16A
may be important for IL-8 release in inflammatory diseases [6].
Since IL-8 is a chemokine that can induce leukocyte migration
[129], decreased IL-8 release from airway epithelial cells may
explain the observed reduction in leukocyte infiltration in
TMEM16A-knockout mice with ovalbumin challenge [6]. These
findings suggest that TMEM16A promotes an inflammatory
response by increasing the release of proinflammatory cytokines.

In summary, expression level and function of TMEM16A are
increased in response to many inflammatory mediators, including
histamine, IL-6, and IL-4, as well as pathogens such as bacteria and
viruses (Figs. 2, 3). In endothelial cells, TMEM16A overexpression
increases endothelial permeability by disrupting tight junctions
and promoting leukocyte adhesion and extravasation. Thus,
TMEM16A is important for increased vascular permeability and
recruitment of leukocytes into the inflammatory site. In epithelial
cells, TMEM16A overexpression promotes the release of many
inflammatory cytokines by activating the NF-jB signaling path-
way. Of these cytokines, IL-6 is important for maintaining high
TMEM16A expression by activating IL-6R/STAT3 signaling, and
IL-8 promotes leukocyte migration into the inflammatory sites



Fig. 5. TMEM16A mediates inflammatory processes by increasing vascular permeability and leukocyte adhesion and promoting release of proinflammatory cytokines from
tissue cells. The inflammatory process is regulated by multiple cells including tissue cells, immune cells, and vascular cells. Immune cells such as macrophages or mast cells
initially recognize noxious stimuli (tissue injury or pathogens) and release proinflammatory cytokines such as histamine, IL-6, and IL-4. These cytokines promote TMEM16A
expression and function. Endothelial TMEM16A overexpression disrupts tight junctions, possibly by activating the ERK1/ELK1 signaling pathway, and thus increases vascular
permeability. Endothelial TMEM16A also increases ICAM-1 expression level by activating the NF-jB signaling pathway, and subsequently promotes adhesion and
extravasation of circulating leukocytes. TMEM16A overexpression in epithelial cells activates NF-jB signaling and promotes release of proinflammatory cytokines such as IL-
6, IL-8, IL-1b, and TNF-a. IL-6 further promotes TMEM16A expression by activating IL-6R/STAT3 signaling pathway. IL-8 promotes leukocyte infiltration into the inflammatory
site.
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(Fig. 5). Therefore, TMEM16A is involved in multiple steps of
inflammatory processes, including vascular permeability, leuko-
cyte infiltration, and inflammatory mediator release.
TMEM16A contributes to inflammation-induced pain

Pain is one of the cardinal features of inflammation, and is trig-
gered by inflammatory mediators released from inflammatory cells
or damaged tissues. DRG neurons extend their peripheral axons to
the target tissues, where the plasma membrane receptors, particu-
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larly GPCRs and ion channels, sense and transduce nociceptive
stimuli such as temperature, mechanical pressure, and chemical
stimuli [130]. TMEM16A is expressed in DRG neurons, especially
in a subpopulation of small DRG neurons that are responsible for
nociceptive sensation [4,18]. Since DRG neurons maintain a high
intracellular Cl� concentration, Cl� efflux as a result of TMEM16A
activation leads to membrane depolarization of nociceptive neu-
rons [18,32]. Cho et al. reported that TMEM16A was directly acti-
vated by noxious heat (temperature > 44 �C) in the absence of
Ca2+; furthermore, heat-activated Cl� currents were reduced in
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nociceptive DRG neurons isolated from conditional TMEM16A-
knockout mice, which are insensitive to noxious heat-induced pain
[18]. Thus, TMEM16A is important for heat-induced pain sensation.

The role of TMEM16A in inflammation-induced pain was first
demonstrated in a study by Liu et al. [20], showing that bradykinin,
an inflammatory mediator that causes pain sensation, activates
TMEM16A channels to inducemembrane depolarization and action
potential firing in DRG neurons. Bradykinin activates TMEM16A Cl�

channels by IP3R-mediated Ca2+ release via the Gq-protein coupled
B2 receptor, which directly interacts with IP3R and TMEM16A in
DRGneurons [93]. TMEM16A inhibitors or ablation of the TMEM16A
gene inDRGneurons inhibitednocifensivebehaviors inmice treated
withbradykininorformalin[19,20,46,47],suggestingthatTMEM16A
contributes to inflammation-inducedpain sensation (Fig. 6). In addi-
tion, TMEM16A is also mediated by hyperalgesia and allodynia
responsesunderinflammatoryandnerve-injuryconditions[19,131].

It is also known that the G-protein coupled receptor PAR2
(protease-activated receptor 2) is involved in pain and inflamma-
tion [132]. TMEM16A and PAR2 are reportedly co-expressed in
DRG neurons, and TMEM16A and PAR2 expression is upregulated
in rats with neuropathic pain induced by chronic constriction
injury [133]. In addition, TMEM16A is co-expressed with PAR2 in
the caveolin-rich microdomain in small DRG neurons. TMEM16A
can be activated by local Ca2+ release induced by PAR2 stimulation
[93], suggesting that TMEM16A activation is important for PAR2-
mediated pain sensation (Fig. 6).

In DRG neurons, TMEM16A is also co-expressed with TPRV1, a
Ca2+ permeant cation channel that is well known for its role in pain
sensation [18]. Takayama et al. reported that TMEM16A and TRPV1
interact, and that TMEM16A Cl� channels are activated by Ca2+

influx via TRPV1 in DRG neurons [33]. TMEM16A inhibition by
T16Ainh-A01 inhibited capsaicin-induced currents in DRG neurons
and reduced capsaicin-induced pain-related behaviors in mice,
suggesting that the TMEM16A-TRPV1 interaction is critical for pain
sensation [33]. In addition, Shah et al. reported that TMEM16A,
TRPV1, and IP3R1 are in close proximity to the ER-plasma mem-
brane contact site of DRG neurons, where TRPV1 activates
Fig. 6. Role of TMEM16A in inflammation-induced pain. TMEM16A is co-expressed with
increases in [Ca2+]i via IP3R following activation of the B2 and PAR2 receptors, the GqPCR
TMEM16A, can activate TMEM16A. TRPV1 can indirectly activate TMEM16A via IP3R-m
activation results in membrane depolarization due to Cl� ion efflux. Membrane depolar
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TMEM16A by promoting IP3R-mediated Ca2+ release from the ER,
presumably through Ca2+-dependent PLC activation [110]. Thus,
the mechanisms underlying TMEM16A activation by TRPV1 may
include direct TMEM16A activation by Ca2+ influx through TRPV1
and indirect activation by IP3R-mediated Ca2+ release following
PLC activation by TRPV1 (Fig. 6).

Cellular environment-dependent role of TMEM16A in
inflammation

The TMEM16A Ca2+-activated Cl� channel exerts diverse cellu-
lar functions in inflammatory diseases. For example, TMEM16A
overexpression in airway and intestinal epithelial cells can result
in excessive fluid secretion in inflammatory diseases such as aller-
gic rhinitis [60,134,135] and infectious diarrhea [42–44,89]. In
addition, increased TMEM16A expression level and activity in gob-
let cells contribute to goblet cell metastasis and mucus hypersecre-
tion under inflammatory conditions [6,60–62,65,66] and airway
inflammatory diseases such as asthma [13]. TMEM16A mediates
the contraction of airway smooth muscle cells, and increased
TMEM16A activity contributes to airway hyper-responsiveness in
asthma [13,38]. Furthermore, TMEM16A overexpression activates
IP3R/Ca2+/NF-jB signaling and promotes IL-6 secretion from pan-
creatic acinar cells in acute pancreatitis [10]. In hepatocytes,
TMEM16A aggravates steatosis and inflammation by interacting
with VAMP3, and thus contributes to the development of nonalco-
holic fatty liver disease (NAFLD). Since TMEM16A plays distinct
roles in different cell types, we developed the idea that TMME16A
exerts cell-specific effects in inflammatory diseases. The cell-
specific roles of TMEM16A in different inflammatory diseases sug-
gest that distinct disease conditions create a unique cellular envi-
ronment that determines the specific role of TMEM16A.

TMEM16A expression is upregulated in inflammatory condi-
tions by multiple mechanisms such as the IL-4/STAT6, IL-6/
STAT3, EGFR, and NF-jB signaling pathways, all of which also pro-
mote cell proliferation. IL-4-induced upregulation of TMEM16A
expression is dependent on cell proliferation [136]. In turn,
TRPV1, B2 receptors, and PAR2 receptors in DRG neurons. TMEM16A is activated by
s that activate PLC to release IP3. Ca2+ entry via TRPV1, which directly interacts with
ediated Ca2+ release following TRPV1/Ca2+-dependent PLC activation. TMEM16A

ization initiates and propagate action potentials for pain sensation.
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TMEM16A activates multiple proliferation-associated signaling
pathways in inflammatory diseases, such as the NF-jB and
ERK1/2 signaling pathways. Thus, increased TMEM16A expression
level and cell proliferation may be interconnected. Furthermore,
TMEM16A promotes mucin synthesis in a cell proliferation-
dependent manner [136]. Therefore, TMEM16Amay play its patho-
logical role depending on the proliferating state of the cells. Fur-
thermore, since TMEM16A interacts with multiple interacting
partners, it can exert diverse pathological effects by regulating its
binding partners. Here, we explored the idea that TMEM16A plays
a cell-specific role in inflammatory diseases depending on the cel-
lular environment, which is determined by the disease conditions,
the proliferating state, and its interacting partner proteins.

Different roles of TMEM16A are dependent on disease severity

The role of TMEM16A in inflammatory diseases may depend on
disease severity. For example, TMEM16A promotes or inhibits
intestinal epithelial dysfunction depending on the dose of LPS,
where TMEM16A aggravates intestinal epithelial damage under
low-dose LPS treatment and protects against intestinal epithelial
damage under high-dose LPS treatment [58]. Under a mild stage
of intestinal inflammatory disease (low-dose LPS), TMEM16A acti-
vates the ERK1/MLCK signaling pathways, leading to intestinal bar-
rier dysfunction; meanwhile, under a severe disease stage (high-
dose LPS), TMEM16A activates the ERK/Bcl-2/Bax signaling path-
way to inhibit inflammation-induced apoptosis [58]. Therefore, it
seems that TMEM16A is coupled to distinct signaling pathways
in different cellular environments, which are determined by the
severity of the disease.

Proliferation-dependent role of TMEM16A

TMEM16A is known to promote proliferation in cancer cells
[30,31], as well as in airway epithelial cells [36]. In addition,
TMEM16A is critical for goblet cell hyperplasia, since TMEM16A
inhibition reportedly reduces IL-13-induced goblet cell hyperplasia
[13,62]. Several studies have reported that TMEM16A overexpres-
sion promotes mucus production and secretion in airway epithelial
cells in response to Th2 cytokine stimulation, and TMEM16A inhi-
bition by small interfering RNAs or TMEM16A inhibitors blocked
IL-13-induced mucus production [6,12,62,65,66]. Since overex-
pression of TMEM16A-containing plasmids increases mucin syn-
thesis in airway epithelial cells in the absence of Th2 cytokines
[65,66], TMEM16A alone can drive mucus production. Simoes
et al. showed that increased mucin production was mainly caused
by cell proliferation [136]. Since TMEM16A overexpression
increases mucin production via the ERK1/2 and NF-jB signaling
pathways [65,66], which also promotes cell proliferation, it
remains unclear whether TMEM16A induces mucus production
via its proliferation-promoting effect. Notably, Simoes et al.
reported that IL-4-induced TMEM16A upregulation depended on
cell proliferation, since cell proliferation arrest by mitomycin C
blocked IL-4-induced TMEM16A expression [136]. Since TMEM16A
can promote cell proliferation, which in turn promotes TMEM16A
expression, it appears that the promoting effect of TMEM16A on
mucus production is amplified in airway epithelial cells in a prolif-
erating state.

The argument against the idea that TMEM16A promotes mucus
production has been made based on the finding that mucin synthe-
sis can be induced by Notch signaling activation, independent of
TMEM16A and cell proliferation [136]. Evidence that TMEM16A
is not required for mucus production suggests that TMEM16A-
independent mechanisms for mucin synthesis exist in airway
epithelial cells, especially when cells are in the non-proliferating
state.
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In summary, it appears that TMEM16A-dependent and -
independent mechanisms for mucus production may exist in a
proliferation-dependent manner. In non-proliferating cells, the
TMEM16A-independent mechanism (e.g., the Notch signaling
pathway) may be responsible for mucin production, whereas in
proliferating cells (e.g., under stimulation of IL4 or IL-13),
TMEM16A overexpression promotes mucin production by activat-
ing the NF-jB and ERK1/2 signaling pathways. Since combined
application of NF-jB inhibitors and an ERK1/2 inhibitor did not
completely block TMEM16A overexpression-induced MUC5AC
expression [65], unknown mechanisms that are responsible for
TMEM16A-mediated mucus synthesis may also exist.
Diverse roles of TMEM16A in inflammation via its interacting partners

In addition to its ability to conduct Cl� ions, TMEM16A, as an
integral membrane protein, can form complex protein–protein
interaction networks by interacting with a wide range of proteins.
When overexpressed in HEK293 cells, TMEM16A binds to various
proteins, ranging from membrane-cytoskeleton-associated ezrin-
radixin-moesin (ERM) proteins and lipid-interacting proteins to
multiple Ca2+-binding proteins and kinases [137]. In addition, sev-
eral studies have identified TMEM16A-interacting proteins in var-
ious cells. For example, TMEM16A interacts with IP3R in DRG
neurons [93], AR42J cells [10], and HeLa cells [109]. Additional
TMEM16A-interacting partners include p62 in vascular smooth
muscle cells [138], Nox2 NADPH oxidase in endothelial cells [16],
EGFR in HNSCC [73], VAMP3 in hepatocytes [41], CFTR in airway
epithelial cells [98], TRPV1 in nociceptive neurons [34], and CLCA1
in HEK293T cells [139]. The identification of multiple TMEM16A-
interacting proteins in different cells implies that TMEM16A may
play distinct pathological roles depending on the function of its
interacting partners.

TMEM16A can play its pathological role in inflammatory dis-
eases by enhancing the function of its binding partners. For exam-
ple, TMEM16A increases [Ca2+]i via directly interacting with IP3R in
response to ATP treatment, thereby increasing mucus secretion via
exocytosis in inflammatory lung diseases [6,27]. Wang et al.
reported that TMEM16A increased IP3R-mediated Ca2+ release
and promoted the subsequent activation of NF-jB signaling in pan-
creatic acinar cells, thereby aggravating acute pancreatitis [10].

TMEM16A can also inhibit the functions of its interacting part-
ners under inflammatory conditions. SNARE proteins, including
VAMP3 and syntaxin-4, translocate vesicles to the membrane,
and these have been discovered in the complex TMEM16A interac-
tome derived from TMEM16A-overexpressing HEK293 cells [137].
It was recently found that VAMP3 directly interacts with
TMEM16A in hepatocytes, and the binding of TMEM16A results
in VAMP3 degradation via a proteasome-dependent mechanism
[41]. VAMP3 degradation in turn impairs GLUT3 translocation to
the membrane, leading to glucose metabolic disorder and eventu-
ally insulin resistance, steatosis, and inflammatory responses [41].
Therefore, TMEM16A aggravates NAFLD by promoting VAMP3
degradation and subsequently disrupting VAMP3-mediated GLUT3
translocation.
Conclusions and perspectives

Multiple inflammatory mediators, including cytokines (IL-4, IL-
13, and IL-6), histamine, bradykinin, and ATP/UTP, as well as bac-
terial and viral infections, promote TMEM16A expression and/or
activity (Figs. 2, 3). This suggests that increased TMEM16A function
represents a common feature for a wide range of inflammatory dis-
eases. In addition, TMEM16A expression is upregulated by multiple
inflammatory signaling pathways, including the IL-4/IL-13/STAT6,
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IL-6/STAT3, and NF-jB signaling pathways. In turn, TMEM16A also
activates many inflammatory signaling pathways, such as Ca2+ sig-
naling, NF-jB signaling, and ERK1/2 signaling pathways. The
involvement of TMEM16A in a diverse range of complex inflamma-
tory signaling pathways suggests that TMEM16A is important for
the pathogenesis and development of many inflammatory dis-
eases. Furthermore, TMEM16A performs distinct pathological func-
tions in different cells under various disease conditions, implying
that TMEM16A regulates a unique cell function in a specific inflam-
matory disease. Future studies are expected to identify the novel
roles of TMEM16A in other inflammatory diseases.

Acute inflammation triggered by tissue injury or infection
involves multiple inflammatory processes, including local immune
response, vascular response, inflammatory cell infiltration, and
inflammatory mediator release from inflammatory and tissue cells.
The inflammatory process is cooperatively regulated by many
immune cells, such as macrophages and monocytes [126]. Macro-
phages play a key role in the initiation, maintenance, and resolu-
tion of inflammation [140]. TMEM16A expression is upregulated
in RAW264.7 macrophages following LPS treatment [58], and
TMEM16A mediates miR-9-induced TGF-b/Smad2 signaling in
RAW264.7 macrophages [45]. However, the expression and func-
tional role of TMEM16A in other immune cells are largely
unknown. Further studies should be performed to investigate
whether TMEM16A regulates the function of immune cells during
inflammation.

It is known that inflammation is associated with the initiation
and development of cancer [141]. TMEM16A activates multiple
signaling pathways (such as the NF-jB signaling pathway) that
are important for both inflammation and cancer [142]. TMEM16A
contributes to cell proliferation under inflammatory conditions.
For example, TMEM16A expression is upregulated in mucus-
secreting goblet/club cells during goblet cell metaplasia, whereas
TMEM16A downregulation by pharmacological inhibitors reduces
IL-13-induced goblet cell metaplasia [13,62,143]. TMEM16A pro-
motes esophageal epithelial proliferation in eosinophilic esophagi-
tis [40]. It is well known that TMEM16A overexpression promotes
cell proliferation, migration, and invasion in a wide range of can-
cers [30,31,144]. Hence, it can be hypothesized that enhanced
TMEM16A expression in inflammation promotes cancer develop-
ment. However, Lee et al. reported that colonocyte-specific
TMEM16A knockout did not affect colitis-associated colon carcino-
genesis in mice treated with azoxymethane and dextran sodium
sulfate. Since TMEM16A exhibits a cell-specific role in both inflam-
matory diseases and cancer [31], future studies are required to
examine whether TMEM16A is involved in the transition from
inflammation to cancer in a unique cell type.

TMEM16A expression/activity levels reportedly promote prolif-
eration, migration, invasion, tumor growth, and metastasis in
many cancers such as breast cancer, HNSCC, and pancreatic cancer.
The pro-oncogenic effect of TMEM16A can be blocked by
TMEM16A inhibitors [30,31,144]. High TMEM16A expression level
has also been reported to be associated with poor clinical prognosis
in patients with breast cancer [72,123], HNSCC [145], and pancre-
atic cancer [104]. We have previously reported that the beneficial
effect of the ER modulator tamoxifen may be associated with its
pharmacological inhibition of TMEM16A channels [72]. Further-
more, in vitro application of TMEM16A inhibitors improves thera-
peutic responses to EGFR inhibitors such as gefitinib and
cetuximab in breast cancer and HNSCC [72,73,146], the HER2 inhi-
bitor trastuzumab in HNSCC [146], and the CK2 inhibitor silmi-
tasertib in HNSCC [147]. Notably, recent studies have found that
HNSCC cells overexpressing TMEM16A exhibit platinum resistance
via copper-dependent ATP7B upregulation [148]. Therefore,
TMEM16A inhibitors may be used to overcome platinum resistance
in TMEM16A-overexpressing HNSCC.
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Many studies have found that TMEM16A inhibitors are promis-
ing for treating TMEM16A-associated inflammatory diseases. How-
ever, some issues exist regarding the application of TMEM16A
inhibitors for treating inflammatory diseases. First, most
TMEM16A inhibitors exhibit non-specific effects on other targets.
For example, CaCCinh-A01 inhibits CFTR Cl� channels [149],
bestophin-1 Cl� channels [150], and Ca2+-activated K+ channels
(KCa3.1) [151]. In addition, many TMEM16A inhibitors alter
[Ca2+]i, including T16Ainh-A01, CaCCinh-A01, benzbromarone,
niclosamide, and Ai9 [100,152,153]. Due to these non-specific
effects, caution should be taken when these inhibitors are used
to study the role of TMEM16A in inflammatory diseases. Second,
although recent studies have revealed the cryo-EM structure of
TMEM16A [50,51], the binding sites of these TMEM16A inhibitors
on TMEM16A channels have not been identified. Detection of the
binding site for TMEM16A inhibitors is useful for the structure-
based development of new TMEM16A inhibitors, in addition to
assisting in improving our understanding of the mechanisms
underlying TMEM16A regulation by these inhibitors. Third,
although TMEM16A inhibitors are being considered to be used
for the treatment of TMEM16A overexpression-associated inflam-
matory diseases, the use of TMEM16A inhibitors or agonists for
the treatment of CF is debated [27]. Because the main problem pre-
sented by CF is mucus hypersecretion, TMEM16A inhibitors are
favored for treating CF over TMEM16A agonists; this is because
TMEM16A inhibitors can reduce mucus production and secretion
with minimal impairment of TMEM16A-mediated Cl� secretion
[27]. However, a recent study has shown that the TMEM16A poten-
tiator ETX001 improves fluid secretion and accelerates mucus
clearance into the airway but does not induce mucus secretion
and bronchospasm [154,155]. Future clinical studies should be per-
formed to investigate the efficacy of these inhibitors or activators
in the treatment of CF.

In this review, we comprehensively summarize the diverse
roles of TMEM16A in inflammation, including the mechanisms
underlying TMEM16A expression and activation under inflamma-
tory conditions, diverse inflammatory signaling pathways acti-
vated by TMEM16A, and multiple roles in inflammatory
processes and pain. Since the roles of TMEM16A vary greatly in dif-
ferent diseases, the cellular environment-dependent mechanisms
may explain the diverse roles of TMEM16A in inflammatory dis-
eases. These functions suggest that TMEM16A plays a novel role
in certain inflammatory diseases via a cell-specific mechanism.
Considering the diversity of inflammatory diseases, future studies
should be extensively investigated to reveal the mechanisms of
TMEM16A in various inflammatory diseases, thus elucidating its
diverse role in inflammatory diseases.

Increased TMEM16A expression level and/or activities con-
tribute to the pathogenesis of many inflammatory diseases, such
as airway inflammatory diseases, acute pancreatitis, ischemic
stroke, steatohepatitis, and inflammatory intestinal diseases
(Fig. 4). Therefore, TMEM16A inhibition represents a novel thera-
peutic strategy for treating these inflammatory diseases. Recent
studies have reported that the approved drugs anthelmintics niclo-
samide and nitazoxanide, which are well tolerated with mild side
effects in the clinic, inhibit TMEM16A channels and are promising
for treating airway inflammatory diseases such as asthma, COPD,
and CF [96,156]. In addition, many natural compounds, such as shi-
konin from the dried root of Lithospermum erythrorhizon [42],
trans-d-viniferin from Vitis amurensis Rup [89], and plumbagin from
Plumbago zeylanica L.[44], inhibit TMEM16A channels, and are used
to treat secretory diarrhea in animal models. These compounds are
widely used with mild side effects, and thus may be clinically use-
ful for the treatment of secretory diarrhea. Further clinical studies
are necessary to investigate the efficacy and safety of these com-
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pounds in the treatment of TMEM16A-associated inflammatory
diseases.
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