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1. Introduction
It has been over three decades since HIV, the causative agent for acquired immunodeficiency syndrome (AIDS), was 
identified. From the beginning of the global pandemic of HIV in the early 1980s, an estimated 78 million people have been 
infected with HIV; about 39 million people have died of AIDS-related causes [1]. There are 2 major types of HIV, HIV-1 
and HIV-2, out of which HIV-1 is the more virulent and pathogenic.

HIV reverse transcriptase enzyme specifically synthesizes double-stranded DNA from single-stranded viral RNA and is 
an important target for anti-HIV drug development. In the early 1990s, potent HIV reverse transcriptase inhibitors (RTIs) 
with significant clinical activity were developed. Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are leading 
drugs in the treatment of HIV-1 infections [2]. NNRTIs are capable of reducing the viral reservoirs in the brain due to 
their high lipophilicity because of the absence of sugar molecules in their structure. Currently, highly active antiretroviral 
therapy (HAART) combination therapy is used for the treatment of HIV to avoid the development of resistance against a 
single drug, but it also causes psychiatric and neurological side effects [3]. Hence, there is a dire need for novel anti-HIV 
agents with fewer side effects.

Drug discovery is a very long and costly procedure. It requires 10–15 years and billions of dollars to discover a new 
drug. CADD tools significantly reduce time and monetary investment in drug discovery. Molecular docking is one of the 
most important tools of CADD used in drug discovery today to understand drug-receptor interactions, the binding affinity 
of drugs, and orientation of drug molecules to the target site. This helps in better prediction of activity and reduction in 
side effects, and is a rational approach to drug design [4].

Quinoline and pyrimidine are important scaffolds for anti-HIV drugs. Hameed et al. designed and synthesized 
quinoline-based chalcones as HIV reverse transcriptase (RT) inhibitors. Molecular docking studies were performed for 
the synthesized compounds to determine their binding affinity in the active site of the enzyme. HIV-RT bioassay was used 
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to access the biological activity of the synthesized compounds and to verify the results of molecular docking studies, which 
indicated that chloro- and bromo-substituted quinoline-containing compounds showed potent cytotoxicity against HIV-
RT [5]. Anti-HIV drug-like elvitegravir is a quinoline derivative, whereas efavirenz contains a benzoxazine (quinoline-
like) scaffold. Rilpivirine, etravirine, and dapivirine possess a pyrimidine scaffold [6]. Pyrazole is also an important scaffold 
of anti-HIV drugs. The pyrazole ring as the core structure enhances the solubility and bioavailability of anti-HIV agents 
[7,8]. Quinoline and pyrimidine derivatives reported as NNRTIs are summarized in Tables 1 and 2, respectively [9–18]. 

In light of the abovementioned facts, quinoline derivatives were synthesized in the present study and then docked in 
the active site of HIV reverse transcriptase protein to explore their binding affinity and their interactions with the key 
amino acid residues of the active site of HIV reverse transcriptase.

2. Materials and methods
All of the reagents were purchased from commercial sources and were used without any additional purification. Precoated 
Merck TLC plates were utilized for monitoring the progress of the reaction (Merck & Co., Inc., Kenilworth, NJ, USA). 
Melting points were measured with a Stuart melting point apparatus (SMP-11) with an open glass capillary tube and 
are uncorrected (Cole-Parmer Ltd., Stone, UK). Infrared (IR) spectra of compounds were recorded on a Bruker FT-IR 
spectrophotometer (Bruker BioSpin Corp., Billerica, MA, USA). Mass spectra were recorded on a Shimadzu GCMS-
QP2010 with EI mode (Shimadzu Corp., Kyoto, Japan). 1H NMR (proton nuclear magnetic resonance) and 13C NMR 
(carbon nuclear magnetic resonance) spectra were recorded with the help of a Brucker Avance II (400 MHz) NMR 
spectrometer using CDCl3 as a solvent (Bruker BioSpin Corp.). TMS (tetramethylsilane) was used as an internal reference 
standard (δ = 0). IR, NMR and mass spectra of the synthesized compounds are provided as supplementary information.
2.1. Synthesis of compounds
2.2.1. General procedure for the synthesis of 2-chloroquinoline-3-carbaldehyde (1)
POCl3 (6.9 mL,74.07 mM) was added by drops via a dropping funnel to DMF (1.09 mL, 14.81 mM) at 0–5 °C; the mixture 
was stirred for 5 min. Acetanilide (1 g, 7.40 mM) was then added to the reaction mixture and the resulting solution was 
refluxed for 9 h at 90 °C. The reaction mixture was cooled to room temperature and then poured into crushed ice and 
stirred. Precipitate appeared at once, and was filtered, washed with water, and dried. The crude compound was then 
purified by column chromatography [19].

Pale yellow solid (yield  92%),  m.p.: 142–144°C, IR (KBr) cm–1: C=N stretch (2359), Aldehyde C=O stretch (1688), 
C-Cl stretch (759), C-CN stretch (1044), C=C stretch (1615), mass (EI): calculated for C10H6ClNO: 191.01 [M]+, found at 
191,1H NMR (CDCl3, 400 MHz, δ with TMS = 0): 7.91(1H, t, J = 8 Hz), 7.91(1H, t, J = 12 Hz), 7.98 (1H, d, J = 8 Hz), 8.09 
(1H, d, J = 8 Hz ),8.76 (1H, s),10.57 (1H, s),13CNMR (CDCl3, 100 MHz) δ (ppm): 189.17, 150.12, 149.62, 133.61, 129.73, 
128.64, 128.15, 126.56, 126.41.
2.2.2. General procedure for the synthesis of chalcones (2 and 3)
2-chloroquinoline-3-carbaldehyde (1 mM) was added to substituted acetophenones (1 mM). After adding 5mL ethanol, 
the mixture was stirred until the reactants were completely dissolved. Then, 20% NaOH (1mL) was added by drops to it. 
The reaction mixture was stirred overnight and the precipitate that appeared was filtered, washed with water, dried, and 
recrystallized using ethanol and DCM. The reaction progress was monitored by TLC using petroleum ether:ethyl acetate 
(7:3) [20]. 

1-(4-bromophenyl)-3-(2-chloroquinolin-3-yl)-1- prop-en-1-one (2)
Yellow precipitate (yield = 84%), m.p.: 172–174°C, mass (EI): calculated for C18H11BrClNO: 372 gm/mol [M+], found 

at 372.
3-(2-chloroquinolin-3-yl)-1-(p-tolyl)prop-2-en-1-one(3a)
Orange precipitate (yield: 87%) m.p.: 153–155°C, mass (EI): calculated for C19H14ClNO: 307.08 gm/mol [M+], found 

at 307.
2.2.3. General procedure for the synthesis of pyrimidine derivatives (4–8, series I)
A mixture of chalcone (2a or 2b) (0.50 mM), substituted guanidine hydrochloride (0.80 mM) and sodium carbonate (1.34 
mM) was dissolved in DMF (3 mL). The reaction mixture was refluxed overnight at 90 °C with stirring. The reaction 
progress was monitored by TLC using pet ether:ethyl acetate (7:3) as a mobile phase. After the completion of the reaction, 
the mixture was cooled and extracted with water and ethylacetate. The product obtained was evaporated and purified by 
column chromatography and recrystallized by DCM and ethanol [21].

4-(4-bromophenyl)-6-(2-chloroquinoline-3-yl)pyrimidin-2amine (4)
Greenish yellow solid (yield: 87%), m.p.: 210–212 °C, IR (KBr)cm–1: N-H stretch (3500), C-Cl stretch (772), C-Br 

(685),  C-CN stretch (1084), C=C stretch (1645), mass (EI): calculated for C19H12BrClN4: 411.99 [M+], found at 412, 1H 
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NMR (CDCl3, 400MHz, δ (ppm) with TMS = 0): 8.50 (s, 1H), 8.12 (s, 1H), 7.99 (d, J = 8 Hz, 1H), 7.95 (d, J = 8 Hz, 1H), 
7.91–7.86  (m, 1H), 7.84–7.82 (m, 1H),7.74 (d, J = 8 Hz, 2H), 7.65 (d, J = 8 Hz, 2H), 5.28 (s, 2H), 13 CNMR (CDCl3, 100 
MHz) δ with TMS = 0: 164.52, 164.44 , 163.53, 149.54, 148.85, 136.81,135.06, 132.13,131.20, 130.34, 129.55, 129.43, 129.27, 
127.76, 127.66, 124.80, 102.67.

4-(4-bromophenyl)-6-(2-chloroquinoline-3-yl)-N-methylpyrimidin-2amine(5)
Greenish blue solid (yield: 59%) m.p.: 207–209 °C, mass (EI): calculated for C20H14BrClN4: 424 gm/mol [M+], found 

fragmented peak at 412, 1H NMR (CDCl3, 400 MHz, δ with TMS = 0): 8.17 (s, 1H), 7.99 (s, 1H), 7.87 (d, J = 8Hz, 1H), 7.81 
(d, J = 8 Hz, 1H), 7.74 (m, 1H), 7.63  (m, 1H), 7.58 (d, J = 8 Hz, 2H), 7.55 (d, J = 12 Hz, 2H), 4.60 (s, 1H), 3.64–3.55 (m, 3H).

4-(4-bromophenyl)-6-(2-chloroquinoline-3-yl)-N-phenylpyrimidin-2-amine(6)
White solid (yield 68%), m.p.: 222–225 °C, mass (EI): calculated for C25H15BrClN3: 471 gm/mol [M+], found peak at 

473, 1H NMR (CDCl3, 400 MHz, δ with TMS = 0): 8.61 (d, J = 4 Hz, 2H), 8.12 (s, 1H), 8.10 (s, 1H) , 8.05 (d, J = 8Hz, 1H), 
8.03 (d, J = 8 Hz, 1H), 7.92–7.78 (m, 1H), 7.77–7.63 (m, 1H), 7.99 (d, J = 10 Hz, 2H), 7.47 (d, J = 4 Hz, 2H), 7.32–7.26 (m, 
3H).

Table 1.  Quinoline derivatives as NNRTIs.

S. No. Compounds IC50 (µM) Reference

1.

NH

N
F

CN <8.00 [8]

2.

H3C

N

O

O

OH 1.20

[9]

3. N

O

O

OH 0.60

4. N
O

COOEt

~10.00 [10]

5.

N

NH

NHOH

O
0.29 [11]
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4-(2-chloroquinolin-3-yl)-6-(p-tolyl)pyrimidin-2-amine(7)
Greenish yellow solid (yield 47%), m.p.: 203–205 °C, mass (EI): calculated for C20H15ClN4: 346 gm/mol [M+] peak, 

found fragmented peak at 316, 1H NMR (CDCl3, 400MHz, δ with TMS = 0):  8.46 (s,1H), 8.17 (s, 1H), 8.15 (d,  J = 8 Hz, 
1H), 7.97 (d, J = 8 Hz, 1H), 7.93–7.87 (m, 1H), 7.83–7.79 (m,1H), 7.67 (d, J = 6 Hz, 2H), 7.61 (d, J = 6 Hz, 2H), 7.54 (s, 
2H), 2.07 (s, 3H).

2-chloro-3-(2-phenyl-6-(p-tolyl)pyrimidin-4-yl)quinoline(8)
White solid (yield: 45%) m.p.: –200–203 °C, mass (EI): calculated for C26H18ClN3: 407.90 gm/mol [M+].Found peak at 

407, 1H NMR (CDCl3, 400 MHz, δ with TMS=0): 8.93 (s, 1H), 8.61 (d, J=10Hz, 2H), 8.59 (s,1H), 8.41 (d, J=6Hz,1H), 8.33 
(d, J=12Hz,1H), 8.19–8.08 (m,1H), 7.96–7.93 (m,1H), 7.78–7.75 (m,3H), 7.59 (d, J=10Hz, 2H), 7.53 (d, J=8Hz, 2H), 3.29 
(s,3H).
2.2.4. General procedure for the synthesis of pyrazoline derivatives (series 2):
Chalcone (0.50 mM) was added to substituted phenylhydrazine hydrochloride (0.80 mM). After adding 5 mL methanol, the 
mixture was stirred until the reactants were completely dissolved. The reaction was stirred on a magnetic stirrer for 4–5 h 

Table 2. Pyrimidine derivatives as NNRTIs.

S. No. Compound IC50 (µM) Reference

1
N

H
NN

N

H
N

O

0.03 [12]

2 NHN OHBr
0.01 [13]

3 N

N
H

O

O
HO

CF3

0.05 [14]

4.

N

H
NN

N

O

O

F

F
0.04 [15]

5. O

N

S
N

N
F

F
6.40 [7]

6.

N

N

O
N

O

O
O

0.10 [16]

7. N
N

N
SO

Cl

Cl

10.00 [17]
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at 50–60 °C. Reaction progress was monitored by TLC using pet ether:ethyl acetate (7:3). After 4–5 h, precipitate appeared, 
which was filtered and washed with water. The filtered precipitate was dried and purified by column chromatography and 
recrystallized by methanol and DCM [22]. The synthesized compounds are shown in Table 3.

3-(5-(4-bromophenyl)-1-(3-chlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-chloroquinoline (9)
Light green (yield: 65%), m.p.: 218–220 °C,1H NMR [CDCl3, 400 MHz, δ (ppm) with TMS = 0]: 3.14 (1H, dd, J12 = 4 

Hz, J13 = 16 Hz), 4.07 (1H, dd, J12 = 4 Hz, J13 = 16 Hz), 5.72 (1H, dd, J12 = 8 Hz, J13 = 12 Hz), 6.68 (1H, dd, J = 4 Hz), 6.80 
(1H, dd, J = 4 Hz), 7.06 (1H, t, J = 8 Hz), 7.24 (1H, t, J = 4 Hz), 7.53 (1H, s), 7.51 (2H, m), 7.60 (2H, m), 7.71 (2H, m), 7.88 
(1H, s), 8.03 (1H, d, J = 12 Hz),13C NMR (100 MHz, CDCl3) δ (ppm) with TMS=0: 158.6, 135.8, 132.0, 131.9, 131.8, 130.9, 
130.32, 128.25, 127.98, 127.86, 127.65, 127.49, 119.84, 113.64, 111.02, 108.21, 107.4, 61.25, 42.3, 32.0, 29.7, 29.7, 14.2, mass 
(EI): calculated for C24H16BrCl2N3: 494.99 gm/mol [M+]; found at 495, [M+2] peak at 497.

3-(5-(4-bromophenyl)-1-(3-fluorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2-chloroquinoline (10)
Yellowish green (yield: 57.14%), m.p.: 215–218 °C, 1H NMR [CDCl3, 400 MHz, δ (ppm) with TMS = 0]: 3.14 (1H, dd, J12 

= 4 Hz, J13 = 16 Hz), 4.07 (1H, dd, J12 =12 Hz, J13 = 20 Hz), 5.70 (1H, m), 6.54 (1H, m), 6.68 (1H, s), 7.12 (1H, m), 7.51 (1H, 
m), 7.52 (2H, d, J = 4 Hz), 7.58 (1H, s), 7.60 (2H, d, J = 8 Hz), 7.69 (1H, d, J = 8 Hz), 7.72 (1H, d, J = 4 Hz), 7.92 (1H, s), 
8.02 (1H, d, J = 8 Hz),13C NMR (100 MHz, CDCl3) δ (ppm) with TMS = 0: 165.06, 162.64, 148.56, 147.32, 147.22, 136.01, 
135.91, 131.95, 130.93, 127.97, 127.64, 127.47, 108.61, 108.60, 106.46, 101.11, 100.84, 77.42, 77.10, 76.78, 61.42, 58.97, 
42.29, 42.23, mass (EI): calculated for C24H16BrClFN3: 479.02 gm/mol [M+]; found at 479, [M+2] peak at 481.

3-(1-(3-bromophenyl)-5-(4-bromophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2-chloroquinoline (11)
Light green (yield: 50%), m.p.: 212–215 °C,1H NMR [CDCl3, 400 MHz, δ (ppm) with TMS = 0]; 3.07 (1H, dd, J = 4 Hz), 

3.98 (1H, t, J23= 12 Hz), 5.64 (1H, dd, J = 4 Hz), 6.61 (1H, d, J = 8 Hz), 6.84 (1H, d, J = 8 Hz), 6.93 (1H, t, J = 8 Hz), 7.31 
(1H, s), 7.41 (3H, t, J = 4 Hz), 7.50 (2H, d, J= 4 Hz), 7.63 (2H, d, J = 4 Hz), 7.80 (1H, s), 7.92 (1H,d, J= 8 Hz), mass (EI): 
calculated for C24H16Br2ClN3: 538.94 gm/mol [M]+; found 539, [M+2] peak at 541.

3-(5-(4-bromophenyl)-1-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2-chloroquinoline (12)
Green (yield: 70%), m.p.: 216–221 °C,1H NMR: [CDCl3, 400 MHz, δ (ppm) with TMS = 0] 3.12 (1H, dd, J = 8 Hz), 4.06 

(1H, t, J = 12 Hz), 5.67 (1H, t, J = 8 Hz), 6.94 (4H, dd, J = 4 Hz), 7.50 (3H, d, J = 8 Hz), 7.58 (2H, d, J = 8 Hz), 7.72 (2H, m), 
7.95 (1H, s), 8.05 (1H, d), mass (EI): calculated for C24H16BrClFN3: 479.02 gm/mol [M+]; found at 479, [M+2] peak at 481.

Table 3.  Synthesizedquinoline derivatives.

N

NN

NH

Cl R

R1/Ar

Series 1
N Cl

R1

N N

R

Series 2

Compound R R1/Ar Compound R R1

4 Br H 9 3-Cl
Br

5 Br CH3 10 3-F
Br

6 Br C6H5 11 4-Br
Br

7 CH3 H 12 4-F
Br

8 CH3 C6H5 13 3-Br
Br

14 4-Br
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3-(1,5-bis(4-bromophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2-chloroquinoline (13)
Dark green (yield: 60%), m.p.: 219–222 °C, 1H NMR [CDCl3, 400 MHz, δ (ppm) with TMS = 0]: 3.15 (1H, dd, J = 8 Hz), 

4.08 (1H, dd, J12 = 12 Hz, J13 = 16 Hz), 5.70 (1H, dd, J12 = 8 Hz, J13 = 12 Hz), 6.89 (2H, d, J = 8 Hz), 7.29 (2H, d, J = 8 Hz), 
7.52 (2H, d, J23 = 8 Hz), 7.50 (1H, d, J = 8 Hz), 7.59 (2H, d, J = 8 Hz), 7.72 (1H, m), 7.68 (1H, m), 7.87 (1H, s), 8.02 (1H, d, 
J = 8 Hz),13C NMR (100 MHz, CDCl3) δ (ppm) with TMS = 0: 148.5, 147.3, 147.1, 147.0, 147.3, 147.5, 147.7, 142.9, 135.9, 
135.7, 135.6, 135.5, 135.9, 131.9, 131.8, 130.9, 128.3, 127.9, 127.6, 127.4, 123.4, 114.9, 112.1, 42.28, mass (EI): calculated for 
C24H16Br2ClN3: 538.94 gm/mol[M+]; found at 538, [M+2] peak at 541.

3-(1-(4-bromophenyl)-5-(naphthalen-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)-2-chloroquinoline (14)
Greenish yellow crystals (yield: 75%), m.p.: 210–215 °C, 1H NMR [CDCl3, 400 MHz, δ (ppm) with TMS = 0]: 3.33 (1H, 

dd, J12 = 8Hz, J13 = 4 Hz), 4.25 (1H, dd, J12 = 13 Hz, J13 = 20 Hz), 5.75 (1H, dd, J12 = 4 Hz, J13 = 12 Hz), 6.97 (2H, m), 7.30 (2H, 
m), 7.45 (1H, m), 7.47 (1H, d, J = 4 Hz), 7.48 (1H, m), 7.69 (1H, m), 7.70 (1H, m), 7.80 (1H, m), 7.81 (1H, m), 7.82 (1H, 
m), 7.83 (1H, s), 7.92 (1H, s), 8.04 (1H, d, J = 8 Hz), 8.14 (1H, d, J = 8 Hz),13C NMR (100 MHz, CDCl3) δ (ppm) with TMS 
= 0: 148.68, 148.20, 147.32, 143.06, 135.98, 135.13, 133.74, 133.30, 131.98, 130.89, 129.87, 129.62, 128.50, 128.40, 128.27, 
127.99, 127.92, 127.86, 127.62, 127.34, 126.85, 126.77, 125.81,125.10, 124.41, 123.39, 114.93, 111.91, mass (EI): calculated 
for C28H19BrClN3: 511.05 [M+]; found at 511, [M+2] peak at 513.
2.2. Molecular docking studies
The docking interactions were studied with the help of the Maestro v. 11.5 (Schrödinger Inc., New York, NY, USA) on a 
Mac workstation. The study was done to identify the possible binding interactions of selected ligands with the active site of 
the receptor. The ligand structures of the dataset were prepared by the LigPrep module of Maestro v. 11.5 [23,24]. Ligands 
were assisted by grid-based molecular docking to bind in more than one possible conformation. The protein structure 
was prepared using the protein preparation wizard (preprocessed, optimized, and minimized) in Maestro v. 11.5 [25]. The 
protonation and tautomeric states of amino acids were adjusted to match a pH of 7.4. Grid generation was done using 
the receptor grid generation module of Maestro v.11.5 [26]; 0.25 Å, scaling factor, and 1.0 Å, partial charge cut off for van 
der Waals radius were applied. Docking was carried out using XP (extra precision) mode. Glide molecular docking was 
utilized for the evaluation of binding interactions and ligand flexibility. Binding energies were calculated in kcal/mol. XP 
Visualizer was used for the analysis of the specific ligand–protein interactions. The compounds with the highest docking 
scores in negative and good interaction profiles were the most active compounds against the target receptor protein [27–
29]. The 2D interaction diagrams of rilpivirine, elvitegravir, and designed compounds are mentioned in Table 4.

3. Results and discussion
3.1.  Synthesis of compounds
The general chemistry of the synthesis of the starting material, 2-chloroquinoline-3-carbaldehyde (1), is based on the 
Vilsmeier–Haack reaction [30,31]. The N-phenylacetamide after formylation and cyclization formed 2-chloroquinoline-
3-carbaldehyde. The Vilsmeier reagent acted as formylating agent (Scheme, Figure 1).  Compound (1) and substituted 
acetophenones were taken as starting material for the synthesis of chalcones from which 2 series of compounds were 
synthesized.

Chalcones were synthesized by the Claisen–Schmidt condensation reaction as described in Figure 2. Mechanistically, 
base-catalysed Claisen–Schmidt condensation was characterized by the formation of an enolate ion of the ketone [32]. 
This enolate ion acting as the nucleophile attacked the electrophilic carbon of the aldehyde, in the process rendering to 
the electron-rich ion, which took up the proton from the aqueous solution. The final step of the reaction was dehydration, 
which produced the chalcone.

In one of the series, pyrimidine derivatives were synthesized from chalcones using guanidine hydrochloride, 
benzamidine hydrochloride, and methyl guanidine hydrochloride. The reaction proceeded by Michael addition to 
the chalcones, followed by proton transfer, cyclization via Claisen addition, hydrolysis, and spontaneous dehydration, 
as described in Figure 3. In the other series, pyrazoline derivatives were synthesized from chalcones using substituted 
phenylhydrazine hydrochloride as shown in Figure 4.
3.2. Molecular docking studies
The docking studies were executed through the Maestro module (Schrödinger Inc.). Rilpivirine and elvitegravir were taken 
as the standard inhibitors of HIV-RT (PDB ID: 4I2P). The synthesized compounds were docked against rilpivirine, as it 
showed high binding affinity and docking score with the protein compared to other pyrimidine-containing NNRTIs. This 
PDB ID was selected as the resolution of the protein structure was good (2.30 Å) and it was in a complex with a rilpivirine 
(TMC278)-based analogue. We have redocked the cocrystallized ligand, namely (2E)-3-[4-({6-[(4-methoxyphenyl)amino]-
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Table 4.  Docking pose of synthesized compounds and their dock score.

Comp. Docking pose Docking score 
(Kcal/mol)

Elvitegravir
(Reference) –8.57

Rilpivirine 
(Reference) –8.56
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4 –10.67

5 –10.38

Table 4.  (Continued).
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6 –10.19

7 –10.23

Table 4.  (Continued).
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8 –9.96

9 –7.93

Table 4.  (Continued).
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10 –7.75

11 –8.76

Table 4.  (Continued).
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12 –8.51

13 –8.08

Table 4.  (Continued).
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14 –9.34

Table 4.  (Continued).

 
Scheme. Scheme for synthesis of designed/proposed compounds.
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7H-purin-2-yl}amino)-3,5-dimethylphenyl]prop-2-enenitrile within the same constraints as where it was crystallized 
with 4I2P; the docking score and RMSD value were recorded. The docking score was the same as previously calculated 
(–11.63 Kcal/mol), which showed that the process was precise; the RMSD value was 0.559, indicating the accuracy of the 
docking process.

The docking profile demonstrated that all of the proposed ligands displayed a defined and strong binding affinity for 
the reverse transcriptase, as indicated by their docking score values. From 2D and 3D interaction diagrams of elvitegravir 

 
Figure 1. Reaction mechanism involved in synthesis of starting material.

Figure 2. Reaction involved in synthesis of chalcone.
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(Table 4, Figure 5), it was found that standard inhibitor binds to the target site; showed hydrogen bonding interaction with 
LYS 101, ILE-180, and LEU-100 and docking score (–8.57). The standard drug rilpivirine also showed hydrogen bonding 
with LYS 101; its docking score was –8.56 (literature value = –7.61) [33]. The designed compounds fit best in the allosteric 
site of HIV reverse transcriptase. Compounds 4–8 showed better docking scores than standard drugs (rilpivirine and 
elvitegravir), whereas the docking scores of designed compounds 11–13 were comparable with the standard drugs. In 
series 1, compounds 4, 5, and 7 exhibited the best docking scores (–10.67, –10.38, and –10.23, respectively) and displayed 
hydrophobic interactions with TRP229 and hydrogen bond interactions with LYS 101. Compounds 6 and 8, containing a 
phenyl ring attached to the phenyl amino group, exhibited slightly high docking scores (–10.19 and –9.96, respectively). 
Compound 6 showed hydrophobic interactions with TYR 188 and PHE 227, whereas compound 8 showed hydrophobic 
interactions with TYR 188 only. The lower docking score of compound 6 compared to compound 8 was due to the presence 
of a p-Br-phenyl moiety in compound 6 in place of a p-tolyl moiety at the fourth position of the pyrimidine ring. In series 
2, the only member (compound 14) containing a naphthalene ring attached to the fifth position of the dihydropyrazole 
ring had the best docking score (–9.34), which was lower than those of both standard drugs; this compound showed 
hydrophobic interactions with TYR 188 and TRP 229. Compound 11 demonstrated pi-pi interactions witha docking score 
(–8.76) which was lower than those of both standard drugs. Compound 12 exhibited a docking score (–8.51) comparable 
to those of both standard drugs. The only difference between compounds 11 and 12 was the presence of p-Br-phenyl and 

 

 

Figure 3. Reaction involved in synthesis of pyrimidine derivatives.

Figure 4.  Reaction involved in synthesis of pyrazole derivatives.
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p-F-phenyl in these compounds, respectively. The result suggested that compounds 9, 10, and 13 came up with higher 
docking score values than both standard drugs.

4. Structure–activity relationship
Based on the docking results of the synthesized compounds, the following SAR may be proposed:

· In the case of the pyrimidine derivatives (series 1), substitution of the R at para position of the phenyl ring with the 
electron-withdrawing bromo group gave better binding affinity compared to those with an electron-releasing methyl group.

 

 

Figure 5. 3D Interaction pattern of elvitegravir with reverse transcriptase protein (4I2P).

Figure 6.  SAR of synthesized compounds.
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· The free amino group attached to the pyrimidine ring was favourable for activity due to H-bond interactions. The 
substitution of this amino group with a methyl group resulted in a decrease in binding affinity, which was further reduced 
by substitution with a phenyl ring.

· In the case of pyrazoline derivatives (series 2), the substitution of R1 with a naphthalene ring gave better results 
compared to that with a p-Br-phenyl ring.

· Substitution of R with halogen atoms at the p-position gave better results compared to those at m-position, and 
substitution with the bromo group gave better activity compared with chloro and fluoro groups

· Quinoline moiety occupied the empty pocket in the binding cavity of the enzyme in the case of both pyrimidine and 
pyrazoline derivatives (series 1 and series 2). The abovementioned findings are summarized in Figure 6.

5. Conclusion
Quinoline derivatives were designed concerning the structures of standard anti-HIV drugs and synthesized via chalcones 
as intermediates. The synthesized compounds were characterized by physicochemical and spectral means. Molecular 
docking studies were performed on the synthesized compounds for their HIV reverse transcriptase inhibitory activity 
by using elvitegravir and rilpivirine as standard drugs; promising results were obtained. Compound 4 was found to have 
the highest affinity towards the reverse transcriptase protein (docking score = –10.67). In general, quinoline derivatives 
containing pyrimidine moiety (4–8) showed higher docking scores than those possessing pyrazoline moiety (9–14). SAR 
studies of the synthesized compounds were also performed based on their docking scores, which revealed that in the case 
of pyrimidine derivatives, a phenyl ring with an electron-withdrawing bromo group and a free amino group (attached 
to the pyrimidine ring) showed better binding affinity. In the case of pyrazoline derivatives, naphthalene attached to the 
pyrazoline ring showed better results compared to the p-Br-phenyl ring. Substitution of the phenyl ring attached to the N 
atom of the pyrazoline ring with halogen atoms at p-position showed better results compared to that at the m-position; 
substitution with the bromo group showed better binding affinity than chloro and fluoro groups. Thus, based on the 
docking results, we can say that the synthesized compounds have the potential to serve as important leads in the discovery 
of new NNRTIs.
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The spectroscopic data of all the synthesized compounds from starting material, intermediates 

and final compound are mentioned here. The data contains mass spectra, IR spectra , proton 

NMR and 13 C NMR spectra of the designed compounds. 

Starting material : Compound 1:- 2-chloroquinoline-3-carbaldehyde 

 



 

                                                       Mass spectrum of Compound 1 

 

                                                   IR Spectrum of Compound 1 

 

 



 

                                   Proton NMR spectrum of Compound 1 

                                               

   13C NMR spectrum of Compound 1 

 

 

 



Chalcones :  

 Compound 2 :- (E)-1-(4-bromophenyl)-3-(2-chloroquinolin-3-yl)-1- prop-en-1-one  

 

   Mass spectrum of Compound 2 

     Compound 3:- (E)-3-(2-chloroquinolin-3-yl)-1-(p-tolyl)prop-2-en-1-one  

Mass spectrum of Compound 3 

 

 



Final compounds:  

Compound 4:- 4-(4-bromophenyl)-6-(2-chloroquinoline-3-yl)pyrimidin-2amine                         

               
                                                Mass spectrum of compound 4 

 

IR spectrum of compound 4 

 



  

Proton NMR spectrum of compound 4 

 

 

13 C NMR spectrum of compound 4 

 

 



Compound 5:- 4-(4-bromophenyl)-6-(2-chloroquinoline-3-yl)-N-methylpyrimidin-2amine 

 

Mass spectrum of Compound 5 

 

Proton NMR spectrum of compound 5 

 

 



Compound 6: 4-(4-bromophenyl)-6-(2-chloroquinoline-3-yl)-N-phenylpyrimidin-2-amine                                     

 

Mass spectrum of compound 6 

 

          

Proton NMR spectrum of compound 6 

 



Compound 7:- 4-(4-bromophenyl)-6-(2-chloroquinoline-3-yl)-N-phenylpyrimidin-2-amine 

 

Mass spectrum of Compound 7 

                                           

                    

Proton NMR spectrum of compound 7 

 

 



Compound 8:- 2-chloro-3-(2-phenyl-6-(p-tolyl)pyrimidin-4-yl)quinoline  

 

Mass spectrum of compound 8 

                                                    

                                            

Proton NMR spectrum of compound 8 

 



Compound 9:- 3-(5-(4-Bromophenyl)-1-(3-chlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-

chloroquinoline 

 

 Mass spectrum of compound 9 

 

 

Proton NMR spectrum of compound 9 



 

 13C NMR spectrum of compound 9 

 

Compound 10:- 3-(5-(4-Bromophenyl)-1-(3-fluorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2-
chloroquinoline 

 

 Mass spectrum of compound 10 



 

 Proton NMR of Compound 10 

 

 

13C NMR spectrum of Compound 10 



Compound 11:- 3-(1-(3-Bromophenyl)-5-(4-bromophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2-
chloroquinoline 

 

 

 Mass spectrum of compound 11 

 

Proton NMR spectrum of Compound 11 



 

 

13C-NMR of Compound 11 

 

 

 

 

 

 

 

 



Compound 12:- 5-(4-Bromophenyl)-3-(3-chloronaphthalen-2-yl)-1-(4-fluorophenyl)-4,5-dihydro-
1H-pyrazole 

 

 

Mass spectrum of compound 12 

 

 

 Proton NMR of compound 12 



 

 

13C-NMR spectrum of compound 12 

  



Compound 13:- 3-(1,5-Bis(4-bromophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2-chloroquinoline 

 

 Mass spectrum of compound 13 

 

 Proton NMR of Compound 13  



Compound 14 :- 3-(1-(4-Bromophenyl)-5-(naphthalen-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)-2-
chloroquinoline 

 

Mass spectrum of compound 14 

 

Proton NMR spectrum of compound 14 



 

SciFinder search results 

Compound 4 – Zero results 

Compound 5- Zero results 

Compound 6-Zero results 

Compound 7-Zero results 

Compound 8-Zero results 

Compound 9-Zero results 

Compound 10-Zero results 

Compound 11-Zero results 

Compound 13-Zero results 

Compound 12-Zero results 

Compound 14-Zero results 

 

 



 

 



 

 

 



 

 



 

 



 

 



 

 



 

 


