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Abstract

Background: Anticoagulation therapy is the mainstay of therapy for patients with

venous thromboembolism (VTE). However, continuing or stopping anticoagulants after

the first 3 to 6 months is a difficult decision that requires ascertainment of the risk of

bleeding and recurrent VTE. Despite the development of several statistical models to

predict bleeding, the benefit of machine learning (ML) models has not been investigated

in depth.

Objectives: To assess the benefits of ML algorithms in bleeding risk evaluation in VTE

patients and gain insight into their baseline information.

Methods: The baseline clinical, demographic, and genotype information was collected

for 2542 patients with VTE who were on extended anticoagulation therapy. Six un-

supervised dimensionality reduction and clustering ML algorithms were used to visu-

alize and cluster the data for patients with major bleeding (118 patients) and

nonbleeders. Eight supervised ML algorithms were trained and compared with the

previously derived clinical models using a 5-fold nested cross-validation scheme.

Results: The baseline dataset for bleeders and nonbleeders showed a high degree of

similarity. Two novel clusters were discovered within the dataset for bleeders based on

the presence of isolated pulmonary embolism or isolated deep vein thrombosis, though

the difference in bleeding risks was not statistically significant (P = .32). The supervised

analysis showed that the ML and clinical models have similar discrimination (c-statistics,

�62%) and calibration performance (Brier score, �0.045).

Conclusion: The clinical variables recorded at baseline are not distinctive enough to

improve bleeding prediction beyond the performance of the existing models, and other

strategies or data modalities should be considered.
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Essentials

• People with blood clots are treated with anticoagulants, which increases their bleeding risk.

• We developed machine learning algorithms to predict bleeding risk in these patients.

• The machine learning algorithms offered no prediction benefits compared with the available clinical tools.

• Different strategies should be investigated to improve bleeding risk prediction models.
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1 | INTRODUCTION

Venous thromboembolism (VTE) is one of the leading causes of mor-

tality [1]. According to the 2020 American Society of Hematology

guidelines, after a brief acute management phase, patients with VTE

should be treated with anticoagulants for at least 3 months, and then

physicians need to decide if a secondary prevention phase is required to

prevent the recurrence of VTE [2]. Unfortunately, making such a deci-

sion is difficult since physicians need to balance the risk of recurrence

and the side effects of continuing anticoagulation therapy,most notably

bleeding [3]. To date, more than 10 clinical predictivemodels have been

developed to help physicians group patients into high and low bleeding

risk groups; however, these models are based on simple statistical

models and a small number of clinical predictor variables to make them

easy to use and implement. As such, the peak performance of these

models, as measured by their c-statistics, seems to have reached a limit

of�70% [4]. Meanwhile, the advances inmachine learning (ML) and the

wide availability of suitable hardware to run these models have raised

the need to investigate if ML can improve bleeding prediction.

In addition to modeling the input features to predict a response,

ML algorithms can also help explore, visualize, and find interesting

relationships in a dataset. In particular, unsupervised ML algorithms

have been developed for these purposes, and they can guide the

downstream supervised ML analysis and help interpret their results

[5]. In this study, we first attempted to explore a previously published

[6] baseline dataset of patients with VTE who were on the extended

phase of anticoagulation treatment using several unsupervised ML

algorithms including dimensionality reduction algorithms and clus-

tering analysis and then trained 8 supervised ML models and

compared them with the previously developed clinical models

including CHAP [6], HAS-BLED [7], VTE-BLEED [8], RIETE [9], ACCP

[10], and OBRI [11]. Finally, based on both the unsupervised and su-

pervised analyses, we provided some suggestions and next steps that

could lead to better prediction models.
2 | METHODS

2.1 | Study design and dataset

The dataset consists of the baseline clinical, demographic, and geno-

type data collected for 2542 patients enrolled in a prospective cohort

study (ClinicalTrials.gov: NCT00788736) over 8 years starting from

September 2008. The patients were diagnosed with VTE (provoked
with minor transient risk factors or unprovoked) and were on anti-

coagulant therapy for at least 3 months after diagnosis. Every 6

months, routine follow-up visits/phone calls were conducted to

monitor their bleeding status. The detailed methodologies for data

collection, selection process, and exclusion criteria were described

previously [6]. We referred to the original patients’ case report form

or original medical record to revise the missing or corrupted data.

They were kept as missing values when no informative data could be

retrieved, but features containing more than 10% missing values were

subsequently removed (Supplementary Table S2). The median and

mode of the continuous and categorical features were used to impute

the missing values in the remaining columns, respectively. The cate-

gorical features were one-hot encoded. Supplementary Table S1 lists

all the baseline features, and Supplementary Methods include all the

special preprocessing applied to the raw data.
2.2 | ML

Generally, ML algorithms can be divided into supervised and unsuper-

vised algorithms. The supervised models are provided with the input

variables and their associated labels, and their task is to model the

relationship between the inputs and their associated labels. For

example, features like age, sex, and diabetes status recorded at baseline

could be the input variables, and the output label is whether or not the

patients had a bleeding event at any time while enrolled in the study.

The supervised models can ultimately be used to predict the bleeding

risk for new patients. On the other hand, the unsupervised ML algo-

rithms are only provided with the input variables, and their task is to

identify patterns and relationships in the dataset without accessing the

labels. Unsupervised learning methods are used in an exploratory data

analysis phase [5]. In this paper, we used both unsupervised and su-

pervised ML algorithms on the baseline dataset, which are explained

below briefly. All the MLmodels were developed using scikit-learn [12]

version 1.2.2, and all the 2-dimensional data manipulations were per-

formed with pandas [13] version 1.5.3. All the figures were generated

with matplotlib [14] version 3.7.1 and seaborn [15] version 0.12.2.
2.2.1 | Unsupervised learning algorithms

Dimensionality reduction algorithms can be used to visualize a high-

dimensional dataset by creating lower-dimensional projections of

the data [16]. For example, principal component analysis (PCA)
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decomposes the data into its linear principal components (PCs) that

explain the most variance [5]. In addition to PCA, we used kernel PCA

[17], t-distributed stochastic neighboring embedding [18], and iso-

metric mapping [19] to visualize the baseline dataset.

Clustering analysis is another type of unsupervised learning that

is commonly used to group similar points into clusters. Herein, we

used K-means clustering [20] and agglomerative clustering [5] to

cluster the patients into 2 clusters representing patients with and

without bleeding, and then we measured the quality of their clus-

tering. Finally, agglomerative clustering was used to identify any

notable subclusters within the dataset for patients with bleeding, and

the risk of bleeding over time was estimated for each subcluster ac-

cording to the Kaplan–Meier method [21]. Subsequently, a logistic

regression model with the least absolute shrinkage and selection

operator regularization was trained to determine the most relevant

features that distinguish each subcluster. The optimal value of the

regularization strength C was determined using 3-fold cross-validation

(CV) to maximize accuracy. The implementation details of the

dimensionality reduction and clustering algorithms are described in

Supplementary Methods.
2.2.2 | Supervised learning algorithms

Eight supervised learning algorithms were compared with the previ-

ously developed clinical models: logistic regression [5], linear

discriminant analysis [5], quadratic discriminant analysis (QDA) [5],

Gaussian Naïve Bayes [5], support vector machine [22], random forest

[23], adaptive boosting (AdaBoost) [24], and gradient boosting [25].

The details for these models are briefly described in Supplementary

Methods. Also, a “Dummy” classifier was trained as a standard con-

trol, which either returned the most frequent class or returned pre-

dictions based on the class distributions in the training dataset. Finally,

we compared the above ML algorithms with the modified versions of

the previously derived clinical models: CHAP [6], HAS-BLED [7], VTE-

BLEED [8], RIETE [9], ACCP [10], and OBRI [11]. The list of the pre-

dictor variables in the original and the modified versions of the clinical

models had been published previously [6].

CV was used to estimate the generalization performance of the

models on new data. Thus, the supervised ML and the clinical models

were compared using a 5-fold nested CV scheme, which consists of an

inner loop and an outer loop, as shown in Figure 1; the outer loop is a 5-

foldCV inwhich thedataset isfirst divided into5 stratifiedsetswhereall

the sets contain the same proportions of bleeders and nonbleeders as

the original dataset. Then, 1 set is kept aside for calibration and testing,

while the model is trained on the remaining sets. Note that the cali-

bration and testing sets are disjoint, but they have similar sizes. After

training, Platt scaling [26]wasused to calibrate eachuncalibratedmodel

on the calibration set; therefore, each model is paired with a calibrator

thatmaps its output intoa calibratednumberbetween0and1 (note that

the same process was used to calibrate the clinical models but without

training them on the training set). This process was repeated 5 times

with each set, producing an estimate of generalization performance on
new data along with a CI. However, the ML models have some hyper-

parameters that must be specified before training, and since the choice

of hyperparameters strongly affects their performance, hyper-

parameter optimization was performed using 3-fold CV on the training

sets in the inner loop via grid searchmethod; ie, the best combination of

hyperparameters (with highest mean of area under receiver operating

characteristic curve [AUROC]) was used to train the model on the

training set and then was calibrated and tested as shown in the right

panel of Figure 1. Supplementary Table S3 lists the hyperparameter

space for the supervised ML models.

When there is a relatively high number of features compared with

the number of samples, the supervised ML algorithms face a problem

formally known as the curse of dimensionality; ie, as the number of

features (dimensions) increases, it becomes harder for the ML algo-

rithms to generalize to meaningful data, and instead, they are likely to

be influenced by noise [27]. As such, 5 strategies were used to select

the best feature sets for each iteration of 5-fold nested CV during the

hyperparameter tuning process; PCA was used to obtain 5 or 10 PCs

that explain the most variance; another technique was sequential

forward feature selection, where the models select the best 5 or 10

features through an iterative process using 3-fold CV where opti-

mizing AUROC is the CV’s goal. Finally, the models had the option to

not use any of the above techniques and use all the features.
2.3 | Performance metrics

The unsupervised methods used in this paper are purely for visual and

exploratory purposes and do not require any objective performance

measure. However, the goodness of clustering was calculated using ho-

mogeneity and completeness metrics [28]. Both metrics range from 0 to

1, where 1 is the best clustering, and 0 is the worst clustering quality.

Discrimination and calibration metrics were measured to compare

the models. In particular, AUROC and area under precision-recall

curve (AUPRC) were used to measure the discriminative abilities of

the models. All the calibrated models produce values from 0 to 1,

which can be interpreted as the probability of bleeding for the pa-

tients, and by changing the threshold that defines bleeders and non-

bleeders, the precision and sensitivity (or recall) of the models can be

modified to create precision-recall curves, and the AUPRC could be

calculated to compare the models.

In addition, the calibration performance of the models was

measured using 4 metrics; Brier score [29] measures the mean

squared difference between the predicted probabilities and the actual

outcome, and it ranges between 0 and 1, with a smaller value indi-

cating a better score. Brier score can be decomposed into its

discrimination and calibration components, also known as reliability

and resolution, respectively, where lower reliability and higher reso-

lution values are better [30]. Finally, Cox’s slope and intercept were

calculated by regressing a linear model to the probability outputs and

the binary outcomes; a perfectly calibrated model will have a slope of

1 and an intercept of 0, and a deviation from the perfect line can be

interpreted as a lower calibration.



F I GUR E 1 The 5-fold nested cross-validation (CV) scheme. The outer loop represents the 5-fold CV, and the inner loop represents the

hyperparameter tuning via 3-fold CV and grid search along with the calibration and testing process. ML, machine learning.
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2.4 | Statistical analysis

The Kaplan–Meier estimates of bleeding risk for the 2 detected

clusters were compared using the log-rank test [21]. The clinical

relevance of each of the selected features was compared between the

2 clusters using the chi-squared test for the categorical variables and

the Student’s t-test for the continuous variables. The resulting P

values were corrected with the Benjamini–Hochberg [31] correction

for multiple testing, and the significance level was .05.

The models were compared across each metric using Friedman’s

test [32], which tests the null hypothesis that the mean performances

of all the models are similar. When the null hypothesis is rejected,

there is at least 1 pair of classifiers with statistically significantly

different performance. Therefore, multiple post hoc pairwise Wil-

coxon signed-rank tests [33] were performed to detect the pairs of

classifiers with performances that were statistically significantly

different. Benjamini–Hochberg method was used to correct for mul-

tiple hypothesis testing, and the significance level .05 was used for all

the tests. Friedman’s and Wilcoxon signed-rank tests were imple-

mented in SciPy [34] version 1.10.1, the Benjamini–Hochberg method

was implemented in statsmodels [35] version 0.14.0, and Kaplan–

Meier estimates with the log-rank test were implemented in scikit-

survival [36] version 0.21.0.
3 | RESULTS

3.1 | Data visualization

Overall, 4.6% of the patients (118 individuals) had major bleeding.

Figure 2 shows the resulting 2-dimensional plots of the baseline

dataset as projected by the dimensionality reduction algorithms,

where the orange and black circles represent the bleeders and non-

bleeders, respectively. Figure 2A shows a high degree of overlap be-

tween the bleeders and nonbleeders in the first 2 dimensions of the
PCA plot, which explains 7.9% and 7.4% of variability in the baseline

dataset, respectively. Additionally, it shows that the first 40 PCs can

explain >95% of the variability in the dataset, while the remaining 57

PCs account for 5% of the variance. Figure 2B shows the resulting

scatter plot for kernel PCA, isometric mapping, and t-distributed

stochastic neighboring embedding algorithms, which also show a high

degree of overlap between the bleeders and nonbleeders. Although

these results do not rule out that certain select patient characteristics

may be predictive of bleeding outcomes, they suggest that most fea-

tures and/or the overall patterns of variability seen in patients’ fea-

tures are not correlated to bleeding.
3.2 | Unsupervised clustering of the baseline

dataset

Figure 3 shows the clusters obtained from the K-means and agglom-

erative clustering algorithms, which are visualized on the PCA plot.

Both algorithms were used to group the points into 2 clusters without

having access to their labels. If the baseline information for the

bleeders and nonbleeders was completely distinct in the high-

dimensional feature space, the clustering algorithms would be able

to discern the 2 classes; however, the resulting clusters did not

correspond to the bleeding status given their small homogeneity and

completeness metrics. Despite the low performance of both algo-

rithms, the agglomerative clustering algorithm performed more than

10 times better than the K-means algorithm as it had 10 times higher

homogeneity and completeness values.
3.3 | Identifying novel clusters in patients with

bleeding

Agglomerative clustering was used to explore any useful pattern

within the dataset for patients with bleeding, and Figure 4A shows the



F I GUR E 2 Scatter plots of the dimensionality reduction algorithm projections applied on the baseline dataset. (A) The principal component

analysis (PCA) scatter plot of the bleeding dataset and the cumulative percentage of variance as a function of the number of principal

components (PCs), and (B) the resulting scatter plot for kernel PCA, isometric mapping (Isomap), and t-distributed stochastic neighboring

embedding (t-SNE). The dotted line in panel (A) indicates that the >95% explained variance occurs after 40 PCs. Bleeders are plotted on top of

the nonbleeders to make them visually discernable.

F I GUR E 3 Scatter plots of the K-means and agglomerative clustering on the baseline dataset plotted on the principal component analysis

plot. For the K-means algorithm, K (number of clusters) was set to 2, and for the agglomerative clustering, 2 clusters were selected. On the

principal component analysis plots, different colors represent the clusters identified by the algorithms, and the actual nonbleeders and bleeders

are drawn using filled circles and “x” markers, respectively.

FARD ET AL. - 5 of 12



6 of 12 - FARD ET AL.
resulting dendrogram obtained from this analysis where the dendro-

gram was cut at distance 9 from the base to separate the bleeders into

2 clusters: cluster 1 with 62 patients and cluster 2 with 56 patients. To

understand the underlying patient characteristics that gave rise to the

2 clusters, a logistic regression with least absolute shrinkage and se-

lection operator regularization was trained to distinguish the 2 clus-

ters, and Figure 4B shows the non-zero coefficients for the logistic

regression model; the features with positive coefficients are positively

correlated to the patients in cluster 1 and negatively correlated to the

patients in cluster 2, and vice versa.

The table in Figure 4B lists the frequencies and mean of cate-

gorical and continuous variables, respectively. Most patients (59.7%)

in cluster 1 were females, and 83.9% of them had isolated deep vein

thrombosis (DVT). On the other hand, cluster 2 consisted mostly of

male patients (62.5%), and most of them (62.5%) had isolated pul-

monary embolism (PE). However, statistical tests showed that there

were only 5 features that were significantly different between the 2

clusters: isolated DVT, isolated PE, postthrombotic syndrome, het-

erozygous CYP4F2 mutation, and wild-type VKORC1639. The Kaplan–

Meier estimates of the probability of bleeding for each cluster are

shown in Figure 4C, which shows that for the patients in cluster 2, the

probability of bleeding is higher than for patients in cluster 1; how-

ever, the log-rank test showed that the difference is not statistically

significant (P = .32).
3.4 | Predicting bleeding in VTE patients using

supervised ML algorithms

The Table summarizes the mean and SD of each metric for the models

obtained from the 5-fold nested CV experiment. QDA had the highest

mean AUROC and AUPRC, but its AUPRC was similar to that of the

CHAP. Furthermore, all the models had similar Brier scores, but HAS-

BLED had the lowest and the best score. CHAP and random forest had

the 2 highest (and best) resolutions, while gradient boosting and

Dummy had the lowest (and worst) resolutions. However, OBRI and

Dummy classifiers had the lowest (and best) reliability scores, while

CHAP and Gaussian Naïve Bayes had the highest (and worst) re-

liabilities. VTE-BLEED and OBRI had the best slopes (closest to 1),

while random forest, AdaBoost, logistic regression, and Dummy had

negative (and worst) slopes. Furthermore, OBRI and VTE-BLEED had

the best intercept (closest to zero), while random forest and AdaBoost

had the worst intercepts.

Friedman’s P values suggest that P values for resolution and

reliability scores are statistically significantly different among at least

1 pair of classifiers. However, pairwise Wilcoxon signed-rank tests did

not find any significant difference between any pairs of classifiers for

these 2 metrics as shown in Supplementary Figure S1.

As explained in section 2.2.2, the sequential forward feature se-

lection method can be used to choose the most distinctive features for

classification. For each ML model, features that were chosen at least

twice during the 5-fold nested CV experiment were pooled together,

and Figure 5 shows the features that were deemed important by at
least 3 ML algorithms. Recent provoked VTE due to hospitalization

was the most useful feature chosen by all the8 ML models. Further-

more, the number of concomitant medications, CYP2C9 poly-

morphism, and use of antiplatelet agents were the next best features.
4 | DISCUSSION

We explored the potential advantages of ML algorithms to analyze the

baseline dataset of VTE patients. The unsupervised dimensionality

reduction algorithms suggested that the overall information content

within the baseline dataset does not have a strong correlation to the

bleeding status, and there is a high degree of overlap between

bleeders and nonbleeders. Furthermore, we were able to identify 2

clusters within the patients with major bleeding, which differed mainly

based on the type of their VTE. We were not able to see any benefit in

using supervised ML algorithms compared with the conventional

statistical models in predicting major bleeding from patients’ baseline

information.
4.1 | High overlap of baseline information for

bleeders and nonbleeders

Visualizing the high-dimensional baseline information could be

insightful. For instance, when the points from each group are well

separated on the plots, one could expect a good performance from the

supervised ML models. However, the lack of such clear distinction

does not necessarily mean a challenging classification task, as there

might still be one or several sets of distinctive features that were not

captured by the unsupervised models. Nonetheless, the lack of sepa-

ration in the plots (Figure 2) suggests that the overall variabilities of

the features in the dataset are not strongly correlated to the bleeding

status. Furthermore, despite the categorical nature of most features,

the correlation heatmap (Supplementary Figure S2) and the high cu-

mulative explained variance by 40 PCs of PCA suggest the existence

of a few strongly correlated features in the dataset. Both clustering

analyses had poor performance, indicating the difficulty of the algo-

rithms to distinguish between bleeders and nonbleeders, which is

likely due to large class imbalance, especially for the K-means clus-

tering algorithm, which often generates clusters with uniform sizes

[37], as shown in Figure 3.
4.2 | Clustering the patients with bleeding into 2

distinct clusters

The agglomerative clustering revealed 2 clusters in the baseline

dataset for patients with bleeding: cluster 1, which mostly consists of

females who had isolated DVT and experienced postthrombotic syn-

drome, and cluster 2, which consists of males who had isolated PE,

wild-type VKORC1639, and heterozygous CYP4F2 mutation. How-

ever, the 2 most distinctive features of cluster 1 and cluster 2 were



F I GUR E 4 Cluster analysis of the baseline dataset for patients with bleeding. (A) The dendrogram from agglomerative clustering, which was

cut at distance 9 to create 2 clusters, (B) the coefficients of a least absolute shrinkage and selection operator–regularized logistic regression

model trained to separate cluster 1 and cluster 2 along with the frequencies for categorical variables and mean with SD for continuous

variables, and (C) Kaplan–Meier estimates of the probability of bleeding for patients in cluster 1 and cluster 2. There are 62 patients in cluster 1

and 56 patients in cluster 2. The features with statistical significance difference (adjusted P < .05) are indicated with an asterisk (*). CVA,

cerebral vascular accident; DVT, deep vein thrombosis; PE, pulmonary embolism; VTE, venous thromboembolism.
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isolated DVT and isolated PE, respectively. To our knowledge, no

study has yet investigated the difference in bleeding risk between

patients with isolated PE and isolated DVT who are in the extended

phase of anticoagulation therapy; the Kaplan–Meier curves illustrated

that the patients in cluster 1 had a lower probability of bleeding
compared with the patients in cluster 2, but the log-rank test showed

that the difference was not statistically significant. Moreover, the

literature does not support the association of VKORC1 and CYP4F2

variants, which are the defining features of cluster 2, with the risk of

major bleeding [38].



TA B L E Summary of the metrics measured to compare machine learning and clinical models.

Bleeding risk score AUROC AUPRC Brier score Resolution Reliability Slope Intercept

CHAP 0.61 (0.15) 0.13 (0.07) 4.52 × 10−2 (1.26 × 10−3) 4.49 × 10−3 (2.53 × 10−3) 4.69 × 10−3 (1.38 × 10−3) −0.61 (3.98) 0.08 (0.19)

ACCP 0.66 (0.04) 0.10 (0.03) 4.43 × 10−2 (5.48 × 10−4) 2.64 × 10−3 (1.56 × 10−3) 1.90 × 10−3 (1.11 × 10−3) 1.31 (0.55) −0.01 (0.02)

RIETE 0.63 (0.11) 0.08 (0.03) 4.50 × 10−2 (1.24 × 10−3) 2.80 × 10−3 (1.39 × 10−3) 2.83 × 10−3 (1.55 × 10−3) 1.82 (1.80) −0.04 (0.08)

VTE-BLEED 0.65 (0.05) 0.08 (0.02) 4.45 × 10−2 (4.80 × 10−4) 1.85 × 10−3 (1.16 × 10−3) 1.43 × 10−3 (7.13 × 10−4) 1.15 (0.42) −0.01 (0.02)

HAS-BLED 0.66 (0.06) 0.11 (0.05) 4.41 × 10−2 (8.96 × 10−4) 2.77 × 10−3 (2.38 × 10−3) 1.87 × 10−3 (1.53 × 10−3) 3.36 (2.08) −0.10 (0.09)

OBRI 0.65 (0.03) 0.08 (0.02) 4.45 × 10−2 (6.76 × 10−4) 1.05 × 10−3 (8.96 × 10−4) 5.66 × 10−4 (3.91 × 10−4) 0.85 (0.32) 0.01 (0.02)

Logistic regression 0.58 (0.14) 0.08 (0.04) 4.47 × 10−2 (3.82 × 10−4) 2.24 × 10−3 (1.02 × 10−3) 1.98 × 10−3 (8.47 × 10−4) −2.07 (6.04) 0.15 (0.29)

LDA 0.66 (0.06) 0.09 (0.02) 4.45 × 10−2 (4.64 × 10−4) 2.40 × 10−3 (1.48 × 10−3) 1.91 × 10−3 (1.07 × 10−3) 2.22 (1.76) −0.06 (0.08)

QDA 0.67 (0.10) 0.13 (0.07) 4.44 × 10−2 (5.11 × 10−4) 3.33 × 10−3 (2.01 × 10−3) 2.70 × 10−3 (1.59 × 10−3) 2.56 (2.15) −0.07 (0.10)

SVC 0.65 (0.05) 0.11 (0.05) 4.47 × 10−2 (2.91 × 10−4) 2.35 × 10−3 (1.30 × 10−3) 2.04 × 10−3 (1.06 × 10−3) 1.85 (1.03) −0.04 (0.05)

Gaussian NB 0.66 (0.09) 0.11 (0.03) 4.56 × 10−2 (1.89 × 10−3) 3.31 × 10−3 (2.61 × 10−3) 4.21 × 10−3 (2.13 × 10−3) 3.40 (3.75) −0.11 (0.18)

Random forest 0.60 (0.14) 0.11 (0.07) 4.46 × 10−2 (8.34 × 10−4) 3.50 × 10−3 (2.41 × 10−3) 3.00 × 10−3 (1.57 × 10−3) −8.10 (18.78) 0.40 (0.82)

AdaBoost 0.54 (0.14) 0.07 (0.02) 4.49 × 10−2 (2.31 × 10−4) 2.36 × 10−3 (1.65 × 10−3) 2.25 × 10−3 (1.74 × 10−3) −3.61 (9.21) 0.22 (0.44)

Gradient boosting 0.58 (0.08) 0.08 (0.03) 4.49 × 10−2 (2.15 × 10−4) 9.60 × 10−4 (8.79 × 10−4) 8.57 × 10−4 (6.90 × 10−4) 1.70 (1.20) −0.03 (0.06)

Dummy 0.49 (0.02) 0.05 (0.00) 4.51 × 10−2 (1.54 × 10−4) 1.00 × 10−4 (1.28 × 10−4) 1.99 × 10−4 (2.58 × 10−4) −0.65 (1.30) 0.08 (0.06)

Friedman’s P value .320 .065 .197 .021 .002 .110 .146

Mean scores (SD) are written for each metric.

AdaBoost, adaptive boosting; AUPRC, area under precision-recall curve; AUROC, area under receiver operating characteristic curve; Gaussian NB, Gaussian Naïve Bayes; LDA, linear discriminant analysis;

QDA, quadratic discriminant analysis; SVC, support vector machine.
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F I GUR E 5 The most distinctive features in the baseline dataset for bleeding risk prediction. Frequency indicates the number of machine

learning models that chose a given feature at least twice during the 5-fold nested cross-validation experiment. DVT, deep vein thrombosis; PE,

pulmonary embolism; VTE, venous thromboembolism.
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The high prevalence of postthrombotic syndrome in cluster 1 is

likely due to the presence of isolated DVT compared with cluster 2

with isolated PE [39,40]. A recent meta-analysis has shown that pa-

tients with isolated PE had a lower incidence of prothrombin gene and

factor V Leiden mutation, but they were more likely to be female, have

diabetes mellitus, and have recent invasive surgery [41]. However, in

our study, the patients in cluster 2 who were mainly characterized by

having isolated PE, despite lack of statistical significance, had a higher

prevalence of heterozygous factor V Leiden mutation, had a lower

incidence of diabetes mellitus compared with patients in cluster 1, and

were mostly males, and none of them had recent surgery, consistent

with postsurgical patients not being enrolled in our study. Thus, the

genotypic and phenotypic differences for patients characterized in

each cluster warrant further meta-analysis as the evidence suggests

multivariable characteristics of each cluster and the presence of the

correlated features (Supplementary Table S4).
4.3 | Similar predictive performance of ML

algorithms and clinical models

C-statistic or AUROC is commonly used in clinical studies to evaluate

the discrimination power of the models; however, some argue that

AUPRC is a better predictor of discrimination performance, especially

when the data are imbalanced [42], as it can capture the precision that

represents the difficulty in correctly identifying the bleeders without

making false positive predictions. Despite the lack of statistical signifi-

cance difference, QDA had the highest AUPRC and AUROC compared

with the other ML models, indicating its superior discrimination
performance, while tree-based models, such as gradient boosting and

AdaBoost, had theworst performance. A nestedCV schemewas chosen

to compare themodels since it is less biased than the regularCV scheme

[43]. However, the 5 different heterogeneous test sets with small sizes

(�11 bleeders and 240 nonbleeders) led to high variance in the per-

formance of the ML models and limited us to use less powerful

nonparametric tests, which resulted in no significant P value.

The low and optimistic Brier scores for the models were due to

their strong calibration components (small reliability values) rather

than their weak discrimination components (small resolution values);

therefore, the Brier score is not a good metric when there is a class

imbalance such as in our dataset [44]. The calibration slope and

intercept showed that, overall, the clinical models are better cali-

brated than the ML models. The ML models such as logistic regression

and random forest with negative regression slopes were poorly cali-

brated as the bleeding probabilities were inversely related to patients’

risks. Furthermore, their regression intercept, which is the measure of

mean calibration or calibration-in-the-large, was larger than 0, indi-

cating their overall tendency to underestimate the risks. On the other

hand, models such as QDA, linear discriminant analysis, and support

vector machine with regression slopes >1 overestimated the risk for

the low-risk patients and underestimated the risk for high-risk pa-

tients, and they had intercepts smaller than 0, which indicates their

proclivities to overestimate the risks. The poor calibration of the ML

models is likely due to our small, imbalanced dataset [45]. Overall,

QDA had the best discrimination and calibration performance

compared with the other models, likely because QDA was less prone

to overfitting as it had fewer parameters and made less stringent

assumptions about the data.
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The feature selection strategy revealed that recently provoked

VTE associated with hospitalization is the most important feature in

predicting bleeding risk. Furthermore, CYP2C9 polymorphism is the

second most important feature that is known to affect warfarin dosing

and bleeding risk [46]. None of the currently used clinical models rely

on CYP2C9 polymorphism, which could be investigated in the future.

Furthermore, features such as the use of antiplatelet agents, hemo-

globin level, creatinine level, sex, and age were commonly used fea-

tures between the clinical and ML models. However, other features

used in the clinical models such as prior gastrointestinal bleeding,

prior stroke, and hypertension medications were not deemed impor-

tant by the ML models. Nonetheless, pinpointing the important fea-

tures should be preferably carried out in an external validation

dataset to prevent biased results that are not generalizable; thus,

these results should be further investigated.
4.4 | Limitations

There are some limitations in this paper. Firstly, the relatively small

number of major bleeds in the dataset lowered the capacity of the ML

models to generalize and may have contributed to their similar per-

formance and hindered the use of independent test sets and the uti-

lization of more powerful parametric statistical testing. In addition, the

presence of many categorical features has introduced sparsity in the

dataset, which increased models’ training time and hindered gener-

alization. Although these are the inevitable limitations of any clinical

dataset, data augmentation strategies could be used to balance the

dataset before ML analysis, and their benefits need to be investigated

[47]. Furthermore, the modified versions of the clinical models were

used to compensate for the missing features in our dataset that could

also affect their performance, but this is unavoidable given our

dataset. Finally, we imputed the missing values using the median and

mode of the values as this is the most straightforward approach.

However, imputation using regression or classification models for the

important features can reduce noise.
4.5 | Next steps and suggestions

The overall results from the literature [4] and our attempt at using a

baseline dataset to predict bleeding risk have illustrated its chal-

lenging nature as the best models can achieve the AUROC, or c-sta-

tistics, of around 70%. As far as we are aware, the only other study

[48] that developed ML algorithms for bleeding risk prediction was

able to achieve an estimated AUROC of around 63%, which is on par

with the performance of the models we developed. We tried to un-

derstand why there has been no significant improvement in the pre-

diction models beyond the current state of the art, and we have

hypothesized 3 main reasons for such stagnation in the performance

based on our findings. First, the variables that are recorded and

measured at baseline may not be predictive of the bleeding status.

Therefore, we suggest expanding the variety of the predictor variables
that are measured at baseline and incorporating other data modalities,

such as imaging data, clinical symptoms, signs, etc., into the baseline

risk prediction models. Secondly, the bleeding events may occur

because of changes that take place after the baseline visit, and

therefore, the baseline clinical information might not be informative

enough to predict bleeding over time. Finally, the bleeding events for

some patients may occur randomly without any clinical predetermi-

nation. Although it is hard to prove this point, it should be considered

as a reason for the lack of improvement in bleeding risk prediction.
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