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Abstract 
Several epidemiological studies have shown a clear inverse relationship between serum levels of high-density lipoprotein 
cholesterol (HDL-C) and the risk of atherosclerotic cardiovascular disease (ASCVD), even at low-density lipoprotein cholesterol 
levels below 70 mg/dL. There is much evidence from basic and clinical studies that higher HDL-C levels are beneficial, whereas 
lower HDL-C levels are detrimental. Thus, HDL is widely recognized as an essential anti-atherogenic factor that plays a protective 
role against the development of ASCVD. Percutaneous coronary intervention is an increasingly common treatment choice to 
improve myocardial perfusion in patients with ASCVD. Although drug-eluting stents have substantially overcome the limitations 
of conventional bare-metal stents, there are still problems with stent biocompatibility, including delayed re-endothelialization 
and neoatherosclerosis, which cause stent thrombosis and in-stent restenosis. According to numerous studies, HDL not only 
protects against the development of atherosclerosis, but also has many anti-inflammatory and vasoprotective properties. 
Therefore, the use of HDL as a therapeutic target has been met with great interest. Although oral medications have not shown 
promise, the developed HDL infusions have been tested in clinical trials and have demonstrated viability and reproducibility in 
increasing the cholesterol efflux capacity and decreasing plasma markers of inflammation. The aim of the present study was 
to review the effect of HDL on stent biocompatibility in ASCVD patients following implantation and discuss a novel therapeutic 
direction of HDL infusion therapy that may be a promising candidate as an adjunctive therapy to improve stent biocompatibility 
following percutaneous coronary intervention.

Abbreviations: ACH = acetylcholine, ACS = acute coronary syndrome, apo = apolipoprotein, ASCVD = atherosclerotic 
cardiovascular disease, BMS = bare metal stent, DAPT = dual antiplatelet therapy, DES = drug-eluting stent, ECs = endothelial 
cells, eNOS = endothelial nitric oxide synthase, HDL = high-density lipoprotein, HDL-C = high-density lipoprotein-cholesterol, 
ISR = in-stent restenosis, IVUS = intravascular ultrasound, NF-κB = Nuclear factor-κB, NO = nitric oxide, ox-LDL = oxidized low-
density lipoprotein, PCI = percutaneous coronary intervention, PGI2 = prostacyclin, RCT = reverse cholesterol transport, S1P = 
sphingosine-1-phosphate, SMCs = smooth muscle cells, ST = stent thrombosis, TNF-α = tumor necrosis factor α.
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1. Introduction

High-density lipoprotein (HDL) is the smallest lipoprotein par-
ticle. Its main function in lipid metabolism is reverse cholesterol 
transport (RCT), wherein it attracts and collects cholesterol 
from peripheral tissues, such as arterial walls, and delivers it 
to the liver for eventual excretion.[1] In fact, cholesterol car-
ried by HDL has earned the moniker of “good cholesterol,” 

as considerable evidence suggests that HDL plays a protective 
role against the development of ASCVD.[2,3] Epidemiological 
studies have indicated that the plasma concentrations of 
both HDL-C and the major HDL apolipoprotein, apoA-I, 
are independent, inverse predictors of the risk of having an 
ASCVD event;[4–6] patients with pharmacologically controlled 
low-density lipoprotein levels and low HDL levels are still at 
an increased risk of ASCVD.[7] Furthermore, Requena et al.[8] 
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have suggested that patients with a short-term, drug-induced 
decrease in HDL-C have a moderately increased long-term risk 
of cardiovascular events compared with those with constant 
HDL-C levels.

ASCVD, a prevalent disease worldwide,[9] causes narrowing 
or occlusion of arteries (especially coronary arteries), thereby 
hampering myocardial perfusion. Therefore, percutaneous cor-
onary intervention (PCI) with stent implantation to dilate the 
partly or fully occluded coronary artery lumen is an increasingly 
common treatment choice to improve myocardial perfusion in 
patients with ASCVD. Drug-eluting stents (DES) have been 
developed with the progress of stent design techniques. DES has 
decreased the incidence of in-stent restenosis (ISR) significantly, 
from 20% to 35% of bare metal stents (BMS) to about 10%, 
while also greatly reducing the revascularization ratio of target 
lesions. However, delayed endothelialization caused by locally 
delivered drugs from DES increases the risk of late and very 
late stent thrombosis (ST).[10–12] Wenaweser et al.[11] reported a 
0.53% annual increase in the incidence of ST, a 3.3% cumula-
tive incidence at 4 years, and a 5.7% rate of definite and prob-
able ST after 4 years. Additionally, the ART-II trial showed a 
9.4% rate of ST (definite, probable, or possible) among ASCVD 
patients with multiple vessel lesions at 5 years after DES implan-
tation, while the 5-year major adverse cardiac and cerebro-
vascular event rate was 27.5%.[13] Thus, the duration of dual 
antiplatelet therapy (DAPT) has been gradually extended from 1 
month after bare metal stenting to 6–12 months or even longer 
after DES implantation.[14,15] However, some patient populations 
with high bleeding risk are more prone to hemorrhagic compli-
cations with long-term DAPT (e.g., due to age, thrombocytope-
nia, concomitant use of oral anticoagulants, active cancer), so 
they would benefit from shortened DAPT duration to reduce 
the risk of bleeding complications.[16] For those patients, the 
DAPT duration after PCI should be shortened to 1–3 months.[17] 
Therefore, the optimal duration of DAPT after DES implanta-
tion is still under discussion. While clinicians worry that long-
term DAPT would increase the risk of bleeding while preventing 
ST, they also worry that short-term DAPT may not be effective 
in the prevention of ST.

Multifactor regression analysis has identified stent re-endo-
thelialization as one of the important factors that may reduce 
the incidence of ST. Hence, a question is raised as to how to 
promote stent re-endothelialization after DES implantation; 
thus, exploring the factors that improve stent biocompatibility 
following implantation is an important topic in the field of car-
diology.[18,19] This research will bring important clinical benefits 
to ASCVD patients, especially those at high risk of bleeding.

Previous reports have shown that re-endothelialization is 
associated with several factors, such as diabetes mellitus,[20] 
baseline high-sensitivity C-reactive protein levels,[21] plaque mor-
phology,[22] strut (design and material),[23] drug elution (release 
kinetics),[24] and coating polymer (material or degradation pro-
cess).[25] Although HDL is widely recognized as an essential anti-
atherogenic factor,[26] there are few reviews about the effect of 
HDL on the improvement of stent biocompatibility after PCI.

This article focuses on the beneficial effect of HDL on stent 
biocompatibility in ASCVD patients following implantation 
and discusses a novel therapeutic direction for HDL infusion 
therapy.

2. Effects of HDL on endothelial cells (ECs)
The endothelium secretes many humoral factors that regulate 
vasodilatation and vasoconstriction of blood vessels, modu-
late platelet activation, coagulation, and fibrinolysis, and affect 
the proliferation and differentiation of smooth muscle cells 
(SMCs).[27,28] Endothelial injury and dysfunction are the initial 
hallmarks in the pathogenesis of ISR and ST.[29–31] One of the 
most important products of ECs synthesized in response to 

different physiological stimuli is nitric oxide (NO).[28] Through 
the action of NO, the endothelium induces vasodilatation, atten-
uates thrombocyte adhesion and aggregation, and inhibits cell 
cycle progression of SMCs.[28] Therefore, the integrity and func-
tion of the vascular endothelium are essential for the circulatory 
system. In this context, HDL has been reported as an important 
factor in sustaining endothelial function[32–35] and protecting the 
endothelial structure.[36,37]

2.1. HDL protects endothelial function

A previous study reported that HDL can reverse oxidized 
low-density lipoprotein (ox-LDL)-induced impairment of 
endothelium-dependent vasodilatation by preventing lyso-
phosphatidylcholine from acting on the endothelium and 
removing lysophosphatidylcholine from ox-LDL.[38] In vivo 
studies showed an inverse correlation between serum HDL 
concentration and abnormal vasodilatation induced by ace-
tylcholine administered to the coronary arteries.[39,40] In addi-
tion, decreased expression of endothelial nitric oxide synthase 
(eNOS) has been shown to be associated with endothelial dys-
function.[41] Terasaka et al.[42] suggested that HDL maintains 
endothelial function by promoting the efflux of cholesterol and 
7-oxysterols and preserving active eNOS dimer levels via ATP-
binding cassette transporter ATP-binding cassette transporter 
G1. Moreover, sphingosine-1-phosphate (S1P), which is carried 
by the apolipoprotein M-containing subfraction of HDL par-
ticles, can stimulate eNOS phosphorylation and NO produc-
tion by activating the phosphatidylinositol-3-kinase/Akt/eNOS 
pathway in ECs.[43] According to Kim et al,[44] tumor necrosis 
factor α (TNF-α) considerably represses eNOS expression, but 
the inhibition can be restored by apolipoprotein J (apoJ), which 
is a protein component of HDL. Furthermore, Witting et al.[45] 
found that serum amyloid A promoted endothelial dysfunction 
by decreasing NO and L-arginine bioavailability, but HDL pre-
treatment preserved overall endothelial function, suggesting 
that HDL may be protective. Moreover, previous studies have 
reported that isolated low HDL is associated with endothelial 
dysfunction, and rapid reconstituted HDL (rHDL) infusion 
results in a complete restoration of vasomotor responses to 
both serotonin and NG-monomethyl-L-arginine by increasing 
NO bioavailability.[46–48] Also, HDL has a stimulatory effect on 
prostacyclin (PGI2) production by ECs.[49,50] PGI2 has a vaso-
relaxing effect and diminishes the activation of platelets, and 
inhibits the release of growth factors, such as fibroblast growth 
factor, which stimulates proliferation of SMCs.[51] However, a 
strong inflammatory component is involved in the pathogenesis 
of endothelial dysfunction. With the appearance of proinflam-
matory stimuli, ECs are activated and increase the abundance 
of adhesion molecules on their surfaces, such as E-selectin, 
vascular adhesion molecule-1, and intercellular cell adhesion 
molecule-1, which leads to the recruitment of proinflammatory 
immune cells to the vascular wall.[52] Some in vitro studies[44,53] 
have shown that HDL-associated S1P and apoJ significantly 
decrease the surface abundance of the 3 cell adhesion molecules 
through repression of the TNF-α/nuclear factor-κB (NF-κB) 
signaling pathway, suggesting that HDL/apolipoprotein M/S1P 
and apoJ not only maintain normal endothelial function under 
basal conditions[54] but also maintain endothelial barrier integ-
rity under inflammatory conditions. Therefore, the beneficial 
effect of HDL on endothelial function was remarkable (Fig. 1).

2.2. HDL promotes re-endothelialization

Disintegration of the endothelium occurring after stent implan-
tation induces the accumulation of platelets, the growth of 
SMCs, the chemoattraction of leukocytes, and several other 
processes, all of which ultimately lead to the occlusion of target 
vessels. Thus, the recovery of endothelial integrity is of immense 
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importance in ASCVD patients following PCI treatment. It has 
been shown in vitro that HDL stimulates EC migration and pro-
motes re-endothelialization in an NO-independent manner via 
scavenger receptor B type I-mediated activation of Rac GTPase 
(Fig. 2A).[55] Tamagaki et al.[37] investigated the effects of HDL 
on intracellular pH and on the proliferation of human vascu-
lar ECs. They showed that HDL promoted EC proliferation via 
the alkalinization of intracellular pH; the alkalinization effect 
was mediated by phosphatidylinositol-specific phospholipase C, 
which cleaves phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)
P2], thereby increasing the release of calcium from intracellu-
lar storage sites and activating the sodium–proton antiport 
(Fig. 2B).[37] Additionally, Vanags et al[56] found that apoA-I infu-
sion increased the number of ECs in a murine model of stent-
ing, suggesting that apoA-I promotes re-endothelialization via 
enhancement of endothelial progenitor cell mobilization.[57]

2.3. HDL reduces neointimal hyperplasia

Neointimal hyperplasia is characterized by the uncontrolled pro-
liferation and migration of SMCs, which results in narrowing of 
the luminal area and eventual stent failure.[58,59] Previous studies 
have shown that vascular SMC proliferation is enhanced by the 
inflammatory chemokines CCL2, CCL5, and CX3CL1.[47,60–63] 
Some in vitro and in vivo studies have demonstrated that HDL 
can inhibit these chemokines[64–68] by inhibiting the intracellular 
NF-κB pathways,[69] and that it can also suppress SMCs pro-
liferation directly by suppressing extracellular signal-regulated 
kinase phosphorylation.[69] In addition, apoJ can inhibit SMC 
proliferation via induction of G1 cell cycle arrest accompanied 
by reduced retinoblastoma protein phosphorylation by down-
regulating cell cycle-promoting factors (cyclins D and E) and 
upregulating the p53–p21 (inhibitory proteins) pathway.[44] 
Moreover, a previous study has reported that SMCs cause phe-
notypic changes regulated at the mRNA level in hyperlipidemic 
conditions, resulting in differentiation into macrophage-like 

cells; these effects are accompanied by a decreased expression of 
SMC α-actin.[70] Given that macrophages promote the release of 
growth factors and cytokines that accelerate vascular SMC pro-
liferation, they induce neointimal hyperplasia.[71] Rong et al.[70] 
suggested that cellular cholesterol content might play an essen-
tial role in determining the SMC phenotype, and α-actin + SMCs 
may diminish the inflammatory response in the formation of 
neointima. Another in vivo study demonstrated that apoA-I 
infusion reduces in-stent neointimal hyperplasia in a murine 
stent model.[56] This finding suggests that apoA-I may preserve 
the SMC phenotype and prevent a switch into a more macro-
phage-like state by increasing cholesterol efflux from neointimal 
SMCs,[70–72] which could create a less inflammatory environment 
and decrease the risk of ISR (Fig. 3).

2.4. HDL inhibits apoptosis of ECs

An in vitro study has shown that HDL prevents the apopto-
sis of ECs induced by TNF-α by inhibiting CPP32-like protease 
activity.[73] Similar observations have been reported by Suc et 
al.[36] and de Souza et al.[74] who found that HDL increased the 
resistance of ECs against ox-LDL and prevented its toxic effect 
by blocking the pathogenic intracellular signaling (culminating 
in sustained calcium rise) involved in cell apoptosis. In addition, 
Zhang et al.[75] suggested that HDL might significantly reduce 
the apoptosis of ECs via the suppression of caspase-3 activity. 
Furthermore, a study demonstrated that HDL protected ECs 
against growth factor deprivation-induced apoptosis, indicating 
that HDL and the associated S1P switched off the proapoptotic 
protein Bad via Akt stimulation, which led to the inhibition of 
the generation of reactive oxygen species, the dissipation of 
mitochondrial potential, and the release of cytochrome C into 
the cytoplasm, thereby preventing the activation of caspase-3 
and -9 and apoptotic alterations of the plasma membrane.[76] In 
addition, apoJ can diminish TNF-α-induced apoptosis of ECs 
by inhibiting the TNF-α/NF-κB signaling pathway.[44] Both S1P 

Figure 1. The effects of high-density lipoprotein on endothelial dysfunction. ABCG1 = ATP-binding cassette transporters G1, ApoJ = apolipoprotein J, ApoM = 
apolipoprotein M, ECs = endothelial cells, eNOS = endothelial nitric oxide synthase, HDL = high-density lipoprotein, ICAM-1 = intercellular cell adhesion mole-
cule-1, LPC = lysophosphatidylcholine, NO = nitric oxide, ox-LDL = oxidized low-density lipoprotein, PGI2 = prostacyclin, PI3K = phosphatidylinositol 3-kinase, 
S1P = sphingosine-1-phosphate, TNF-α = tumor necrosis factor α, VCAM-1 = vascular adhesion molecule-1.
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and apoJ have been described as mediators of the anti-apoptotic 
activities of HDL towards ECs. (Fig. 4)

2.5. HDL protects ECs from the damage brought by the 
activation of complement system

ECs are exposed to activated complement during local or sys-
temic inflammation, which causes membrane deposition of 
C5b-9 complexes.[77] Perturbation of the plasma membrane 
by these proteins results in cell lysis or nonlytic alteration of 
cell function.[78] Hamilton et al.[79] reported that deposition of 
C5b-9 complexes on human ECs leads to an influx of extracel-
lular calcium, activation of secretion of von Willebrand factor, 
and transient expression of P-selectin. Therefore, the activated 
complement system results in increased neutrophil, monocyte, 
and platelet adhesion, as well as increased thrombin generation, 
causing intravascular hypercoagulability, which increases the 
risk of ST.[80,81] In addition, a clinical trial reported a significant 
increase in plasma levels of C5b-9 in patients with hypercholes-
terolemia compared with normoglycemic ASCVD patients and 
normal subjects, and the C5b-9 terminal complement complex 
levels were inversely correlated with HDL-C levels.[82] In vitro 
studies have demonstrated that apoA-I and apoA-II inhibit com-
plement complex-mediated cell lysis,[83,84] because they can bind 
to the C9 complement factor and inhibit the formation of the 
C5b-9 terminal complement complex[77,85] by interfering with 

the insertion of C9 into the lipid bilayer or with polymerization 
of C9 at C5b-8 sites.[83] Additionally, apoJ is an inhibitor of the 
terminal complement complex, which inhibits C5b-9 terminal 
complement complex-mediated cell lysis in a concentration-de-
pendent manner. It exerts an inhibitory effect by interacting 
with a structural motif common to C7, C8, and C9b.[86] Thus, 
HDL may attenuate endothelial damage resulting from comple-
ment activation.

3. Effect of HDL on platelet activation
Given that platelet activation plays an important role in the 
formation of ST, prolonged DAPT results in a significant 
reduction in the rate of ST,[87,88] and Naqvi et al.[89] reported 
that HDL-C is a significant independent predictor of plate-
let-dependent thrombus formation. An epidemiological study 
has shown that low HDL levels are an important predictor of 
major cardiac events, including death, resulting from ST in 
patients following DES implantation.[90] Therefore, research-
ers have suggested that HDL may inhibit platelet activation 
through various mechanisms.

A clinical trial has shown that platelet reactivity is signifi-
cantly inhibited in rHDL-infused patients with diabetes mellitus 
via the reduction of P-selectin.[91] This observation is in accor-
dance with a study on a murine stent model that demonstrated 
that apoA-I infusion suppressed P-selectin activation.[56] In vitro 

Figure 2. The mechanisms of high-density lipoprotein action on re-endothelialization. ECs = Endothelial cells, HDL = High-density lipoprotein, MAPK = 
Mitogen-activated protein kinase, [pH]i = Intracellular pH, PI(4,5)P2 = Phosphatidylinositol-(4,5)-bisphosphate, PI3K = Phosphatidylinositol 3-kinase, PI-PLC = 
Phosphatidylinositol-specific phospholipase C, SR-BI = Scavenger receptor B type I.
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studies have shown that HDL suppresses adrenalin-, collagen-, 
ADP-, and thrombin-induced platelet aggregation,[92–96] suggest-
ing that this action is mediated by an increase in NO synthase 
activity in platelets.[97] HDL also inhibits thrombin-induced 
fibrinogen binding and aggregation on platelets by inhibiting 
phosphatidylinositol 4,5-bisphosphate turnover, 1,2-diacylglyc-
erol and inositol 1,4,5-trisphosphate formation, and intracel-
lular calcium mobilization.[98] Desai et al.[99] demonstrated that 
HDL impairs platelet responsiveness to exogenous agonists 
via occupation of cell-surface receptors by HDL-E particles. 
Moreover, Sugatani et al.[100] found that HDL reduces the accu-
mulation of platelet-activating factor by inhibiting platelet-acti-
vating factor synthesis, which is mediated via the suppression of 
acetyl-CoA:1-alkyl-2-lyso-sn-glycero-3-phosphocholine acetyl-
transferase activation. In addition, HDL prevents platelet hyper-
reactivity by limiting intraplatelet cholesterol overload, but also 
by modulating platelet signaling pathways after binding to the 
platelet HDL receptors scavenger receptor B type I[101] and apoE 
receptor 2.[99] Moreover, HDL stimulates the endothelial pro-
duction of NO[102] and PGI2,

[49,50] which are potent inhibitors of 
platelet activation.[28,51,103]

4. Discussion
HDL can sustain vascular endothelial function, enhance re-en-
dothelialization, inhibit neointimal hyperplasia, protect endo-
thelial integrity, and reduce inflammatory response and platelet 
activation, indicating that it plays an important role in the pre-
vention of ISR and ST. Thus, HDL is important for ASCVD 
patients, especially for those who undergo PCI treatment with 
stent implantation.

Unfortunately, decreased serum levels of HDL-C are com-
monly encountered in ASCVD patients,[104] and experts have 
reached a consensus on the point that low serum HDL-C 
(<1.0 mmol/L) is an independent risk factor for ASCVD.[105,106] 
Thus, the use of HDL as a therapeutic target has been of great 
interest. After 3 orally active HDL-raising agents, including 
niacin[107,108] and 2 cholesteryl ester transfer protein inhibi-
tors,[109,110] failed in prospective intervention trials, experts pro-
posed a change in the target of HDL therapy from elevation of 
circulating HDL-C levels to promote the functional properties 
of HDL.[111,112] Thus, the focus shifted to HDL infusion therapy, 
which can transiently increase the number of HDL particles and 
thereby enhance RCT.[111,112] HDL infusion agents include par-
tially delipidated, isolated HDL proteins, and native apoA-I or 
genetic variants.[113] These agents are classified as either recon-
stituted or recombinant, where rHDL is derived from human 
plasma, while recombinant is formed using other sources.[114] 
According to previous studies, 3 important HDL formulations 
have been clinically evaluated. The first agent is MDCO-216 
(and its precursor ETC-216), also known as apoA-IMilano, which 
is a naturally occurring genetic mutation in apoA-I. This vari-
ant has been found to have a shortened lifetime in the plasma, 
which causes faster catabolism of apoA-I, thereby increasing 
the amount of lipid-poor apolipoprotein present in plasma and 
increasing RCT capabilities.[115] Thus, recombinant apoA-IMi-

lano was developed for infusion. Small intravascular ultrasound 
(IVUS) clinical trials (47–60 patients) have compared the effect 
of ETC-216 or placebo on coronary atheroma burden, and 
showed that infusions of apoA-IMilano in patients with coronary 
artery disease significantly reduced coronary plaque volume 
(1%–2% relative to placebo) and were safe and generally well 

Figure 3. The effect of high-density lipoprotein on neointimal hyperplasia. ApoJ = apolipoprotein J, ERK = extracellular signal-regulated kinase, HDL = high-den-
sity lipoprotein, IκBα = inhibitor of NF-κB, NF-κB = nuclear factor-κB, PI3K = phosphatidylinositol 3-kinase, pRb = retinoblastoma protein, SMCs = smooth 
muscle cells, SR-BI = scavenger receptor B type I, TNF-α = tumor necrosis factor α.
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tolerated.[116,117] However, a double-blind, randomized, multi-
center trial has compared the effects of 5 weekly intravenous 
infusions of MDCO-216 at a dose of 20 mg/kg weekly (n = 59) 
with placebo (n = 67) in statin-treated patients with acute cor-
onary syndrome (ACS). The results showed that MDCO-216 
infusion did not produce an incremental plaque regression.[118] 
The second agent is CER-001, which is an artificial HDL-
mimetic composed of human recombinant human apoA-I and 
2 naturally occurring phospholipids. In a smaller human study, 
patients with familial hypoalphalipoproteinemia were given 20 
infusions of CER-001.[119] After only 9 infusions, magnetic res-
onance imaging showed a significant increase in mobilization 
of cholesterol from the arterial wall. Six months after infusions, 
there were significant increases in the amounts of apoA-I, HDL, 
and free cholesterol.[119] A clinical trial compared the effect of 
6 weekly infusions of CER-001 (3, 6, and 12 mg/kg) versus 
placebo on coronary atherosclerosis in 369 ACS patients using 
IVUS, and found that infusions of 3 mg/kg CER-001 induced 
the greatest atheroma regression in ACS patients with higher 
baseline percent atheroma volume.[120] Nevertheless, the results 
of a prospective, double-blinded, randomized trial conducted at 
51 centers comparing the effect of 6 weekly infusions of CER-
001 (3, 6, and 12 mg/kg) versus placebo in 570 ACS patients 
showed that CER-001 infusions did not reduce coronary ath-
erosclerosis.[121] Another double-blind, randomized, multicenter 
trial compared the effect of 10 weekly infusions of CER-001 
(3 mg/kg) (n = 135) versus placebo (n = 137) in ACS patients 
with a high plaque burden, and the results demonstrated that 
infusion of CER-001 did not promote regression of coronary 
atherosclerosis.[122] The third agent is CSL112 (and its pre-
cursor CSL111), which contains reconstituted formulations 
of human plasma-derived apoA-I and phosphatidylcholine to 
form synthetic HDL particles. Clinical trials have assessed the 
safety and pharmacokinetics/pharmacodynamics of CSL112 
infusion in patients with stable atherosclerotic disease.[123,124] 

The results showed that CSL112 infusion was not only well 
tolerated but also immediately raised apoA-I levels and caused 
a rapid and marked increase in the capacity of serum to efflux 
cholesterol.[123,124] In a phase II study to further evaluate the 
efficacy, patients were randomized to receive either CSL112 or 
placebo, and efficacy was assessed using IVUS and coronary 
angiography.[125] Although there was no statistically significant 
difference between atheroma volume in CSL112 versus pla-
cebo after 4 weekly infusions, both the plaque characterization 
indexes and the coronary score on angiography (indexes to 
measure the composition of the plaque and quantify the bur-
den of coronary artery disease, respectively) showed significant 
decreases compared with placebo.[125] HDL infusion therapy 
can induce an acute increase in the plasma concentrations of 
apoA-I,[126,127] although the effect duration is relatively short, 
given that the half-life of apoA-I is approximately 48 to 72 
hours.[114] It has been suggested that the intravenous admin-
istration of HDL infusion therapy is unsuitable for long-term 
treatment regimens because liver toxicity (as indicated by ele-
vation of transaminases) has been observed at a higher rHDL 
infusion concentration in early phase trials of CSL-111.[128] 
However, further studies have reported that the reformulation 
of HDL infusion agents (CSL-112) is well tolerated and safe, 
without evidence of any major organ toxicity,[123,125] indicating 
that the toxic effect of CSL-111 can be attributed to the excipi-
ents rather than the apoA-I component. In summary, the devel-
opment of MDCO-216 and CER-001 has been discontinued 
because of a lack of efficacy in plaque regression in clinical 
trials.[129] However, CSL112 stimulates a far more substantial 
increase in ABCA1-dependent cholesterol efflux capacity than 
that achieved in phase II studies of MDCO-216 and CER-001 
(330% vs. 80%–90% and 6%, respectively), which shows a 
heady prospect.[124] We believe that some negative studies do 
not indicate the end of the research on apoA-I-based therapeu-
tics. We look forward to the results of the AEGIS-II phase III 

Figure 4. The effect of high-density lipoprotein on apoptosis of endothelial cells. ApoJ = Apolipoprotein J, ApoM = Apolipoprotein M, ECs = Endothelial cells, 
HDL = High-density lipoprotein, NF-κB = Nuclear factor-κB, ox-LDL = Oxidized low-density lipoprotein, ROS = Reactive oxygen species, S1P = Sphingosine-
1-phosphate, TNF-α = Tumor necrosis factor α.
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study.[130] Perhaps this large clinical trial will confirm the unique 
therapeutic value of CSL112.

However, previous animal studies and clinical trials related 
to HDL infusion therapies have focused on the stabilization of 
plaques and regression of atherosclerosis,[119,121,131–134] while few 
studies have focused on the value of HDL infusion therapy as 
an adjunctive therapy to promote post-PCI recovery of target 
vessels. To date, only Vanags et al[56] and Kaul et al[135] have 
reported the potential value of HDL infusion following BMS 
implantation. Although the 2 studies were animal studies and 
not clinical trials, the results were groundbreaking.

Over the last 2 decades, improvements in interventional 
techniques, refinements in stent design (particularly the advent 
of DES), and adjunctive DAPT have resulted in a remark-
able reduction in the overall rates of stent failure. However, 
although the technology of DES design continues to improve, 
unresolved problems related to stent biocompatibility persist, 
including delayed re-endothelialization and neoatheroscle-
rosis, which cause ST and ISR.[136] Although first-generation 
DES were efficacious in reducing ISR compared with BMS, 
they resulted in an increase in ST.[137] Vascular toxicity from 
the polymers that were not adequately biocompatible, delayed 
re-endothelialization, and ongoing inflammation were the 
most common causes of this phenomenon.[137] Second-
generation DES with more biocompatible polymers, thinner, 
more flexible cobalt-chromium or platinum-chromium struts, 
and newer anti-proliferative drugs – with the 2 limus analogs 
(zotarolimus and everolimus) replacing paclitaxel to exhibit 
a wider toxic-therapeutic ratio—have markedly reduced but 
not eliminated ST.[138] Furthermore, neoatherosclerosis is an 
important contributing factor to late stent-related cardio-
vascular events after DES deployment. The histopathologi-
cal substrate of neoatherosclerosis is similar to that of native 
atherosclerosis, which contains macrophage/foam cells, cho-
lesterol clefts, areas of calcification, and necrotic cores.[139] It 
has been widely hypothesized that the underlying biological 
mechanisms leading to neoatherosclerosis are closely related to 
the progression of native coronary atherosclerosis.[140] During 
stent deployment, as the vascular wall undergoes expansion by 
stent struts, endothelial denudation, significant medial injury, 
plaque compression, and rupture of the internal elastic lam-
ina occur, thereby triggering an inflammatory response. Over 
time, plaque is capable of becoming a source of growth factors, 
cytokines, and chemokines, thereby promoting neoatheroscle-
rosis.[140] Neoatherosclerosis occurs within a much shorter 
time frame than native atherosclerosis at 6 months to 5 years 
after stent deployment.[141] Neoatherosclerosis accelerates the 
late expansion of the neointima as a key cause of stent failure. 
Neointimal plaques can also become unstable, with ruptured 
thin-capped neointimal plaques acting as the primary cause of 
very late ST.[142] Although the mechanisms of neoatherosclero-
sis have not been entirely elucidated, the higher occurrence of 
neoatherosclerosis in DES may be the result of drug resistance, 
a reaction to the DES polymers, or DES-induced delayed re-en-
dothelialization.[142] Therefore, the addition of novel adjunc-
tive therapies to reduce these risks remains crucial.

Numerous previous studies have documented the beneficial 
effects of HDL on blood vessels[56,91,127] and the safety of HDL 
infusion therapies,[123,125] suggesting that the HDL infusion 
may be a promising therapy to improve stent biocompatibil-
ity for ASCVD patients with DAPT intolerance after stenting. 
However, no clinical trials thus far have demonstrated the 
benefits of HDL infusion for ASCVD patients who underwent 
PCI treatment. Large clinical trials of HDL infusion should be 
conducted in these patients; however before that, researchers 
have to make a very detailed proposal about the single dose and 
treatment duration of HDL infusion therapy after DES implan-
tation. Overall, HDL formulations delivered via infusion repre-
sent a new modality of adjunctive therapy following PCI, which 
is a novel research direction.

5. Conclusion
HDL has a number of beneficial effects on stent biocompatibil-
ity after PCI, such as the maintenance of vascular endothelial 
function, protection of endothelial integrity, enhancement of 
re-endothelialization, and reduction of inflammation and plate-
let activation. HDL infusion therapy is a promising candidate 
for improving stent biocompatibility following implantation. 
We believe that the application of HDL infusion therapy fol-
lowing DES implantation will greatly shorten the duration of 
DAPT and significantly reduce the incidence of ST. Given that 
there are few related studies, further studies on HDL infusions 
and the beneficial role of HDL in stent biocompatibility have 
the potential to yield better adjunctive therapy regimens fol-
lowing PCI.
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