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Abstract: Purinergic receptors of the P2 subclass are commonly found in human and rodent
macrophages where they can be activated by adenosine 5′-triphosphate (ATP) or uridine 5′-triphosphate
(UTP) to mediate Ca2+ mobilization, resulting in downstream signalling to promote inflammation and
pain. However, little is understood regarding these receptors in canine macrophages. To establish a
macrophage model of canine P2 receptor signalling, the expression of these receptors in the DH82 canine
macrophage cell line was determined by reverse transcription polymerase chain reaction (RT-PCR)
and immunocytochemistry. P2 receptor function in DH82 cells was pharmacologically characterised
using nucleotide-induced measurements of Fura-2 AM-bound intracellular Ca2+. RT-PCR revealed
predominant expression of P2X4 receptors, while immunocytochemistry confirmed predominant
expression of P2Y2 receptors, with low levels of P2X4 receptor expression. ATP and UTP induced
robust Ca2+ responses in the absence or presence of extracellular Ca2+. ATP-induced responses
were only partially inhibited by the P2X4 receptor antagonists, 2′,3′-O-(2,4,6-trinitrophenyl)-ATP
(TNP-ATP), paroxetine and 5-BDBD, but were strongly potentiated by ivermectin. UTP-induced
responses were near completely inhibited by the P2Y2 receptor antagonists, suramin and AR-C118925.
P2Y2 receptor-mediated Ca2+ mobilization was inhibited by U-73122 and 2-aminoethoxydiphenyl
borate (2-APB), indicating P2Y2 receptor coupling to the phospholipase C and inositol triphosphate
signal transduction pathway. Together this data demonstrates, for the first time, the expression of
functional P2 receptors in DH82 canine macrophage cells and identifies a potential cell model for
studying macrophage-mediated purinergic signalling in inflammation and pain in dogs.
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1. Introduction

The activation of purinergic receptors by nucleotides such as adenosine 5′-triphosphate (ATP) and
uridine 5′-triphosphate (UTP) is crucial for a number of inflammatory processes, including those in the
central nervous system (CNS) such as chronic pain [1–4] and remyelination of nerves following injury
to the CNS [5,6]. The P2 receptor family consists of seven mammalian ionotropic P2X receptors (P2X1-7)
and eight mammalian metabotropic P2Y receptors (P2Y1,2,4,6,11–14) that can modulate intracellular Ca2+

concentrations through direct ion channel permeation or mobilization of intracellular Ca2+ stores,
respectively [7]. P2 receptors, such as the P2X4 and P2Y2 receptors, are commonly expressed on human
and rodent macrophages and macrophage cell lines [8–14], and have demonstrated roles in signalling
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pathways that control chronic pain and inflammation in humans or rodents [2,8,15–18]. Despite this,
studies on purinergic signalling in canine macrophages are lacking.

The DH82 cell line is a canine macrophage cell line isolated from a 10 year old Golden Retriever
with malignant histiocytosis [19]. This cell line has recently been demonstrated as a useful model of
canine macrophage physiology, bearing similarities to an M0 macrophage subtype with demonstrated
potential for polarisation to either M1 or M2a subtypes through cytokine stimulation [20]. Studies have
demonstrated that DH82 cells express a number of macrophage markers, such as CD11c and CD18 [21],
and can secrete tumour necrosis factor (TNF)-α and interleukin (IL)-6 similar to that observed in
lipopolysaccharide (LPS)-stimulated canine monocytes [22]. Despite its use as an in vitro model of viral
and protozoan infection [23–25], knowledge regarding purinergic signalling in DH82 cells is limited
to a single report describing ATP- and adenosine-induced cytokine release [26]. Although this study
did not investigate any purinergic receptor per se, DH82 cells represent a possible model to study
endogenous P2 receptors in canine macrophages for a number of reasons. Firstly, the original study
revealed that ATP could alter cytokine expression in LPS-stimulated DH82 cells [26]. Secondly, infection
of DH82 cells with canine distemper virus modulates inflammatory signalling pathways [27] that are
common to P2X receptor-mediated signalling [28]. Thirdly, despite few studies analysing the expression
of P2 receptors in dogs, it has been demonstrated that canine monocytes express P2X7 receptors [29,30].
Lastly, human and rodent macrophage or myeloid cell lines, such as THP-1 and RAW264.7 cells,
are well-established models for studying endogenous P2 receptors commonly expressed on human and
rodent macrophages [31–38].

The current study aimed to establish a canine macrophage model of P2 receptor signalling.
Through investigation of canine P2 receptor expression and functional characterisation of these
receptors, this study has identified the P2Y2 receptor and, to a lesser extent, the P2X4 receptor,
as the primary functional P2 receptors in DH82 cells, which are responsible for nucleotide-mediated
Ca2+ mobilization.

2. Results

2.1. DH82 Cells Express Abundant P2RX4 mRNA Compared to Other P2 Receptors

To establish a P2 receptor mRNA expression profile for DH82 cells, cDNA was amplified by
RT-PCR using primer pairs (Table S1) designed to genes encoding canine P2X1-7 receptors and canine
P2Y1,2,4,6,11–14 receptors and amplicons were semi-quantitatively analysed by agarose gel electrophoresis
and densitometry. P2X4 receptor mRNA was most abundant in DH82 cells, with relative amounts
comparable to glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Figure 1) and β-actin (ACTB;
data not shown). Other P2X receptor mRNAs, including P2X1 and P2X7 receptors were detected,
but to a much lesser degree than the P2X4 receptor (Figure 1). Additionally, mRNA from a number of
P2Y receptor subtypes were also detected, including P2Y1, P2Y2, P2Y6 and P2Y11 receptors, however,
as with P2X1 and P2X7 receptors, these were expressed at greatly reduced levels compared to the P2X4
receptor (Figure 1).
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genes, with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a positive control. Amplification 

in absence of cDNA was conducted for each primer pair to ensure primer specificity. Amplicons were 

visualized by agarose gel electrophoresis using GelRed and the GelDoc XR+ imaging system and semi-

quantitatively analysed by densitometry. Data shown are the mean ± SEM relative to GAPDH 

expression from three independent experiments. 
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To establish an agonist profile for functional P2 receptors in DH82 cells, nucleotides which have 

previously demonstrated activity towards P2 receptors from dogs, humans or rodents [39,40] were 

utilised to measure changes in intracellular Ca2+. These nucleotides were ATP, 3’-O-(4-benzoyl)benzoyl-

ATP (BzATP), adenosine-5′-diphosphate (ADP), 2-methylthio-ADP (2MeSADP), uridine-5′-

triphosphate (UTP) and uridine-5′-diphosphate (UDP). ADP was preincubated with hexokinase to 

remove trace amounts of ATP [41]. Incubation with ATP or UTP induced robust Ca2+ responses 

(ΔF340/380) in DH82 cells, which peaked approximately 15 s after application of nucleotides (Figure 

2A,B). Ca2+ responses then decayed more slowly, returning to baseline approximately 70-80 s after the 

initial peak was observed (Figure 2A,B). Incubation with ADP or BzATP resulted in much smaller Ca2+ 

responses compared to ATP and UTP (Figure 2C,D). UDP and 2MeSADP were unable to induce Ca2+ 

responses up to 30 µM and 100 µM, respectively (Figure 2E,F). Decay time, calculated as the time 

constant (τ), was similar for ATP and UTP (τ = 56.9 ± 4.8 s and 56.7 ± 5.9 s, respectively), however, 

BzATP (τ = 102.3 ± 17.9 s) had a significantly longer decay time compared to ATP (p < 0.05), UTP (p < 

0.05) or ADP (τ = 23.8 ± 0.4 s; p < 0.001), while UDP and 2MeSADP did not respond and as such, decay 

time could not be calculated (Figure 2G). 

Figure 1. Expression of P2X and P2Y receptor mRNA in DH82 cells. RNA was isolated from DH82 cells
and cDNA was synthesized and amplified using primer pairs designed to each respective P2RX or P2RY
genes, with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a positive control. Amplification
in absence of cDNA was conducted for each primer pair to ensure primer specificity. Amplicons were
visualized by agarose gel electrophoresis using GelRed and the GelDoc XR+ imaging system and
semi-quantitatively analysed by densitometry. Data shown are the mean ± SEM relative to GAPDH
expression from three independent experiments.

2.2. Nucleotides Mediate Ca2+ Responses in DH82 Cells

To establish an agonist profile for functional P2 receptors in DH82 cells, nucleotides which have
previously demonstrated activity towards P2 receptors from dogs, humans or rodents [39,40] were
utilised to measure changes in intracellular Ca2+. These nucleotides were ATP, 3′-O-(4-benzoyl)benzoyl-
ATP (BzATP), adenosine-5′-diphosphate (ADP), 2-methylthio-ADP (2MeSADP), uridine-5′-triphosphate
(UTP) and uridine-5′-diphosphate (UDP). ADP was preincubated with hexokinase to remove trace
amounts of ATP [41]. Incubation with ATP or UTP induced robust Ca2+ responses (∆F340/380) in DH82
cells, which peaked approximately 15 s after application of nucleotides (Figure 2A,B). Ca2+ responses
then decayed more slowly, returning to baseline approximately 70–80 s after the initial peak was
observed (Figure 2A,B). Incubation with ADP or BzATP resulted in much smaller Ca2+ responses
compared to ATP and UTP (Figure 2C,D). UDP and 2MeSADP were unable to induce Ca2+ responses
up to 30 µM and 100 µM, respectively (Figure 2E,F). Decay time, calculated as the time constant
(τ), was similar for ATP and UTP (τ = 56.9 ± 4.8 s and 56.7 ± 5.9 s, respectively), however, BzATP
(τ = 102.3 ± 17.9 s) had a significantly longer decay time compared to ATP (p < 0.05), UTP (p < 0.05) or
ADP (τ = 23.8 ± 0.4 s; p < 0.001), while UDP and 2MeSADP did not respond and as such, decay time
could not be calculated (Figure 2G).

As Ca2+ responses were observed with a number of nucleotides, including those known to activate
mammalian ionotropic P2X (ATP, BzATP) and metabotropic P2Y receptors (ATP, UTP, ADP), both the
peak nucleotide-induced Ca2+ responses (Figure 2H) and net Ca2+ movement (Figure 2I; calculated as
area under the curve [AUC]) were used for constructing concentration-response curves to account for
potential differences in Ca2+ response phenotypes in a model of co-expression of P2X and P2Y receptor
subtypes. In DH82 cells, nucleotides induced concentration-dependent Ca2+ responses with the rank
order of potency of UTP > ATP >> ADP ≈ BzATP, with UDP and 2MeSADP being unresponsive
(Figure 2H,I; Table 1). There were no significant differences between the EC50 values calculated for net
Ca2+ movement and peak Ca2+ response for any nucleotide (Table 1).
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Figure 2. Nucleotide-induced Ca2+ response profiles for DH82 cells. (A–I) DH82 cells in extracellular
Ca2+ solution (ECS) were loaded with Fura-2, incubated in the absence (basal) or presence of each
nucleotide (as indicated) and Fura-2 fluorescence was recorded. Ca2+ traces (∆F340/380) for (A) 100 µM
adenosine 5′-triphosphate (ATP) (n = 6), (B) 30 µM uridine 5′-triphosphate (UTP) (n = 3), (C) 100 µM
adenosine 5′-diphosphate (ADP) (preincubated with 4.5 U/mL hexokinase for 1 h at 37 ◦C) (n = 3),
(D) 300 µM 3’-O-(4-benzoyl)benzoyl-ATP (BzATP) (n = 3), (E) 30 µM uridine 5′-diphosphate (UDP)
(n = 3) and (F) 100 µM 2-methylthio-ADP (2MeSADP) (n = 3). (G) One phase decay time (τ) calculated
from the peak of each Ca2+ trace, ND = no data. (H) Peak nucleotide-induced Ca2+ responses and
(I) net Ca2+ movement were fit to the Hill equation to produce concentration-response curves (n values
correspond to respective individual traces above). (A–I) Data shown are the mean ± SEM from three
to six independent experiments as indicated. (G) * p < 0.05 and *** p < 0.001 between nucleotides as
indicated analysed using a one-way ANOVA with Bonferroni post hoc test.

Table 1. Nucleotide-induced changes in intracellular Ca2+ in DH82 cells as measured by half maximal
effective concentration.

Nucleotide
Peak Ca2+ Response Net Ca2+ Response

pEC50 Hill Coefficient pEC50 Hill Coefficient

ATP 5.88 ± 0.05 (100%) 0.99 5.92 ± 0.09 (100%) 1.43
UTP 6.16 ± 0.09 (65.9%) 1.02 6.26 ± 0.12 (69.1%) 1.71

ADP 1 4.03 ± 0.30 (26.4%) 2 1.47 4.07 ± 0.21 (19.9%) 2 1.00
BzATP <4.00 (12.1%) 3 2.26 <4.00 (20.5%) 3 2.66
UDP ND (<10%) - ND (<10%) -

2MeSADP ND (<10%) - ND (<10%) -

Abbreviations: AUC, area under the curve; ND, not determined (pEC50 not calculated due to lack of response).
Values in parentheses indicate the percent of each maximum agonist response compared to 100 µM ATP.1 ADP in
the presence of hexokinase to remove contaminating ATP.2 p < 0.05 compared to the respective pEC50 of ATP and
UTP (one-way ANOVA).3 p < 0.01 compared to the respective pEC50 of ATP and UTP (one-way ANOVA).
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2.3. P2X4 Receptors Mediate Minor Changes in Intracellular Ca2+ in DH82 Cells

2.3.1. TNP-ATP Partially Reduces ATP-Induced Net Ca2+ Movement

To determine if the observed Ca2+ responses were mediated by P2X receptors, DH82 cells
were preincubated with the non-selective P2X receptor antagonist, 2′,3′-O-(2,4,6-trinitrophenyl)-ATP
(TNP-ATP) [42], then exposed to ATP. Preincubation with 50 µM TNP-ATP partially reduced Ca2+

responses mediated by 10 µM ATP, but did not significantly inhibit Ca2+ responses evoked by 1 µM or
100 µM ATP (Figure 3A–C). This was supported by a significant reduction in net Ca2+ movement at
10 µM ATP, but not at other ATP concentrations (Figure 3E). Despite this, no significant change in peak
Ca2+ response or shift in decay time was observed (Figure 3D,F). Preincubation with TNP-ATP did not
result in a significant shift in the peak Ca2+ response EC50 for ATP, compared to cells preincubated
in the absence of TNP-ATP (Figure 3D; pEC50 5.38 ± 0.08 vs. 5.57 ± 0.13, respectively; p = 0.133
Student’s t-test). In contrast, preincubation with TNP-ATP did result in a significant shift in the net Ca2+

movement EC50 compared to cells preincubated in absence of TNP-ATP (Figure 2E; pEC50 5.04 ± 0.14
vs. 5.69 ± 0.13, respectively; p = 0.007 Student’s t-test).
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Figure 3. ATP-induced Ca2+ responses in DH82 cells in the absence or presence of 2′,3′-O-(2,4,6-
trinitrophenyl)-ATP (TNP-ATP). (A–F) DH82 cells in ECS were loaded with Fura-2 and preincubated
in the absence (ATP alone) or presence of 50 µM TNP-ATP (in ECS) for 5 min. Cells were exposed to
increasing concentrations of ATP and Fura-2 fluorescence was recorded. (A–C) ATP-induced Ca2+

traces (F340/380) were plotted and the (D) peak Ca2+ response and (E) net Ca2+ movement were fit to the
Hill equation to produce concentration-response curves. (F) One phase decay time (τ) calculated from
the peak of each Ca2+ trace in (A–C). (A–F) Data shown are the mean ± SEM from four independent
experiments. (D–F) ** p < 0.01 compared to respective concentration of ATP alone analysed using a
two-way ANOVA with Bonferroni post hoc test.

2.3.2. Paroxetine Partially Reduces ATP-Induced Net Ca2+ Movement

To further investigate the role of P2X receptors in DH82 cells, ATP-induced Ca2+ responses were
measured in cells preincubated with paroxetine, a selective serotonin reuptake inhibitor which has
been shown to inhibit P2X4 receptors [41,43,44] and human (but not rodent) P2X7 receptors [45,46].
Preincubation with paroxetine partially reduced Ca2+ responses mediated by ATP concentrations
of 10 µM or greater, with a small, but non-significant inhibitory effect observed at 1 µM or below
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(Figure 4A–C). Similar to TNP-ATP, preincubation with paroxetine did not significantly reduce peak
Ca2+ responses (Figure 4D), however, did significantly reduce net Ca2+ movement and decay kinetics
(Figure 4E,F). Preincubation with paroxetine did not significantly shift the EC50 of ATP compared to
cells preincubated in absence of paroxetine for peak Ca+ response (Figure 4D; pEC50 5.55 ± 0.31 vs.
5.51 ± 0.48, respectively; p = 0.479 Student’s t-test) or net Ca2+ movement (Figure 4E; pEC50 5.27 ± 0.35
vs. 5.4 ± 0.28, respectively; p = 0.387 Student’s t-test).
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Figure 4. ATP-induced Ca2+ responses in DH82 cells in the absence or presence of paroxetine. (A–F) DH82
cells in ECS were loaded with Fura-2 and preincubated in the absence (ATP alone) or presence of
100 µM paroxetine (both 0.3% dimethyl sulfoxide; DMSO) for 5 min. Cells were then exposed to
increasing concentrations of ATP and Fura-2 fluorescence was recorded. (A–C) ATP-induced Ca2+

traces (F340/380) were plotted and the (D) peak Ca2+ response and (E) net Ca2+ movement were fit to the
Hill equation to produce concentration-response curves. (F) One phase decay time (τ) calculated from
the peak of each Ca2+ trace in (A–C). (A–F) Data shown are the mean ± SEM from four independent
experiments. (D–F) * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to respective concentration of ATP
alone analysed using a two-way ANOVA with Bonferroni post hoc test.

2.3.3. 5-BDBD Partially Reduces ATP-Induced Net Ca2+ Movement

To determine further if P2X4 receptors played a role in the observed ATP-induced Ca2+ responses,
DH82 cells were preincubated with the selective P2X4 receptor antagonist, 5-BDBD, of which was
recently demonstrated to inhibit the canine P2X4 receptor [41]. Preincubation with 30 µM 5-BDBD
had no significant inhibitory effects on the Ca2+ response mediated by ATP (Figure 5A–C). There was
no significant difference in the EC50 for cells preincubated in the absence or presence of 5-BDBD for
ATP-induced peak Ca2+ response (Figure 5D; pEC50 5.87 ± 0.12 vs. 5.82 ± 0.10, respectively; p = 0.372
Student’s t-test) or net Ca2+ movement (Figure 5E; pEC50 5.73 ± 0.18 vs. 5.64 ± 0.14, respectively;
p = 0.358 Student’s t-test), although a trend towards decreased net Ca2+ movement was observed at
10 µM ATP (Figure 5E). Of note, there was a significant reduction in decay kinetics at 10 µM ATP
for cells preincubated in the presence of 5-BDBD compared to those in absence of the antagonist
(Figure 5F).
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induced peak Ca2+ response (Figure 5D; pEC50 5.87 ± 0.12 vs. 5.82 ± 0.10, respectively; p = 0.372 Student’s 

t-test) or net Ca2+ movement (Figure 5E; pEC50 5.73 ± 0.18 vs. 5.64 ± 0.14, respectively; p = 0.358 Student’s 

t-test), although a trend towards decreased net Ca2+ movement was observed at 10 µM ATP (Figure 

5E). Of note, there was a significant reduction in decay kinetics at 10 µM ATP for cells preincubated in 

the presence of 5-BDBD compared to those in absence of the antagonist (Figure 5F). 

 

Figure 5. ATP-induced Ca2+ responses in DH82 cells in the absence or presence of 5-BDBD. (A–F) DH82 

cells in ECS were loaded with Fura-2 and preincubated in the absence (ATP alone) or presence of 30 µM 

5-BDBD (both 0.3% DMSO) for 5 min. Cells were then exposed to increasing concentrations of ATP and 

Fura-2 fluorescence was recorded. (A–C) ATP-induced Ca2+ traces (F340/380) were plotted and the (D) 

peak Ca2+ response and (E) net Ca2+ movement were fit to the Hill equation to produce concentration-

response curves. (F) One phase decay time (τ) calculated from the peak of each Ca2+ trace in (A–C). (A–

F) Data shown are mean ± SEM from five independent experiments. (D–F) * p < 0.05 compared to 

respective concentration of ATP alone analysed using a two-way ANOVA with Bonferroni post hoc test. 

2.3.4. Ivermectin Positively Modulates ATP-Induced Net Ca2+ Movement 

It has recently been demonstrated that ivermectin can effectively potentiate Ca2+ responses 

mediated by canine P2X4 receptors [41]. To further investigate if DH82 cells express functional P2X4 

receptors, cells were preincubated with ivermectin prior to activation with increasing concentrations of 

ATP. Preincubation with 3 µM ivermectin revealed a strong potentiation of ATP-induced Ca2+ 

responses in DH82 cells (Figure 6A–C), with significant increases in ATP-induced net Ca2+ movement 

and peak Ca2+ response observed in the presence of ivermectin compared to cells preincubated in 

absence of ivermectin at ATP concentrations upwards of 10 µM (Figure 6D,E). Despite this, there was 

no significant difference in the EC50 in the absence or presence of ivermectin for ATP-induced peak Ca2+ 

response (Figure 6D; pEC50 5.76 ± 0.19 vs. 5.37 ± 0.35; p = 0.372 Student’s t–test) or net Ca2+ movement 

(Figure 6E; pEC50 5.62 ± 0.01 vs. 5.57 ± 0.12, respectively; p = 0.358 Student’s t-test). Additionally, there 

were no significant differences in decay kinetics between cells preincubated in absence or presence of 

Figure 5. ATP-induced Ca2+ responses in DH82 cells in the absence or presence of 5-BDBD. (A–F) DH82
cells in ECS were loaded with Fura-2 and preincubated in the absence (ATP alone) or presence of
30 µM 5-BDBD (both 0.3% DMSO) for 5 min. Cells were then exposed to increasing concentrations of
ATP and Fura-2 fluorescence was recorded. (A–C) ATP-induced Ca2+ traces (F340/380) were plotted
and the (D) peak Ca2+ response and (E) net Ca2+ movement were fit to the Hill equation to produce
concentration-response curves. (F) One phase decay time (τ) calculated from the peak of each Ca2+

trace in (A–C). (A–F) Data shown are mean ± SEM from five independent experiments. (D–F) * p < 0.05
compared to respective concentration of ATP alone analysed using a two-way ANOVA with Bonferroni
post hoc test.

2.3.4. Ivermectin Positively Modulates ATP-Induced Net Ca2+ Movement

It has recently been demonstrated that ivermectin can effectively potentiate Ca2+ responses
mediated by canine P2X4 receptors [41]. To further investigate if DH82 cells express functional P2X4
receptors, cells were preincubated with ivermectin prior to activation with increasing concentrations
of ATP. Preincubation with 3 µM ivermectin revealed a strong potentiation of ATP-induced Ca2+

responses in DH82 cells (Figure 6A–C), with significant increases in ATP-induced net Ca2+ movement
and peak Ca2+ response observed in the presence of ivermectin compared to cells preincubated in
absence of ivermectin at ATP concentrations upwards of 10 µM (Figure 6D,E). Despite this, there
was no significant difference in the EC50 in the absence or presence of ivermectin for ATP-induced
peak Ca2+ response (Figure 6D; pEC50 5.76 ± 0.19 vs. 5.37 ± 0.35; p = 0.372 Student’s t–test) or net
Ca2+ movement (Figure 6E; pEC50 5.62 ± 0.01 vs. 5.57 ± 0.12, respectively; p = 0.358 Student’s t-test).
Additionally, there were no significant differences in decay kinetics between cells preincubated in
absence or presence of ivermectin (Figure 6F). Collectively this and the above data suggests that DH82
cells express functional P2X4 receptors.
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reduction in ATP- and UTP-induced Ca2+ responses (Figure 7B,G). This was supported by significant 

reductions in decay time (Figure 7K) and net Ca2+ movement (Figure 7L,M) for both ATP- and UTP-

mediated responses. In contrast, preincubation with the cell-permeant Ca2+ chelator, 1,2-bis(2-

aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), near 

completely reduced ATP- and UTP-induced Ca2+ responses (Figure 7C,H) and net Ca2+ movement 

(Figure 7L,M) in DH82 cells. Treatment with thapsigargin, to inhibit sarco/endoplasmic reticulum Ca2+ 

ATPase pumps [48], near completely reduced ATP- and UTP-induced Ca2+ responses in the presence 

of extracellular Ca2+ (ECS; Figure 7D,I,L,M) and completely reduced these responses in the absence of 

extracellular Ca2+ (EGTA; Figure 7E,J,L,M). Together, this suggests the involvement of both P2X and 

P2Y receptors in DH82 cells for mediating changes in intracellular Ca2+ in response to activation by 

nucleotides. 

  

Figure 6. ATP-induced Ca2+ responses in DH82 cells in the absence or presence of ivermectin.
(A–F) DH82 cells in ECS were loaded with Fura-2 and preincubated in the absence (ATP alone) or
presence of 3 µM ivermectin (both 0.1% DMSO) for 5 min. Cells were then exposed to increasing
concentrations of ATP and Fura-2 fluorescence was recorded. (A–C) ATP-induced Ca2+ traces (F340/380)
were plotted and the (D) peak Ca2+ response and (E) net Ca2+ movement were fit to the Hill equation
to produce concentration-response curves. (F) One phase decay time (τ) calculated from the peak of
each Ca2+ trace in (A–C). (A–F) Data shown are mean ± SEM from five independent experiments.
(D–F) *** p < 0.001 compared to respective concentration of ATP alone analysed using a two-way
ANOVA with Bonferroni post hoc test.

2.4. ATP and UTP Mediate Both Ca2+ Influx and Store-Operated Ca2+ Entry in DH82 Cells

Despite the apparent P2X4-mediated effects on Ca2+ responses in DH82 cells, a lack of complete
inhibition by P2X receptor antagonists, as well as the responsiveness to UTP, suggest the presence
of functional P2Y receptors in DH82 cells. To determine if Gq/11-coupled P2Y receptors, which have
demonstrated roles in store-operated Ca2+ entry [47], were involved in the observed Ca2+ responses
in DH82 cells, nucleotide-induced changes in intracellular Ca2+ were measured in the presence
of extracellular or intracellular Ca2+ chelators. Compared to cells in the presence of extracellular
Ca2+ (Figure 7A,F), cells incubated with ethylene glycol tetraacetic acid (EGTA) demonstrated a
partial reduction in ATP- and UTP-induced Ca2+ responses (Figure 7B,G). This was supported by
significant reductions in decay time (Figure 7K) and net Ca2+ movement (Figure 7L,M) for both
ATP- and UTP-mediated responses. In contrast, preincubation with the cell-permeant Ca2+ chelator,
1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM),
near completely reduced ATP- and UTP-induced Ca2+ responses (Figure 7C,H) and net Ca2+ movement
(Figure 7L,M) in DH82 cells. Treatment with thapsigargin, to inhibit sarco/endoplasmic reticulum Ca2+

ATPase pumps [48], near completely reduced ATP- and UTP-induced Ca2+ responses in the presence
of extracellular Ca2+ (ECS; Figure 7D,I,L,M) and completely reduced these responses in the absence
of extracellular Ca2+ (EGTA; Figure 7E,J,L,M). Together, this suggests the involvement of both P2X
and P2Y receptors in DH82 cells for mediating changes in intracellular Ca2+ in response to activation
by nucleotides.
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acid tetrakis(acetoxymethyl ester) (BAPTA-AM) for 30 min or (D,E,I,J) 1 µM thapsigargin (TG) for 30 

min prior to incubation in the absence (D,I) or presence (E,J) of 2 mM EGTA. (A–M) Cells were then 

exposed to (A–E) 100 µM ATP or (F–J) 30 µM UTP and Fura-2 fluorescence was recorded. (K) One phase 

decay time (τ) calculated from the peak of each Ca2+ trace in (A,B,F,G). (L,M) Net Ca2+ movement from 

each trace in A–J. (A–M) Data shown are the mean ± SEM from four independent experiments. * p < 

0.05, ** p < 0.01 and *** p < 0.001 compared to respective ECS alone control; † p < 0.05, †† p < 0.01 and ††† p 

< 0.001 compared to EGTA; # p < 0.05 compared to BAPTA-AM analysed using a (K) Student’s t-test or 

(L,M) one-way ANOVA with Bonferroni post hoc test. 

2.5. P2Y2 Receptor Activation Mediates Ca2+ Mobilization in DH82 Cells 

2.5.1. Suramin Reduces ATP- and UTP-Induced Ca2+ Mobilization 

The data presented above suggests a major role for an ATP- and UTP-responsive P2Y receptor in 

Ca2+ mobilization within DH82 cells. Previous studies have demonstrated that the canine P2Y2 receptor 

in Madin–Darby canine kidney (MDCK) cells responds to both ATP and UTP with similar potency [49]. 

Therefore, to determine if nucleotide-induced Ca2+ mobilization was mediated by P2Y2 receptors, DH82 

cells were preincubated with increasing concentrations of the non-selective P2 receptor antagonist, 

suramin [50], which is selective for P2Y2 over P2Y4 receptors [51]. Cells were then incubated with ATP 

or UTP at their respective EC80 to determine the optimal concentration for P2Y receptor inhibition. 

Preincubation of DH82 cells with 1 mM suramin inhibited Ca2+ responses evoked by 3 µM ATP, 

however lower concentrations of suramin (<100 µM) had little to no inhibitory effect (Figure 8A). In 

Figure 7. Nucleotide-induced Ca2+ responses in the absence or presence of extracellular and/or
intracellular Ca2+. (A–M) DH82 cells in (A,D,F,I) ECS or (B,C,E,G,H,J) Ca2+-free solution were loaded
with Fura-2 and preincubated in the absence (A,D,F,I) (ECS) or presence (B,E,F,J) of 2 mM ethylene
glycol tetraacetic acid EGTA for 30 s, (C,H) 15 µM 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic
acid tetrakis(acetoxymethyl ester) (BAPTA-AM) for 30 min or (D,E,I,J) 1 µM thapsigargin (TG) for
30 min prior to incubation in the absence (D,I) or presence (E,J) of 2 mM EGTA. (A–M) Cells were then
exposed to (A–E) 100 µM ATP or (F–J) 30 µM UTP and Fura-2 fluorescence was recorded. (K) One phase
decay time (τ) calculated from the peak of each Ca2+ trace in (A,B,F,G). (L,M) Net Ca2+ movement
from each trace in A–J. (A–M) Data shown are the mean ± SEM from four independent experiments.
* p < 0.05, ** p < 0.01 and *** p < 0.001 compared to respective ECS alone control; † p < 0.05, †† p < 0.01
and ††† p < 0.001 compared to EGTA; # p < 0.05 compared to BAPTA-AM analysed using a (K) Student’s
t-test or (L,M) one-way ANOVA with Bonferroni post hoc test.

2.5. P2Y2 Receptor Activation Mediates Ca2+ Mobilization in DH82 Cells

2.5.1. Suramin Reduces ATP- and UTP-Induced Ca2+ Mobilization

The data presented above suggests a major role for an ATP- and UTP-responsive P2Y receptor
in Ca2+ mobilization within DH82 cells. Previous studies have demonstrated that the canine P2Y2

receptor in Madin–Darby canine kidney (MDCK) cells responds to both ATP and UTP with similar
potency [49]. Therefore, to determine if nucleotide-induced Ca2+ mobilization was mediated by
P2Y2 receptors, DH82 cells were preincubated with increasing concentrations of the non-selective P2
receptor antagonist, suramin [50], which is selective for P2Y2 over P2Y4 receptors [51]. Cells were then
incubated with ATP or UTP at their respective EC80 to determine the optimal concentration for P2Y
receptor inhibition. Preincubation of DH82 cells with 1 mM suramin inhibited Ca2+ responses evoked



Int. J. Mol. Sci. 2020, 21, 8572 10 of 22

by 3 µM ATP, however lower concentrations of suramin (<100 µM) had little to no inhibitory effect
(Figure 8A). In contrast, preincubation with 100 µM and 1 mM, but not 10 µM suramin or less inhibited
Ca2+ responses evoked by 1 µM UTP (Figure 8B). Inhibitory effects observed in the presence of 100 µM
suramin resulted in significant shifts in the IC50 of suramin between ATP- and UTP-induced peak Ca2+

responses (Figure 8C; pIC50 3.02 ± 0.06 and 3.70 ± 0.05, respectively; p < 0.001 Student’s t-test) and net
Ca2+ movement (Figure 8D; pIC50 3.03 ± 0.12 and 3.54 ± 0.14, respectively; p = 0.025 Student’s t-test).
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pIC50 6.67 ± 0.19 and 6.87 ± 0.12, respectively; p = 0.198 Student’s t-test). The inhibition of nucleotide-

induced Ca2+ responses by AR-C118925 supports the presence of P2Y2 receptors in DH82 cells. 

Moreover, the differing effect of this antagonist on ATP- and UTP-induced responses indicates the 

presence of other P2 receptors in this cell line. Additionally, preincubation of DH82 cells together with 

5-BDBD and AR-C118925 resulted in a complete inhibition of both ATP- and UTP-induced net Ca2+ 

movement (Figure S1), further suggesting a role for both P2X4 and P2Y2 receptors in nucleotide-

mediated Ca2+ responses in DH82 cells.  

  

Figure 8. ATP- and UTP-induced Ca2+ responses in DH82 cells in the absence or presence of suramin
or ARC-118925. (A–H) DH82 cells in ECS were loaded with Fura-2 and preincubated in the absence or
presence of increasing concentrations of (A–D) suramin (in ECS) or (E–H) AR-C118925 (AR-C; 0.3%
DMSO) for 30 min. Cells were then exposed to 3 µM ATP or 1 µM UTP (respective EC80 values) and
Fura-2 fluorescence was recorded. Nucleotide-induced (C,G) peak Ca2+ response and (D,H) net Ca2+

movement were normalised to 3 µM ATP or 1 µM UTP alone and expressed as a percentage of the
response in absence of inhibitor (% of control). Data were then to fit data to the Hill equation to produce
concentration-response curves and calculate the IC50. (A–H) Data shown are mean ± SEM from three
independent experiments. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to respective concentration
of antagonist with ATP or UTP analysed using a two-way ANOVA with Bonferroni post hoc test.

2.5.2. AR-C118925 Reduces ATP- and UTP-Induced Ca2+ Mobilization

To determine if the P2Y2 receptor was mediating nucleotide-induced Ca2+ mobilization in DH82
cells, the selective P2Y2 receptor antagonist AR-C118925 [52] was preincubated with cells prior to
incubation with ATP or UTP at their respective EC80 concentrations. AR-C118925 at concentrations
of 1 µM or greater could only partially inhibit Ca2+ responses evoked by 3 µM ATP (Figure 8E).
In contrast, preincubation with AR-C118925 at concentrations of 10 µM or greater near completely
inhibited Ca2+ responses evoked by 1 µM UTP (Figure 8F). A significant shift was observed in the
IC50 of AR-C118925 in response to activation by ATP and UTP calculated using peak Ca2+ responses
(Figure 8G; pIC50 6.18 ± 0.16 and 6.61 ± 0.09, respectively; p = 0.033 Student’s t-test), but not net
Ca2+ movement (Figure 8H; pIC50 6.67 ± 0.19 and 6.87 ± 0.12, respectively; p = 0.198 Student’s t-test).
The inhibition of nucleotide-induced Ca2+ responses by AR-C118925 supports the presence of P2Y2

receptors in DH82 cells. Moreover, the differing effect of this antagonist on ATP- and UTP-induced
responses indicates the presence of other P2 receptors in this cell line. Additionally, preincubation
of DH82 cells together with 5-BDBD and AR-C118925 resulted in a complete inhibition of both ATP-
and UTP-induced net Ca2+ movement (Figure S1), further suggesting a role for both P2X4 and P2Y2

receptors in nucleotide-mediated Ca2+ responses in DH82 cells.
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2.6. DH82 Canine Macrophages Predominantly Express Cell Surface P2Y2 Receptors

To confirm the presence of P2X4 and P2Y2 receptors, DH82 cells were analysed by
immunocytochemistry and confocal microscopy using anti-P2X4 or anti-P2Y2 receptor antibodies.
Confocal microscopy revealed the presence of both P2X4 and P2Y2 receptors in fixed and permeabilised
DH82 cells (Figure 9A,B). The expression of P2X4 receptors was relatively low and largely intracellular
(Figure 9A). The expression of P2Y2 receptors on DH82 cells was considerably higher and predominantly
localised to the cell surface (Figure 9B), consistent with its reported expression in the membrane of
MDCK cells [53,54]. No fluorescence was detected in DH82 cells stained with secondary antibodies
alone (Figure S2).
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Figure 9. Expression of P2X4 and P2Y2 receptors in DH82 cells. DH82 cells were fixed, permeabilized
and labelled with (A) anti-P2X4 or (B) anti-P2Y2 receptor primary antibodies, then with anti-goat594

or anti-rabbit594 secondary antibodies, respectively. Cells were imaged by confocal microscopy.
Scale bar = 20 µm. Results are representative of three independent experiments.

2.7. P2Y2 Receptor Activation Downstream Ca2+ Mobilization Is Coupled to the Phospholipase C/Inositol
Triphosphate Signal Transduction Pathway in DH82 Cells

Functional P2Y2 receptors have been reported in human and rodent macrophages [9,10], where
they can activate phospholipase C (PLC) and inositol trisphosphate (IP3) receptors, leading to Ca2+

mobilization from endoplasmic reticulum stores [8,12]. To determine if activation of canine P2Y2

receptors in DH82 macrophage cells results in a similar downstream signalling pathway, cells were
preincubated with antagonists of PLC (U-73122) and IP3 receptors (2-aminoethoxydiphenyl borate;
2-APB), and nucleotide-induced intracellular Ca2+ mobilization was recorded in absence of extracellular
Ca2+. The presence of AR-C118925 under these conditions was also examined. Preincubation of
DH82 cells with AR-C118925 near completely inhibited intracellular Ca2+ mobilization mediated
by ATP (Figure 10A; 90.5 ± 3.3% inhibition) or UTP (Figure 10B; 87.3 ± 7.4% inhibition). Similarly,
preincubation of DH82 cells with 75µM 2-APB near completely inhibited intracellular Ca2+ mobilization
mediated by ATP (Figure 10A; 90.7 ± 4.4% inhibition) or UTP (Figure 10B; 91.2 ± 3.1% inhibition).
In contrast, preincubation with 5 µM U-73122 only partially reduced intracellular Ca2+ mobilization
mediated by ATP (Figure 10A; 64.9 ± 5.9% inhibition) or UTP (Figure 10B; 55.5 ± 8.7% inhibition).
The combination of two or three of these antagonists completely impaired ATP- and UTP-induced Ca2+

responses (Figure 10A,B). Thus, preincubation with AR-C118925, 2-APB, U-73122 or any combination
of these antagonists resulted in a significant reduction of intracellular Ca2+ mobilization (p < 0.001,
one-way ANOVA) compared to that mediated by ATP (Figure 10A) or UTP (Figure 10B) in the absence
of antagonists.
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Figure 10. Nucleotide-induced Ca2+ mobilization in DH82 cells depleted of extracellular Ca2+ in
the absence or presence of AR-C118925, U-73122 and 2-APB. DH82 cells were loaded with Fura-2
and preincubated in Ca2+-free solution containing 2 mM EGTA in the absence or presence of 10 µM
AR-C118925 (AR-C; 0.03% DMSO), 5 µM U-73122 (0.05% DMSO) or 75 µM 2-APB (0.15% DMSO)
for 5 min. Cells were then exposed to (A) 10 µM ATP or (B) 10 µM UTP and Fura-2 fluorescence
was recorded. Data shown are the mean ± SEM from five independent experiments. ** p < 0.01
and *** p < 0.001 compared to respective nucleotide alone, analysed using a one-way ANOVA with
Bonferroni post hoc test.

3. Discussion

To date, the DH82 canine macrophage cell line has primarily been utilized as a model of viral and
protozoan infection [23–25], such as for the study of canine distemper and its oncolytic potential [55–57].
Although studies have described the expression of functional P2 receptors in human or rodent
macrophages and macrophage cell lines [8,10,11,34], studies directly investigating P2 receptors in
canine macrophages have been absent. The current study described, for the first time, the expression
and function of P2 receptors in DH82 cells, demonstrating a primary role for cell surface P2Y2 receptors
in nucleotide-mediated Ca2+ mobilization through PLC/IP3 signal transduction. This study also
demonstrates a minor functional role for P2X4 receptors in DH82 cells, suggesting this cell line may
present as a suitable model for studying P2 receptor-mediated inflammation and pain signalling
in dogs.

The agonist profile of ATP on DH82 cells demonstrated pharmacological similarities to the
recombinant canine P2X4 receptor [41], as well as studies of endogenous P2X4 receptors in a human
macrophage cell model [34]. BzATP induced partial Ca2+ responses in DH82 cells with significantly
lower potency compared to ATP, consistent with the recent report that BzATP is a partial agonist of
recombinant canine P2X4 receptors [41]. In addition, the increased decay kinetics of Ca2+ responses
evoked by BzATP, compared to ATP, further supports a role for P2X4 receptors in the observed Ca2+

responses [41]. TNP-ATP and paroxetine, two non-selective antagonists of P2X4 receptors [44], as well
as 5-BDBD, a selective P2X4 receptor antagonist [58], had minor inhibitory effects on ATP-induced
Ca2+ responses in DH82 cells. Although it has recently been demonstrated that these antagonists can
inhibit recombinant canine P2X4 receptors, the minor inhibition observed with these antagonists in
DH82 cells were potentially in part due a lack of potency towards the canine P2X4 receptor [41], as well
as the relatively low expression of P2X4 receptors in DH82 cells observed by immunocytochemistry.
In contrast, ivermectin, the positive allosteric modulator which is routinely used to investigate P2X4
receptor activity [59], demonstrated strong potentiation of ATP-induced Ca2+ responses and efficacy
of ATP, with little effect on decay time. This data further supports the expression of functional P2X4
receptors in canine macrophages, however, it suggests that potentiation or upregulation of P2X4
receptors may first be required to observe notable responses.
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Consistent with the pharmacological profiles reported for the canine P2Y2 receptor cloned from
MDCK cells [49], both ATP and UTP induced robust Ca2+ responses in DH82 cells with similar EC50

values. These responses were observed even in the absence of extracellular Ca2+, consistent with
the P2Y-mediated mobilization of intracellular Ca2+ [60]. Similar to the current study with DH82
cells, other studies have also demonstrated that ADP is a low-potency agonist of the canine P2Y2

receptor cloned from MDCK cells [49,61]. In addition, incubation of DH82 cells with BzATP revealed
pharmacological similarities to that observed with human P2Y2 receptors, where BzATP is ineffective
at concentrations below 100 µM [33,62]. Collectively, this suggests that functional P2Y2 receptors were
responsible for nucleotide-induced Ca2+ mobilization in DH82 cells. This was supported by inhibition
observed in the presence of the P2Y2 receptor antagonists, suramin and AR-C118925. Despite suramin
lacking potency and selectivity, it remains a valuable tool in characterising P2Y receptor responses,
as it is considered a low-potency antagonist of P2Y2 receptors, but is relatively insensitive to P2Y4

receptors [51,63]. This suggests that the ATP/UTP-sensitive P2Y2, but not P2Y4 receptor, is responsible
for the observed Ca2+ mobilization, consistent with the expression of P2Y2 receptors in DH82 cells
determined by confocal microscopy. Notably, P2Y2 receptor protein expression was greater than that
of P2X4 receptor protein expression, with an opposite pattern observed for mRNA expression of these
receptors. Reasons for this discrepancy remain unknown, but a lack of correlation between mRNA
and protein expression is well documented and attributed to various contributing factors related to
post-transcriptional and post-translational regulation of mRNA and protein expression [64].

A number of other canine P2Y receptors from MDCK cells have been cloned and characterised,
including the P2Y1 and P2Y11 receptors [49,65,66], of which mRNA of both these receptors were
detected in DH82 cells. The nucleotide agonist profile of canine P2Y11 receptors differs markedly from
the human P2Y11 receptor, where ATP is a potent agonist of human, but not canine P2Y11 receptors,
and ADP and its analogue 2MeSADP are potent agonists of canine, but not human P2Y11 receptors [66].
In the current study, it was revealed that ATP, but not ADP, was a moderately potent mediator of Ca2+

responses in DH82 cells, while no such responses were observed with 2MeSADP. BzATP is also a
full agonist of human P2Y11 receptors [67], further suggesting that DH82 cells likely do not express
functional P2Y11 receptors. ADP and 2MeSADP have also been reported as potent agonists of the
canine P2Y1 receptor [68]. However, it was demonstrated in the current study that only ADP, but not
2MeSADP, induced a small Ca2+ response in DH82 cells. Although this could suggest that DH82 cells
express low amounts of functional P2Y1 receptors, the complete lack of response to 2MeSADP suggests
that P2Y1 receptors are unlikely to be responsible for P2Y receptor-mediated Ca2+ mobilisation in DH82
cells. Additionally, a complete lack of Ca2+ response in DH82 cells incubated with the P2Y6 receptor
agonist, UDP [69,70], strongly suggests that DH82 cells do not express functional P2Y6 receptors.

The current study demonstrated that nucleotide-mediated Ca2+ mobilization in DH82 cells was also
inhibited by antagonists of PLC and IP3 receptors, U-73122 and 2-APB, respectively. This was consistent
with previous studies that demonstrate coupling of P2Y2 receptors to Gq/11 and downstream signalling
pathways in MDCK cells [49,65,71]. While 2-APB near completely inhibited Ca2+ mobilisation, U-73122
only resulted in partial inhibition, although higher concentrations (>10 µM) have been shown to
completely block P2Y2 receptor-mediated Ca2+ responses [72]. Notably, pre-incubation with P2Y2

receptor antagonists resulted in approximately two-fold greater inhibition of UTP-induced Ca2+

responses compared to ATP-induced responses, suggesting that ATP remained active at other receptors
involved in mediating changes in intracellular Ca2+, such as P2X4 receptors, which are also relatively
insensitive to suramin [73]. In addition, both ATP- and UTP-induced Ca2+ responses could be
completely inhibited by co-incubation with 5-BDBD and AR-C118925, supporting a role for both P2X4
and P2Y2 receptors in DH82 cells.

Pro-monocytic and macrophage-like cell lines, such as human THP-1 cells, have recently proven
useful models for studying endogenous purinergic signalling via P2X4 and P2Y2 receptors [10,13,34].
However, studies have demonstrated that these cell lines can be polarised towards a more specialised
macrophage phenotype, in which the expression of P2 receptors, such as P2X4 and P2X7 receptors,
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are commonly upregulated [34,38,74]. A study has recently demonstrated that DH82 canine macrophage
cells could be polarised towards the M1 or M2a subtype through cytokine stimulation [20]. However,
the DH82 cells utilised throughout this study remained unpolarised (M0) and, thus, it remains to
be determined if cytokine stimulation influences P2 receptor expression or function. To this end,
future studies could determine the purinergic signalling landscape of polarised DH82 cells. Future studies
could also analyse P2 receptor expression and signalling in native canine macrophages. Given the known
expression of P2X7 receptors on canine monocytes [29,30], canine monocyte-derived macrophages may
provide a suitable candidate for the study of other purinergic receptors in native canine macrophages.

The upregulation of P2X4 receptors in macrophages and microglia has been highlighted as a
key component in the signalling of inflammatory conditions, including chronic inflammatory and
neuropathic pain [75,76], and remyelination of damaged nerves in the CNS [77]. P2X4 receptors, which
reside primarily within lysosomes of macrophages, can be upregulated at the cell surface through
lysosomal exocytosis [78]. This process plays a key role in Ca2+ homeostasis, ATP release and local
activation of cell surface purinergic receptors [79]. Notably, activation of the C-C chemokine receptor
2 (CCR2) by C-C chemokine ligand 2 (CCL2) is known to mediate lysosomal exocytosis [80], while
in rat alveolar macrophages and human THP-1 cells it has been demonstrated that the activation of
cell surface P2Y2 receptors induces the upregulation and secretion of CCL2 [8,10]. Thus, it could be
suggested that activation of macrophage P2Y2 receptors results in a P2 receptor signalling feedback
mechanism which results in an increase in Ca2+ flux through upregulation of lysosomal exocytosis
and trafficking of P2X4 receptors to the cell surface, leading to the release of prostaglandin E2 and
subsequent chronic inflammatory pain signalling [2]. These activated macrophages may also modulate
microglial P2X4 receptors to control neuroinflammatory signalling following injury to the central
nervous system [81]. Given the expression profile of these receptors in DH82 canine macrophages,
this cell line may provide a suitable model for studying inflammatory pain signalling mechanisms of
dogs in vitro, as well as for the pre-clinical testing of novel therapeutics targeting chronic pain.

Finally, although the sequence of P2X4 and P2Y2 receptors in DH82 cells is yet to be determined,
it remains of interest to identify novel single nucleotide polymorphisms should they exist in the genes
encoding these receptors in dogs. A recent whole genome study of 582 dogs has revealed at least one
missense variant (Ala9Asp) within the canine P2RX4 gene and two missense variants (Gly193Ser and
Val375Ile) within the canine P2RY2 gene [82] (data accessed from the European Variation Archive;
https://www.ebi.ac.uk/eva/). Whilst the effects of single nucleotide polymorphisms in the canine P2RX4
and P2RY2 genes are largely unknown, it has been demonstrated that single nucleotide polymorphisms
of the genes encoding the human P2X4 and P2Y2 receptors can alter receptor function [83,84]. Notably,
in human macrophages, a 312Ser polymorphism of the P2Y2 receptor has been demonstrated to
alter secretion of CCL2 following activation by UTP [10], suggesting a potential association with
macrophage-mediated chronic inflammatory pain signalling. Despite this however, studies by our
group have demonstrated that the canine P2RX4 and P2RX7 genes are much more conserved than
their human counterparts [41,85,86] and, as such, naturally-occurring polymorphisms in the canine
P2RY2 gene may also be rare or limited to uncommon breeds not frequently sampled in canine whole
genome studies.

In conclusion, the current study demonstrates for the first time, that DH82 canine macrophages
primarily express functional P2Y2 receptors and low levels of functional P2X4 receptors. As such,
DH82 cells provide the first canine macrophage cell line for the study of endogenous P2X4 and P2Y2

receptors. The data presented here provides indirect evidence that P2X4 and P2Y2 receptors play a
role in mediating changes in intracellular Ca2+ in canine macrophages in vivo. This mimics events
observed in human and rodent macrophages and macrophage cell lines, where these P2 receptors have
been suggested to play a key role in inflammation and chronic pain. Thus, DH82 cells may aid in
the study of P2 receptor-mediated inflammation, including neuroinflammatory signalling processes,
as well as preclinical screening of novel P2 receptor-targeting compounds for potential use in the
treatment of inflammatory conditions, such as chronic pain in dogs.

https://www.ebi.ac.uk/eva/
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4. Materials and Methods

4.1. Compounds and Reagents

BSA, EGTA and reagents for producing Ca2+ solutions were from Amresco (Solon, OH, USA). Fetal
bovine serum (FBS) was purchased from Bovogen Biologicals (East Keilor, Melbourne, Australia) and
heat inactivated at 56 ◦C for 30 min before use. 2-APB, U-73122 and UDP were from Cayman Chemical
(Ann Arbor, MI, USA). Primers for RT-PCR were from Integrated DNA Technologies (Coralville, IA,
USA). 5-BDBD, ADP (pre-treated with hexokinase as per [41]), ATP, BAPTA-AM, BzATP, hexokinase
from Saccharomyces cerevisae, ivermectin, MEM non-essential amino acid solution, paraformaldehyde,
paroxetine, phosphate buffered saline (PBS), poly-D-lysine hydrobromide (5 µg·mL−1 working stock),
pluronic F-127, saponin, suramin and UTP were from Sigma-Aldrich (St. Louis, MO, USA). DMEM/F12
medium, ExoSAP-IT, Fura-2 AM, GlutaMAX, penicillin-streptomycin and 0.05% trypsin-EDTA were
from ThermoFisher Scientific (Melbourne, Australia). 2MeSADP, AR-C118925, thapsigargin and
TNP-ATP were from Tocris Bioscience (Bristol, UK).

4.2. Cells

DH82 cells were obtained from the European Collection of Authenticated Cell Cultures (ECACC
cat. no. 94062922, RRID: CVCL_2018). DH82 cells were cultured in DMEM/F12 medium supplemented
with 10% FBS, 2 mM GlutaMAX, 100 U/mL penicillin, 100 µg/mL streptomycin and 1% non-essential
amino acids at 37 ◦C/5% CO2. Cells were routinely found to be negative for mycoplasma contamination
using the MycoAlert Mycoplasma Detection Kit (Lonza, Waverley, Australia).

4.3. RNA Isolation, cDNA Synthesis and RT-PCR

Total RNA was extracted from DH82 cells using the ISOLATE II RNA Mini Kit (Bioline, London,
UK) according to manufacturer’s instructions. cDNA was synthesised from RNA using the qScript
cDNA SuperMix Kit (Quanta Biosciences, Gaithersburg, MD, USA) according to manufacturer’s
instructions. RT-PCR amplification of cDNA was carried out using the primer pairs and conditions
listed in Table S1, the MangoTaq DNA polymerase kit (Bioline) and a Mastercycler Pro S (Eppendorf,
Hamburg, Germany). PCR cycling consisted of initial denaturation at 95 ◦C for 2 min, followed by
35 cycles of denaturation at 95 ◦C for 30 s, annealing at 49–61 ◦C for 30 s and extension at 72 ◦C for 1 min.
Amplicons were treated with ExoSAP-IT and loaded onto a 1% agarose gel and imaged using GelRed
Nucleic Acid Gel Stain (Biotium, Fremont, CA, USA) and a Bio-Rad Molecular Imager Gel Doc XR+

(Hercules, CA, USA). Densitometry quantification was carried out using ImageJ [87] analysis software.

4.4. Measurement of Intracellular Ca2+

Measurements of intracellular Ca2+ were determined using Fura-2 AM as previously described [41].
Recordings were performed in extracellular Ca2+ solution (ECS; 145 mM NaCl, 2 mM CaCl2, 1 mM
MgCl2, 5 mM KCl, 13 mM glucose and 10 mM HEPES, pH 7.4) or in Ca2+ free solution (145 mM NaCl,
1 mM MgCl2, 5 mM KCl, 13 mM glucose and 10 mM HEPES, pH 7.4) for recordings in absence of Ca2+.
Cells were plated at 6× 104 cells/well in poly-D-lysine-coated black-walled µClear bottom 96-well plates
(Greiner Bio-One, Frickenheisen, Germany) and incubated at 37 ◦C/5% CO2 for 18–24 h. Cells were
washed in ECS then preincubated with Fura-2 AM loading buffer (2.5 µM Fura-2 AM/0.2% pluronic acid
in ECS) in the dark for 30 min at 37 ◦C. Prior to recording fluorescence, excess Fura-2 was removed and
cells were washed with ECS (or Ca2+ free solution for recordings in absence of Ca2+), then incubated
for a further 20 min to allow for complete de-esterification. Fura-2 fluorescence emission at 510 nm was
recorded every 5 s at 37 ◦C using a Flexstation3 (Molecular Devices, Sunnyvale, CA, USA) following
excitation at 340 and 380 nm. Recordings were taken for 15 s prior to addition of compounds to
establish baseline fluorescence then for 3–5 min after addition of agonists. Where indicated, cells were
preincubated with antagonists for up to 30 min prior to addition of nucleotides. The relative change in
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intracellular Ca2+ (∆Ca2+) was calculated as ratio of Fura-2 fluorescence following excitation at 340 nm
and 380 nm (F340/380) was determined and normalized to the mean basal fluorescence according to the
formula (1):

∆Ca2+ =
∆F
F

=
F− Frest

Frest
(1)

where F is the F340/380 at any given time and Frest is the mean fluorescence of the given well prior to
the addition of nucleotides [88]. To investigate endogenous P2X and P2Y receptor-mediated Ca2+

responses in DH82 canine macrophages, both the peak Ca2+ response (F340/380) and the net Ca2+

movement (calculated as area under the curve using GraphPad Prism) were calculated and, where
indicated, used for fitting concentration-response curves fit to the Hill equation using the least squares
method. Decay time (τ, time constant) was calculated from the peak F340/380 using the nonlinear
regression one phase decay model for GraphPad Prism. Decay times were not calculated where no
response to agonists was recorded. Where antagonist IC50 was calculated against the approximate
EC80 of ATP or UTP, responses were normalized to the response in absence of antagonist to allow data
to be fit to a curve.

4.5. Immunocytochemistry and Confocal Microscopy

Cells were plated at 1 × 105 cells/18 mm glass coverslip in 24-well plates (Greiner Bio-One) and
incubated at 37 ◦C/5% CO2 overnight prior to use. Cells were fixed with 3% (w/v) paraformaldehyde
at 4 ◦C for 15 min then washed three times with PBS. Cells were permeabilized with 0.1% (w/v)
saponin resuspended in a blocking buffer (2% BSA (w/v) in PBS) at room temperature for 15 min and
then incubated with anti-P2Y2 (1:250; Alomone, cat no. APR-102, RRID: AB_2756769) or anti-P2X4
(1:250; Sigma-Aldrich cat no. SAB2500734, RRID:AB_10604119) primary antibody in 2% BSA/PBS
at room temperature for 2 h. Cells were washed three times with PBS and then incubated with
Alexa Fluor594-conjugated anti-rabbit (1:200; Abcam cat no. ab150080, RRID: AB_2650602), or Alexa
Fluor594-conjugated anti-goat (1:200; Abcam cat no. ab150136, RRID: AB_2782994) secondary antibody
in 2% BSA/PBS at room temperature for 60 min. Cells were washed three times with PBS and then
incubated with secondary antibody in 2% BSA/PBS at room temperature for 60 min. Washed coverslips
were mounted onto a glass slide using 50% glycerol in PBS and sealed with nail polish. Cells were
visualized on a Leica (Mannheim, Germany) SP5 confocal microscope.

4.6. Data and Statistical Analysis

All data were analysed using GraphPad Prism 5. Half-maximal effective and inhibitory
concentrations (EC50 and IC50, respectively) are expressed as their negative logarithm (pEC50/pIC50) ±
SEM. Data were compared using a two-tailed Student’s t test or one-way ANOVA with Bonferroni
post hoc test for single or multiple comparisons, respectively. Multiple comparisons involving two
interdependent variables were analysed using a two-way ANOVA with Bonferroni post hoc test.
Throughout this study p < 0.05 was considered statistically significant.

4.7. Nomenclature of Targets and Ligands

All targets and ligands used throughout this manuscript conform with the guidelines outlined
by the International Union of Basic and Clinical Pharmacology and British Pharmacological Society
(IUPHAR/BPS) Guide to Pharmacology [40,89].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/22/
8572/s1.
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Abbreviations

2-APB 2-Aminoethoxydiphenyl borate
2MeSADP 2-Methylthio-ADP
ADP Adenosine 5′-diphosphate
ATP Adenosine 5′-triphosphate
BAPTA-AM 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester)
BzATP 3’-O-(4-Benzoyl)benzoyl-ATP
CNS Central nervous system
CCL2 C-C chemokine ligand 2
CCR2 C-C chemokine receptor 2
DMSO Dimethyl sulfoxide
EC50 Half maximal effective concentration
EGTA Ethylene glycol tetraacetic acid
FBS Fetal Bovine Serum
IC50 Half-maximal inhibitory concentration
IL Interleukin
IP3 Inositol triphosphate
LPS Lipopolysaccharide
MDCK Madin Darby canine kidney
PLC Phospholipase C
TNF Tumor necrosis factor
TNP 2′,3′-O-(2,4,6-Trinitrophenyl)
UDP Uridine 5′-diphosphate
UTP Uridine 5′-triphosphate
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