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Abstract: Dexterous tool use is typically characterized by fast and precise motions performed by
multiple fingers. One representative task is piano playing, which involves fast performance of a
sequence of complex motions with high spatiotemporal precision. However, for several decades,
a lack of contactless sensing technologies that are capable of precision measurement of piano key
motions has been a bottleneck for unveiling how such an outstanding skill is cultivated. Here, we
developed a novel sensing system that can record the vertical position of all piano keys with a time
resolution of 1 ms and a spatial resolution of 0.01 mm in a noncontact manner. Using this system, we
recorded the piano key motions while 49 pianists played a complex sequence of tones that required
both individuated and coordinated finger movements to be performed as fast and accurately as
possible. Penalized regression using various feature variables of the key motions identified distinct
characteristics of the key-depressing and key-releasing motions in relation to the speed and accuracy
of the performance. For the maximum rate of the keystrokes, individual differences across the pianists
were associated with the peak key descending velocity, the key depression duration, and key-lift
timing. For the timing error of the keystrokes, the interindividual differences were associated with
the peak ascending velocity of the key and the inter-strike variability of both the peak key descending
velocity and the key depression duration. These results highlight the importance of dexterous control
of the vertical motions of the keys for fast and accurate piano performance.

Keywords: piano; sensing system; motor skill; virtuosity

1. Introduction

One of the most representative features of skillful motor actions, such as surgery and
musical performance, is dexterous tool use at high speed with high precision. This activity
is challenging, particularly for individuals without any history of extensive manual train-
ing, due to the trade-off between speed and precision of movements [1] and thus requires
people to undergo years of training to overcome it. A precise description of such skillful
behaviors is essential for elucidating biomechanical principles governing the production
of movements and neuroplastic mechanisms subserving the acquisition and loss of skills
through training and the development of disorders [2]. A methodological challenge for
such a precise description is difficulty in obtaining accurate measurements of fast and
subtle movements in dexterous tool use, in contrast to gross and slow movements used
in daily activities, such as grasping. Modern technologies for sensing human motions,
such as motion capture with multiple high-speed cameras [3–5] and data gloves with
multiple bending sensors [6–8], have enabled quantitative assessment of complex manual
movements. However, the time resolution of these sensors is generally not enough to
capture complex patterns of fast motions of a tool that can be manipulated in skillful motor
actions, such as throwing a baseball and playing musical instruments. In addition, an
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occlusion of markers attached to the body and the tool has been a bottleneck to obtain-
ing precise measurements of complex movements involving dynamic postural changes
with motions at multiple joints [9]. The development of novel sensing technologies has
attempted to solve such problems. For example, a miniature magnetic sensor successfully
recorded motions of a ball on the order of milliseconds, and a series of experiments with
it uncovered various features of skillful ball-throwing motions [10,11]. However, sensors
attached to a tool can alter physical properties, such as weight and inertia, and affect tactile
and proprioceptive feedback in motion, the latter of which matters particularly in the
assessment of the symptoms of focal hand dystonia due to sensory trick [12,13]. Therefore,
the development of contactless or noncontact sensors that enable one to record motions of
a tool to be manipulated at high spatiotemporal resolution is needed to fully unveil expert
motor skills in dexterous tool use.

Piano playing can be one of the most representative dexterous skills to perform [14–17].
Previous studies developed some sensors, such as pressure sensors that were placed on the
bottoms of the keys [18], force sensors that were implemented on the key surfaces [19–22],
and custom-made data gloves [6,23,24], which successfully recorded the motions and/or
force of the piano keys and fingers at high spatiotemporal resolution. However, none of
these original sensors were no-contact sensors that enabled the recording of key motions
without altering the touch sensation. In contrast, the noncontact sensing technology that
has been used most frequently in previous studies was the Musical Instrument Digital
Interface (i.e., MIDI) [25–33]. This technology captures timing and seven-bit quantized key
speed at only two discrete events of the key motion, the moments when the key is depressed
and released [34], which provides no high spatiotemporal resolution and, therefore, fails to
capture various features of fine motor control.

Here, we propose a novel sensing system capable of capturing the time course of
the vertical position of 88 piano keys, without any physical contact with the keys, with a
time resolution of 1 ms and a spatial resolution of 0.01 mm. The sensors were embedded
under the piano keys and did not have any mechanical contact with any keys. To test
whether this sensing system allows for the identification of the motor proficiency of expert
pianists, a behavioral experiment with expert pianists was performed, and a set of motor
engrams of each pianist’s touches was extracted from the collected data and analyzed
by a penalized regression model. The results identified a novel motor skill that explains
individual differences in both the maximum speed and timing precision across pianists’
fast piano performances.

2. Materials and Methods
2.1. Participants

Forty-nine expert right-handed classical pianists (41 females, 20–45 years old) without
a history of serious physical problems related to piano playing served as the participants
in the present study. Most of the participants were pianists who studied at music con-
servatories in Japan. Each pianist underwent at least 15 years of piano training at music
conservatories and/or privately under the supervision of professional pianists. In accor-
dance with the Declaration of Helsinki, the experimental procedures were explained to all
participants. Informed consent was obtained from each participant prior to the experiment.
The Ethics Committee at Sophia University approved this study.

2.2. Sensing System

The vertical position of each key was measured using a custom-made contactless optical
sensor system (Figure 1A). The sensor system was mounted beneath the piano keys of an
acoustic piano (i.e., key-bed). The sensor consists of 88 photo reflectors (LBR-127HLD,
Letex Technology Corp. Taichung City, Taiwan), seven 12-bit analog-to-digital (A/D)
converter-integrated circuit chips (ADS7953, Texas Instruments, Dallas, TX, USA), and
a microprocessor (STM32F446, STMicroelectronics, Geneva, Switzerland). Each of the
photo-reflective sensors beneath the key projects infrared light on the bottom surface of
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the key, and the derived voltage signal changes in relation to the intensity of the reflected
infrared light. The intensity of the reflected infrared light increases linearly with a decrease
in the distance between a photo reflector and the bottom surface of a key (see details in the
Results). Therefore, the change in the voltage signal represents the change in the distance
between a photo reflector and the bottom surface of a key (Figure 1B). Each A/D converter
controlled by the microprocessor collects the voltage signal from 12 or 16 photo reflectors.
The voltage signal is stored on a personal computer via the microprocessor connected by USB
Full Speed at a sampling frequency of 1 kHz and converted to the vertical distance (Figure 1C).
The sensor system calculates the vertical position of each key by a linear interpolation of
the sensor value between the neutral position and bottom position stored in the calibration
procedure performed prior to the experiment. The sensor system can, therefore, record the
time-varying vertical position of all 88 piano keys at a 0.01 mm spatial resolution without any
physical contact that can affect the mechanical characteristics of the piano keystroke.

2.3. Experimental Setup and Task

The experimental apparatus consisted of a Yamaha acoustic piano (U1) and the sensing
system. Figure 2 shows the experimental task requiring the repetition of two sets of
simultaneous keystrokes of the two keys, leaving one white key in between (i.e., a major
third interval), using the right index and ring fingers for one set and the right middle and
little fingers for another set. Participants were asked to perform the task for 6 s as fast and
accurately as possible and at a paced tempo (100 bpm) with a predetermined loudness (i.e.,
mezzo forte), which was provided as a sound stimulus from the speaker located in front of
the participant. We used this task because such a chord-trill task, which has been included
in various musical pieces (e.g., Etude Op.25 no.6 by Frederik Chopin, Ondine by Maurice
Ravel, Piano Sonata No.3 1st mov. by Ludwig van Beethoven), is known to be technically
challenging to play quickly and accurately.

2.4. Data Analysis and Statistics

The position data for the keys were low-pass filtered using a second-order But-
terworth filter with a cutoff frequency of 20 Hz. To identify the keystroke skill that
explains the inter-individual variability of piano expertise, we performed a penalized
regression analysis using spatiotemporal features of the vertical motion of the keys as
independent variables and the maximum speed and loudness accuracy as dependent
variables. Figure 3 illustrates six features characterizing the time-varying waveform of
each vertical motion of the keys and their derivatives (i.e., velocity). Each of the features
was selected to characterize different events of one cycle of the keystroke motion. The
features “peak_des_vel” and “peak_to_bottom” characterize the key-descending phase,
“max_depth” and “depression_ratio” characterize the key-pressing phase, and the “re-
lease_to_peak” and “peak_asc_vel” characterize the key-ascending phase, respectively. For
each feature variable, the mean and standard deviation across strikes within the strikes
during each performance were computed.
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Figure 1. Schematic illustration of the system for sensing the key positions. (A) Each of the 88 photo
reflectors was mounted beneath one piano key. (B) The photo reflector projected infrared light on the
bottom surface of the key, and the derived voltage signal changed linearly with the distance between
the photo reflector and the bottom surface of the key in relation to the intensity of the reflected
infrared light. (C) System schematic of the sensing system.
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Figure 2. The experimental task. The experimental task required the repetition of two sets of
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interval), using the right index and ring fingers for one set and the right middle and little fingers for
the other set.
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(i) peak_des_vel: peak descending velocity during key depression, (ii) peak_asc_vel: peak ascend-
ing velocity during key release, (iii) max_depth: the maximum key-moving distance during key
depression, (iv) peak_to_bottom: the time difference between the moment when the key reaches its
peak descending velocity and the moment when the key reaches its bottom during key depression,
(v) release_to_peak: the time difference between the moment when the key leaves from its bottom and
the moment when the key reaches its peak ascending velocity during key lift, (vi) depression_ratio:
the ratio of the duration when the key touched the bottom relative to the duration between the onset
and offset of key motion.

We used the inter-keystroke interval at the fastest tempo (a difference in timing
between two successive keypresses) and loudness balance at the paced tempo (a difference
in the peak descending velocity of the two keys to be depressed simultaneously) as variables
representing the maximum tempo and precision of the performance, respectively. Using
each of the two variables as a dependent variable and the inter-strike mean and standard
deviation values of the aforementioned six features characterizing the waveforms of the
vertical positions of the keys as independent variables, a penalized regression (i.e., elastic
net regression) was performed to identify motor skills associated with speed and accuracy
of the finger movements of expert pianists. Elastic net regression selects variables while
optimizing the balance of sparsity and explainability of the model [35]. Here, each variable
used for the regression was standardized (subtracting the mean value and dividing by the
standard deviation). All of the analyses were performed using the library “Scikit-learn” in
Python [36].

3. Results
3.1. Performance of the Sensing System

To evaluate the ground noise of the system, we computed the ratio of the maximum
amplitude of the ground noise (i.e., the difference between the maximum and minimum
sensor values when the key was stable at the highest position for 20 s) relative to the range
of sensor values (i.e., the difference between the sensor value when the key was located
at its bottom position and the sensor value when the key was at its highest position). The
ratio was 0.10 ± 0.032% across all sensors. This ratio almost corresponded to the spatial
resolution of the sensor system and was negligible.

To evaluate the linearity of the system, we pushed the keys down from 0 mm to 10 mm
at 1 mm intervals by means of a micrometer and calculated a linear error by comparing the
measured sensor values with sensor values estimated from a least squared linear regression
of the measured sensor values. The across-key average of the ratio of the average linear
error of each point relative to the measurement range of the sensor value was 2.4 ± 0.67%.

To evaluate the temporal precision of the system, we executed a continuous 3 min
measurement of the key position 10 times and evaluated the variation and accuracy of
the sampling interval time. We evaluated the variation in the sampling interval time
by computing the standard deviation of the difference of sampling time recorded from
the system’s internal clock. We also evaluated the deviation of sampling time between
two adjacent keys by the system’s internal clock. We evaluated the accuracy of the sam-
pling interval by comparing the difference in receipt time between the start command
and the end command recorded by the system’s internal clock with the difference in the
sent time between the start command and the end command recorded by the internal
timer of the Windows operating system called “QueryPerformanceCounter”, which has a
1-microsecond time resolution. The average standard deviation of the sampling time was
8.08 ± 0.02 × 10−3 milliseconds. This deviation was less than 1% of the sampling time
interval, which was negligibly small. The average of the difference in sampling time be-
tween two adjacent keys was 5.96 ± 0.04 × 10−3 ms. In case of the third chord used in
the experiment, the difference in sampling time between top and bottom notes was about
24 × 10−3 ms. This was less than 2.5% of the sampling time interval, which was negligibly
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small. The error between the elapsed time recorded by the system’s internal clock and that
recorded by the OS’s internal clock was 4.16 ± 0.50 × 10−5%. This error corresponded to
less than half of a sampling interval time for a 10 s recording, and it was negligible enough
for a short recording, such as that used in the experiment in this study.

3.2. Results of the Regression Model Based on the Human Experiments

Table 1 summarizes the results of the elastic net regression explaining the interindivid-
ual variance for both the maximum tempo and loudness balance across the participants by
displaying the mean and standard deviation of the six features of the key movements across
strikes. For the maximum tempo and the loudness balance, the R2 value derived from
the model prediction based on the observed values of the feature variables was 0.852 and
0.759, respectively, which are visually displayed in Figure 4A,B. The alpha value was 0.030
and 0.032 for the model explaining the fastest tempo and loudness balance, respectively,
which indicates that the model was almost the same as the ridge regression. Between the
fastest tempo and loudness balance, there was no correlation (r = −0.183, p = 0.214), which
indicated that these performance variables were independent.

Table 1. Results of the elastic net regression.

Peak Des Vel Peak Asc
Vel Max Depth Peak to

Bottom
Release to

Peak
Depression

Ratio

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std α
L1

Ratio R2

Fastest
IOI −0.376 0.014 0.018 0.000 −0.10 0.000 0.077 0.017 0.652 0.011 1.150 0.000 0.030 1.000 0.852

Loudn-
ess

Balance
0.086 0.806 0.129 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.125 0.032 1.000 0.759
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regression model for the IOI at the fastest tempo was 0.852. The individual differences across the
pianists of the IOI at the fastest tempo were mostly accounted for by the inter-strike mean of the peak
descending velocity of the key, the inter-strike mean of the key-depression ratio, and the inter-strike
mean of the time to key release. (B) R2 of the regression model for the loudness balance at the paced
tempo was 0.759. The individual differences across the pianists of loudness balance was mostly accounted
for by the inter-strike variability of the peak key descending velocity, the inter-strike variability of the key
depression ratio, and the inter-strike mean of the peak ascending velocity of the key.

Figure 4 illustrates a schematic drawing of the elastic net model explaining both the
fastest speed and loudness balance according to the feature variables of the key movements
of the pianists. For the model of the fastest speed (i.e., inter-onset interval: IOI), the
coefficient value was large, particularly for the inter-strike mean of the peak descending
velocity of the key, the inter-strike mean of the key depression ratio, and the inter-strike
mean of the time to key release. For the model of loudness balance, the coefficient value
was large, particularly for the inter-strike variability of the peak key descending velocity,
the inter-strike variability of the key depression ratio, and the inter-strike mean of the peak
ascending velocity of the key.

4. Discussion

In the present study, we developed a novel sensing system capable of measuring
the time-varying vertical position of all piano keys with high spatiotemporal resolution
without having any physical contact with the keys. By using the system, we assessed a
variety of features of movements of multiple keys while expert pianists were performing
fast and accurate keystrokes. By analyzing these features for a large number of pianists
with a machine learning technique using a penalized regression model, we identified
novel spatiotemporal features of key motion that were associated with the speed and
accuracy of dexterous finger movements in piano performance. There are three major
results in this study. First, we confirmed that our sensing system that has no mechanical
contact with the piano keys could record the vertical position of the piano keys with 1 ms
of temporal resolution and 0.01 mm of spatial resolution with a linearity between the
position and voltage of the signal. Second, the system identified novel features of the key
motions describing the pianists’ expertise (i.e., speed and accuracy), which were not only
the timing and velocity of the key depression and release that had been assessed in many
previous studies using the MIDI technology but also the spatiotemporal features of the
peak velocities of key movements, the maximum displacement of key descent, and the
duration during which keys were maximally depressed. Third, using a large dataset of
key movements collected from 49 pianists, a penalized regression model identified a novel
set of task-relevant features of the finger touches that explain the individual differences in
the speed and accuracy in dexterous keystroke tasks. For the mean inter-keystroke interval
representing the agility of the repetitive keystrokes, the individual differences across the
pianists were associated with the key depression duration, the time to the moment when the
key ascending velocity reached its peak, and the peak descending velocity of the key. For
the loudness balance of the two simultaneously depressed keys representing the precision of
the key-depression velocity, the individual differences were associated with the inter-strike
variability of the peak descending velocity and the key-depression duration and the inter-
strike average of the peak ascending velocity of the keys. These results indicate that motor
skills necessary for dexterously depressing and releasing the keys play a crucial role in both
fast and accurate performance of sequential finger movements in piano performance.

A close inspection of the results of the regression model deepened the understanding
of mechanisms underlying fast and accurate performance of the finger motions. First, the
negative covariation between the loudness balance error of the two simultaneous keystrokes
and the inter-strike variability of the key depression duration suggests that pianists who
changed motions in a strike-by-strike manner were better at keystroke feedback control
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based on afferent sensory information. In the accurate performance of repetitive piano
keystrokes, previous studies have demonstrated crucial roles of feedback control based on
somatosensory information [27,37,38]. In feedback control, afferent sensory information is
integrated into motor commands to correct movement error. The key-depression duration
indicates the duration during which the fingertip receives the reaction force originating
from the mechanical interaction between the key and key-bed, whereas this duration
is not at all associated with the tone loudness. It is, therefore, possible that the inter-
strike variability of key depression represents a process of online correction of movements
based on the somatosensory feedback derived from fingertips during repetitive keystrokes.
Second, it is reasonable that the loudness balance error covaried positively with the inters-
trike variability of the peak key descending velocity because the key descending velocity
determines the tone loudness [20]. One possible account for this outcome is that pianists
who can produce the target key-striking velocity consistently are able to discriminate subtle
deviations in tone loudness or force applied to the key and, therefore, can perceive a subtle
loudness error between the two tones in the key presses [37]. It is also plausible that pianists
with a smaller amount of signal-dependent noise in the motor commands [39] displayed
both reduced inter-strike variability of the key-striking velocity and lower loudness balance
error. Third, a positive covariation between the peak ascending velocity of the key and
the loudness balance error indicates that faster finger-lift motions allowed for earlier
preparation of subsequent keystrokes, which may enable precise control of tone loudness.
For example, preparatory auditory imagery in sequential motor actions modulates action
planning to produce upcoming movements efficiently [40]. A possible implication for music
pedagogy is, therefore, to encourage pianists to lift their fingers quickly following key
depression for accurate loudness control of multiple tones with their fingers; this approach
needs further evaluation of causality through interventional studies.

For the maximum tempo when playing at the fastest tempo, the individual differences
were negatively associated with both the key depression duration and duration until the
key ascending motion reached its peak velocity. These results corroborate our previous
observation that the duration of the hand muscular activities during the individual keypress
was negatively associated with the maximum tempo when pianists were playing as fast
as possible [16]. The shortened key-depression duration and hand muscular activation, as
well as quicker initiation of the key ascending movement, can allow for quicker transition
of the direction of the finger movement from flexion to extension; these features are
prolonged abnormally in pianists with focal hand dystonia [23,41], and thereby, skillful
finger movements are impaired.

One pedagogical implication for practicing and teaching the piano can be to encourage
pianists to lift their fingers quickly immediately after a key reaches its bottom to accomplish
both speed and accuracy in virtuosic piano performance. When pianists are challenged to
play faster or more accurately, there are many candidate skills to be taken into consideration.
These include spatiotemporal features of movements of the keys and their attributes, such as
movements, posture, and muscular activities of the fingers, arm, and trunk [42]. Identifying
a small set of skills relevant to skillful piano performance is, therefore, useful to optimize
piano practice and teaching efficiently. In the present study, a combination of the novel
sensing system and machine learning analyses successfully identified only a few features
of key movements, most of which were intuitively irrelevant to task performance. In future
studies, it will be essential to address the causal relationship of these features through an
interventional experiment to further identify crucial motor skills necessary for optimizing
the musical performance of expert pianists.

From a technological point of view, the advantage of the present sensing system over
various existing technologies is that it can be retrofitted into existing acoustic pianos. We
have retrofitted the system into several grand pianos made by different companies (e.g.,
Kawai, Steinway, Yamaha), which took half an hour to complete, including the calibration
process. To the best of our knowledge, the existing high-resolution sensing system should be
built-in prior to shipment, which contrasts with our system. In addition, the spatiotemporal
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resolution of our sensing system is as high as that of other built-in sensing systems, such as
Disklavier and SPIRIO.

In future works, we will perform further analyses of data with different tasks, spa-
tiotemporal features of keystrokes, and subject groups. Identifying the spatiotemporal
features relevant to the skillful performance of other basic tasks that are included in various
piano pieces, such as scales and arpeggios, can help develop effective piano training. The
other spatiotemporal features of keystrokes measured by our sensing system, such as the
velocity at the specific moments of the keystroke, acceleration, and jerk, also may explain
the skillful piano performance. For example, the velocity at the onset of the movement and
collision to the key-bed may be relevant to the finger–key contact noise and key-bottom
contact noise affecting the piano tone’s timbre [43]. In this study, we only evaluated healthy
young pianists; however, evaluating other subject groups, such as elderly pianists and pi-
anists with movement disorders, may help prevent the deterioration of piano performance
skills with aging and movement disorders in the future study.

Author Contributions: Conceptualization, T.O. and S.F.; methodology, T.O. and S.F.; software, T.O.;
validation, T.O. and S.F.; formal analysis, T.O.; investigation, T.O. and S.F.; resources, S.F.; data
curation, T.O. and S.F.; writing—original draft preparation, T.O. and S.F.; writing—review and
editing, T.O. and S.F.; visualization, T.O.; supervision, S.F.; project administration, S.F.; funding
acquisition, S.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by JST CREST (JPMJCR20D4), JST CREST (JPMJCR17A3), and
JSPS Grant-in-Aid for Transformative Research Areas B (20H05713).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Ethics Committee of Sophia University (2017-69, approved in
31 October 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: We thank Tomohiro Saito for supporting the development of a prototype of the
sensing system and Hayato Nishioka for enhancing the system.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fitts, P.M. The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement. J. Exp. Psychol.

1954, 47, 381–391. [CrossRef] [PubMed]
2. Furuya, S.; Hanakawa, T. The Curse of Motor Expertise: Use-Dependent Focal Dystonia as a Manifestation of Maladaptive

Changes in Body Representation. Neurosci. Res. 2016, 104, 112–119. [CrossRef] [PubMed]
3. Engel, K.C.; Flanders, M.; Soechting, J.F. Anticipatory and Sequential Motor Control in Piano Playing. Exp. Brain Res. 1997, 113,

189–199. [CrossRef]
4. Goebl, W.; Palmer, C. Temporal Control and Hand Movement Efficiency in Skilled Music Performance. PLoS ONE 2013, 8, e50901.

[CrossRef] [PubMed]
5. Dalla Bella, S.; Palmer, C. Rate Effects on Timing, Key Velocity, and Finger Kinematics in Piano Performance. PLoS ONE 2011, 6,

e20518. [CrossRef]
6. Gentner, R.; Gorges, S.; Weise, D.; Aufm Kampe, K.; Buttmann, M.; Classen, J. Encoding of Motor Skill in the Corticomuscular

System of Musicians. Curr. Biol. 2010, 20, 1869–1874. [CrossRef]
7. Jerde, T.E.; Soechting, J.F.; Flanders, M. Coarticulation in Fluent Fingerspelling. J. Neurosci. 2003, 23, 2383–2393. [CrossRef]
8. Aw, K.; Budd, J.; Wilshaw-Sparkes, T. Data Glove Using Soft and Stretchable Piezoresistive Sensors. Micromachines 2022, 13, 372.

[CrossRef]
9. Liu, G.; McMillan, L. Estimation of Missing Markers in Human Motion Capture. Vis. Comput. 2006, 22, 721–728. [CrossRef]
10. Hore, J.; Watts, S.; Leschuk, M.; MacDougall, A. Control of Finger Grip Forces in Overarm Throws Made by Skilled Throwers. J.

Neurophysiol. 2001, 86, 2678–2689. [CrossRef]
11. Hore, J.; Watts, S. Skilled Throwers Use Physics to Time Ball Release to the Nearest Millisecond. J. Neurophysiol. 2011, 106,

2024–2033. [CrossRef] [PubMed]

http://doi.org/10.1037/h0055392
http://www.ncbi.nlm.nih.gov/pubmed/13174710
http://doi.org/10.1016/j.neures.2015.12.001
http://www.ncbi.nlm.nih.gov/pubmed/26689332
http://doi.org/10.1007/BF02450317
http://doi.org/10.1371/journal.pone.0050901
http://www.ncbi.nlm.nih.gov/pubmed/23300946
http://doi.org/10.1371/journal.pone.0020518
http://doi.org/10.1016/j.cub.2010.09.045
http://doi.org/10.1523/JNEUROSCI.23-06-02383.2003
http://doi.org/10.3390/mi13030372
http://doi.org/10.1007/s00371-006-0080-9
http://doi.org/10.1152/jn.2001.86.6.2678
http://doi.org/10.1152/jn.00059.2011
http://www.ncbi.nlm.nih.gov/pubmed/21775713


Sensors 2022, 22, 4891 11 of 11

12. Paulig, J.; Jabusch, H.-C.; Grossbach, M.; Boullet, L.; Altenmüller, E. Sensory Trick Phenomenon Improves Motor Control in
Pianists with Dystonia: Prognostic Value of Glove-Effect. Front. Psychol. 2014, 5, 1012. [CrossRef] [PubMed]

13. Konczak, J.; Abbruzzese, G. Focal Dystonia in Musicians: Linking Motor Symptoms to Somatosensory Dysfunction. Front. Hum.
Neurosci. 2013, 7, 1–10. [CrossRef] [PubMed]

14. Furuya, S.; Flanders, M.; Soechting, J.F. Hand Kinematics of Piano Playing. J. Neurophysiol. 2011, 106, 2849–2864. [CrossRef]
15. Furuya, S.; Soechting, J.F. Speed Invariance of Independent Control of Finger Movements in Pianists. J. Neurophysiol. 2012, 108,

2060–2068. [CrossRef]
16. Winges, S.A.; Furuya, S.; Faber, N.J.; Flanders, M. Patterns of Muscle Activity for Digital Coarticulation. J. Neurophysiol. 2013, 110,

230–242. [CrossRef]
17. Watson, A.H.D. What Can Studying Musicians Tell Us about Motor Control of the Hand? J. Anat. 2006, 208, 527–542. [CrossRef]
18. Parlitz, D.; Peschel, T.; Altenmüller, E. Assessment of Dynamic Finger Forces in Pianists: Effects of Training and Expertise. J.

Biomech. 1998, 31, 1063–1067. [CrossRef]
19. Furuya, S.; Kinoshita, H. Expertise-Dependent Modulation of Muscular and Non-Muscular Torques in Multi-Joint Arm Move-

ments during Piano Keystroke. Neuroscience 2008, 156, 390–402. [CrossRef]
20. Kinoshita, H.; Furuya, S.; Aoki, T.; Altenmüller, E. Loudness Control in Pianists as Exemplified in Keystroke Force Measurements

on Different Touches. J. Acoust. Soc. Am. 2007, 121, 2959–2969. [CrossRef]
21. Oku, T.; Furuya, S. Skilful Force Control in Expert Pianists. Exp. Brain Res. 2017, 235, 1603–1615. [CrossRef] [PubMed]
22. Grosshauser, T.; Tröster, G. Finger Position and Pressure Sensing Techniques for String and Keyboard Instruments. In Proceedings

of the International Conference on New Interfaces for Musical Expression, Daejeon, Korea, 27–30 May 2013; pp. 479–484.
23. Furuya, S.; Tominaga, K.; Miyazaki, F.; Altenmüller, E. Losing Dexterity: Patterns of Impaired Coordination of Finger Movements

in Musician’s Dystonia. Sci. Rep. 2015, 5, 13360. [CrossRef] [PubMed]
24. Tominaga, K.; Lee, A.; Altenmüller, E.; Miyazaki, F.; Furuya, S. Kinematic Origins of Motor Inconsistency in Expert Pianists. PLoS

ONE 2016, 11, e0161324. [CrossRef] [PubMed]
25. Furuya, S.; Altenmüller, E. Finger-Specific Loss of Independent Control of Movements in Musicians with Focal Dystonia.

Neuroscience 2013, 247, 152–163. [CrossRef]
26. Furuya, S.; Nitsche, M.A.; Paulus, W.; Altenmüller, E. Early Optimization in Finger Dexterity of Skilled Pianists: Implication of

Transcranial Stimulation. BMC Neurosci. 2013, 14, 35. [CrossRef]
27. Hosoda, M.; Furuya, S. Shared Somatosensory and Motor Functions in Musicians. Sci. Rep. 2016, 6, 37632. [CrossRef]
28. Jabusch, H.-C.; Vauth, H.; Altenmüller, E. Quantification of Focal Dystonia in Pianists Using Scale Analysis. Mov. Disord. 2004, 19,

171–180. [CrossRef]
29. Nakahara, H.; Furuya, S.; Francis, P.R.; Kinoshita, H. Psycho-Physiological Responses to Expressive Piano Performance. Int. J.

Psychophysiol. 2010, 75, 268–276. [CrossRef]
30. Pfordresher, P.Q. Auditory Feedback in Music Performance: Evidence for a Dissociation of Sequencing and Timing. J. Exp. Psychol.

Hum. Percept. Perform. 2003, 29, 949–964. [CrossRef]
31. Repp, B.H. Acoustics, Perception, and Production of Legato Articulation on a Digital Piano. J. Acoust. Soc. Am. 1995, 97, 3862–3874.

[CrossRef]
32. van der Steen, M.M.; Molendijk, E.B.D.; Altenmüller, E.; Furuya, S. Expert Pianists Do Not Listen: The Expertise-Dependent

Influence of Temporal Perturbation on the Production of Sequential Movements. Neuroscience 2014, 269, 290–298. [CrossRef]
[PubMed]

33. van Vugt, F.T.; Furuya, S.; Vauth, H.; Jabusch, H.-C.; Altenmüller, E. Playing Beautifully When You Have to Be Fast: Spatial
and Temporal Symmetries of Movement Patterns in Skilled Piano Performance at Different Tempi. Exp. Brain Res. 2014, 232,
3555–3567. [CrossRef] [PubMed]

34. MIDI Manufacturers Association. MIDI 1.0 Detailed Specification; The International MIDI Association: Los Angeles, CA, USA,
1996.

35. Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320.
[CrossRef]

36. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

37. Hirano, M.; Kimoto, Y.; Furuya, S. Specialized Somatosensory–Motor Integration Functions in Musicians. Cereb. Cortex 2020, 30,
1148–1158. [CrossRef]

38. Hirano, M.; Sakurada, M.; Furuya, S. Overcoming the Ceiling Effects of Experts’ Motor Expertise through Active Haptic Training.
Sci. Adv. 2020, 6, eabd2558. [CrossRef]

39. Faisal, A.A.; Selen, L.P.J.; Wolpert, D.M. Noise in the Nervous System. Nat. Rev. Neurosci. 2008, 9, 292–303. [CrossRef]
40. Keller, P.E.; Dalla Bella, S.; Koch, I. Auditory Imagery Shapes Movement Timing and Kinematics: Evidence from a Musical Task. J.

Exp. Psychol. Hum. Percept. Perform. 2010, 36, 508–513. [CrossRef]
41. Furuya, S.; Uehara, K.; Sakamoto, T.; Hanakawa, T. Aberrant Cortical Excitability Reflects the Loss of Hand Dexterity in Musician’s

Dystonia. J. Physiol. 2018, 596, 2397–2411. [CrossRef]
42. Furuya, S.; Altenmüller, E. Flexibility of Movement Organization in Piano Performance. Front. Hum. Neurosci. 2013, 7, 173. [CrossRef]
43. Goebl, W.; Bresin, R.; Fujinaga, I. Perception of Touch Quality in Piano Tones. J. Acoust. Soc. Am. 2014, 136, 2839–2850. [CrossRef]

http://doi.org/10.3389/fpsyg.2014.01012
http://www.ncbi.nlm.nih.gov/pubmed/25295014
http://doi.org/10.3389/fnhum.2013.00297
http://www.ncbi.nlm.nih.gov/pubmed/23805090
http://doi.org/10.1152/jn.00378.2011
http://doi.org/10.1152/jn.00378.2012
http://doi.org/10.1152/jn.00973.2012
http://doi.org/10.1111/j.1469-7580.2006.00545.x
http://doi.org/10.1016/S0021-9290(98)00113-4
http://doi.org/10.1016/j.neuroscience.2008.07.028
http://doi.org/10.1121/1.2717493
http://doi.org/10.1007/s00221-017-4926-3
http://www.ncbi.nlm.nih.gov/pubmed/28260157
http://doi.org/10.1038/srep13360
http://www.ncbi.nlm.nih.gov/pubmed/26289433
http://doi.org/10.1371/journal.pone.0161324
http://www.ncbi.nlm.nih.gov/pubmed/27537686
http://doi.org/10.1016/j.neuroscience.2013.05.025
http://doi.org/10.1186/1471-2202-14-35
http://doi.org/10.1038/srep37632
http://doi.org/10.1002/mds.10671
http://doi.org/10.1016/j.ijpsycho.2009.12.008
http://doi.org/10.1037/0096-1523.29.5.949
http://doi.org/10.1121/1.413065
http://doi.org/10.1016/j.neuroscience.2014.03.058
http://www.ncbi.nlm.nih.gov/pubmed/24709043
http://doi.org/10.1007/s00221-014-4036-4
http://www.ncbi.nlm.nih.gov/pubmed/25059908
http://doi.org/10.1111/j.1467-9868.2005.00503.x
http://doi.org/10.1093/cercor/bhz154
http://doi.org/10.1126/sciadv.abd2558
http://doi.org/10.1038/nrn2258
http://doi.org/10.1037/a0017604
http://doi.org/10.1113/JP275813
http://doi.org/10.3389/fnhum.2013.00173
http://doi.org/10.1121/1.4896461

	Introduction 
	Materials and Methods 
	Participants 
	Sensing System 
	Experimental Setup and Task 
	Data Analysis and Statistics 

	Results 
	Performance of the Sensing System 
	Results of the Regression Model Based on the Human Experiments 

	Discussion 
	References

