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Abstract

The phylogenetic profile of a gene is a reflection of its evolutionary history and can be defined as the differential presence
or absence of a gene in a set of reference genomes. It has been employed to facilitate the prediction of gene functions.
However, the hypothesis that the application of this concept can also facilitate the discovery of bacterial virulence factors
has not been fully examined. In this paper, we test this hypothesis and report a computational pipeline designed to identify
previously unknown bacterial virulence genes using group B streptococcus (GBS) as an example. Phylogenetic profiles of all
GBS genes across 467 bacterial reference genomes were determined by candidate-against-all BLAST searches,which were
then used to identify candidate virulence genes by machine learning models. Evaluation experiments with known GBS
virulence genes suggested good functional and model consistency in cross-validation analyses (areas under ROC curve, 0.80
and 0.98 respectively). Inspection of the top-10 genes in each of the 15 virulence functional groups revealed at least 15 (of
119) homologous genes implicated in virulence in other human pathogens but previously unrecognized as potential
virulence genes in GBS. Among these highly-ranked genes, many encode hypothetical proteins with possible roles in GBS
virulence. Thus, our approach has led to the identification of a set of genes potentially affecting the virulence potential of
GBS, which are potential candidates for further in vitro and in vivo investigations. This computational pipeline can also be
extended to in silico analysis of virulence determinants of other bacterial pathogens.
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Introduction

Virulence - the ability of a pathogen to damage a host and

evade host immune defenses - arises from a range of complex

host-pathogen interactions and can be expressed as the

pathogen’s toxicity, invasiveness, colonization, and ability to be

transmitted to another host [1,2]. Contemporary methods of

searching for the genetic determinants of virulence exploit the

differential presence of virulence genes in invasive pathogens

compared to their less invasive counterparts. Several criteria have

been suggested to help formalize this process including molecular

Koch’s postulates or adoption of Hill’s criteria [3,4]. In practice,

the discovery process usually involves iterative gene screening via

labor-intensive laboratory experiments. Given the relentless

growth in bacterial genomic data, alternative approaches capable

of handling large datasets would facilitate the selection of

potential genes of interest and thus accelerate the discovery of

new virulence genes.

The search for virulence genes in pathogenic bacteria has been

revolutionized over the last decade by comparative genomics [5]

with rapid advances in DNA microarrays [6–8] and whole-

genome sequencing [9]. Purely in silico approaches have been

suggested as an alternative to costly collections of experimental

data. For example, genes that were positively selected in a

uropathogenic E. coli (UPEC) genome were identified using

phylogenetic analysis by maximum likelihood (PAML) of several

E. coli genomes and verified in a sample of UPEC clinical isolates

[10]. While these high-throughput methods are powerful, there

are practical limitations: DNA microarrays are limited to detecting

genes for which allelic variants have already been characterized

and may miss emerging mutations; the PAML-based approach

requires multiple genomes of phenotypic variants of the same

species, which are not always available.

This study utilized an alternate approach that identifies genes

with similar phylogenetic profiles (PPs). A PP is defined as a binary

vector indicating the presence or absence of homologs to the gene

in the reference genomes (Figure 1) and represents the evolution-

ary history of the gene among phylogeny of life. Functionally

similar genes are assumed to have distinct yet conserved

evolutionary ‘‘footprints’’ in different strains, species, and genera.

While patterns of PP have been utilized to predict gene functions

in other setting [11–16], they have not been systematically applied
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to the discovery of bacterial virulence factors. We have developed

and validated a computational method of inductive candidate gene

prioritization (ICGP) to predict bacterial gene functions through the

recognition of specific PP signatures [17]. We expect ICGP to be

applicable to the discovery of bacterial virulence factors, in the

same way that various forms of host-pathogen interaction, such as

epithelial adhesion or mucosal invasion, may also possess specific

fingerprints that allow their discovery through an in silico, cross-

genomic analysis.

We hypothesized that the ICGP method can also facilitate the

discovery of previously unrecognized bacterial virulence genes

and tested this hypothesis using an important bacterial

pathogen, Streptococcus agalactiae, or group B streptococcus

(GBS), as an example. GBS is the leading cause of neonatal

sepsis in developed countries [18] and GBS infection remains a

significant burden despite implementation of screening pro-

grams and antibiotic chemoprophylaxis [19–21]. While exper-

imental studies have identified many GBS virulence genes

[22,23], it is likely that many others and/or specific allelic

variants of known factors, contribute to pathogenesis and should

be taken into account in studies of GBS pathogenesis and drug

target selection. Discovery of new GBS virulence factors could

also contribute to more targeted prenatal screening and

facilitate vaccine design [23]. This paper describes the

application of ICGP to published bacterial whole genome

sequences with a goal of identifying GBS genes with putative

roles in virulence that may act synergistically with known genes

contributing to pathogenesis of GBS disease.

Results

GBS genes contributing to virulence through molecular
mechanisms similar to those of genes of other bacterial
species can be identified using a PP-based model

We tested the hypothesis that PP can predict whether a GBS

gene is associated with virulence. We first determined the PPs by

examining which GBS genes from all fully sequenced S. agalactiae

genomes are also present in 467 reference genomes of other

bacterial species. Evaluation experiments were subsequently

performed to determine whether virulence genes can be

rediscovered by using ICGP trained with functionally-related

virulence genes with corresponding PPs. Two rediscovery

experiments were performed to evaluate the ICGP models on a

‘‘gold standard’’ dataset comprised of all known GBS virulence

genes. Virulence genes were assigned to three major categories,

namely, adhesins, invasins, and immune evasins, and 15 functional

gene categories (fbsA, fbsB, lmb, pavA, scpB, minor pilin cluster, cyl

cluster, cfb, spb1, hylB, bca/bac, cps and neu clusters, cspA, and pbp1A,

Table 1). The first experiment sought to determine whether ICGP

could rediscover currently known virulence genes within a genome

of S. agalactiae serotype III (NEM316, GenBank accession:

AL732656). Among the four algorithms used in ICGP evaluations,

support vector machines (SVM) with radial basis (RBF) and linear

kernel algorithms were the most successful in rediscovering these

genes (Table 2) with area under receiver operating characteristic

(ROC) curve (AUC) of approximately 0.8 evaluated using n-fold

cross-validation. In particular, the gene clusters encoding GBS

pilus and sialic acid synthases (neu cluster) achieved almost perfect

AUC (.0.98) in the rediscovery task, indicating that ICGP is able

to distinguish functional groups of genes responsible for specific

bacterial virulence mechanisms.

We further examined whether ICGP can rediscover genes with

identical PPs. All genes in the published GBS reference genomes

NEM316, A909/Ia (GenBank accession: CP000114), and 2603V/

R (GenBank accession: AE009948) were selected as candidate

genes and n-fold cross-validation analyses were performed. The

gene categories for cross-validation were identical to the previous

experiment. As expected, most categories with exactly one

orthologous gene led to a perfect AUC. Overall, the currently

known GBS virulence genes were rediscovered with AUCs as high

as 0.98 by the nearest-neighbor classifier IBk with all orthologous

genes included in the cross-validation set (Table 3). AUCs of better

than 0.96, 0.89, and 0.95 were achieved for all genes encoding

adhesins, invasins, and immune evasins, respectively (Table 3).

De novo discovery of S. agalactiae virulence genes
We prioritized all genes in three GBS reference genomes to find

potential virulence genes that are yet to be recognized. To

generate the gene ranks, we trained the ICGP models with known

virulence factors alongside the corresponding PPs (see methods

section) for each of the 15 virulence gene categories (Table 1). The

top-10 genes from each category (of less than 0.5% of total open

reading frames in a GBS genome) are shown in Figure 2 and listed

in Table S1. A total of 119 unique homologous genes (416 genes in

three genomes) occupied 150 possible ranks. ICGP rediscovered

11 known GBS virulence genes from 119 homologous genes,

equivalent to 48 of 416 genes in all three genomes (11.5%). We

estimated that our prioritization method had an overall enrich-

ment of .5.4 folds (compared with baseline 134/6,214 genes used

for model training, 2.2%). Sixteen of 119 genes were ranked in

more than one category. The highly ranked genes of unknown

function encoding hypothetical proteins are listed in Table 4.

Figure 1. Determination of phylogenetic profiles. For each gene,
a candidate-against-all BLAST was performed to determine whether at
least one homolog of a candidate gene is present in a given reference
genome. The binary values of presence (1) or absence (0) were stored in
a vector which were used for subsequent rediscovery analyses and
virulence gene predictions.
doi:10.1371/journal.pone.0017964.g001

Computational Discovery of GBS Virulence Genes
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Many highly ranked genes have known virulence roles in
other bacterial pathogens

In addition to the 11 known GBS virulence genes rediscovered, 15

of 119 homologous genes (13%) contributing to mechanisms of

virulence in other pathogens were also recognized. This is equivalent

to a 10-fold enrichment (91 potential virulence genes identified from

the list of 416 genes in 3 GBS genomes, 22%, including genes from

GBS and other human pathogens identified in the literature) when

compared to current knowledge (2.2%). Several genes encoding

putative adhesins were identified; genes encoding metallo-binding

adhesion lipoproteins (C0520 and C1445) and permease proteins

(C1443 and C0154) were highly ranked. The homologs of these genes

in S. pneumoniae (adcAB, psaA, and mtsAC genes) promote indirect

adherence to epithelial cells and have contributed to virulence in

other Gram-positive pathogens [24]. The gene product of C1927 is

distantly similar to a large 1.1-MDa surface protein Ebh in

Staphylococcus aureus, in which fibronectin-binding activities have been

demonstrated in vitro [25]. Both genes C0623 and C2129 contain a

collagen-binding cna-B protein domain; Cna protein is a virulence

determinant of staphylococcal septic arthritis in mouse model, and

has been implicated in causing keratitis in human [26,27].

Genes encoding potential invasins have also been recognized

within the top-10 of the ranks. For instance, two glycosidic

hydrolase genes, the unsaturated glucuronyl hydrolase (ugl, C1789)

and b-glucuronidase genes (C0665), may have putative roles in

facilitating the degradation of hyaluronan in synergy with

streptococcal hyaluronidase (encoded by hylB). The peptidase

U32 (C0709) is similar to a metalloprotease gene prtC in

Prophyromas gingivalis, an anaerobe causing periodontitis. PrtC is a

known factor in contributing to the degradation of type I collagen

in gingivial infection [28].

Genes that encode mechanisms facilitating the evasion of host

immune system were also found. For example, a gene encoding

neuraminidase homologue (C1816) was highly ranked. In S.

pneumoniae, the neuraminidase is known to cleave the terminal sialic

acids of host polysaccharides [29] and promotes the formation of

biofilm [30]. It was also interesting to locate several family 1 and 2

glycosyltransferase genes (GT1: C1330, C1367, GT2: C1459)

within the top rankings of several immune evasins training sets (cspA,

cps and neu clusters); as many of the cps genes encode glycosyltrans-

ferase enzymes [31], these highly prioritized genes may play a role

in the biosynthesis of unrecognized carbohydrate structures

contributing to the antigenic diversity of GBS. This finding is in

concordance with a study which suggested that C1330 (SAG1410 in

2603V/R) encodes an a-galactosyltransferase participating in group

B carbohydrate synthesis [32]. In addition, a gene encoding putative

staphylokinase homolog C1080 (SAG1127 and GBS1195) was

found. Staphylokinase is known to cleave the Fc portion of human

IgG and complement C3b [33] and to inactivate a-defensin

produced by neutrophils during S. aureus infection [34].

Corroborated discovery of virulence genes using
functionally unrelated virulence genes as a training set

Because bacterial pathogenesis is mediated by a variety of distinct

molecular mechanisms, a good gene prioritization model would be

expected to identify different classes of virulence genes from which the

predictive model can be built. To estimate the predictive power of

such ‘‘cross-group’’ discoveries, we examined the rankings of known

Table 1. List of known GBS virulence genes with systematic gene names in three published reference genomes.

Systematic name/loci in reference genomes

Category Gene Function/annotation NEM316 (III) A909 (Ia) 2603 (V) Ref.

Adhesins fbsA fibrinogen-binding protein FbsA GBS1087 SAK1142 SAG1052 [S1-4]

fbsB fibrinogen-binding protein FbsB GBS0850 SAK0955 SAG0832 [S4,5]

pavA fibronectin-binding protein GBS1263 SAK1277 SAG1190 [S6]

scpB C5a peptidase GBS1308 SAK1320 SAG1236a [S7,8]

lmb laminin-binding protein GBS1307 SAK1319 SAG1234 [S9-11]

GBS pilus cluster streptococcal pilus cluster GBS0628-32 SAK0776-80 SAG0645-49 [S12-14]

Invasins cylb b-hemolysin/cytolysin GBS0644-55 SAK0790-0801 SAG0662-73 [S20-26]

cfb CAMP factor GBS2000 SAK1983 SAG2043 [S27]

spb1 hemolysin III GBS1477 SAK1440 SAG1407 [S27,S31]

hylB hyaluronate lyase GBS1270 SAK1284 SAG1197 [S28-30]

ribc surface protein rib GBS0470 SAG0433 [S15-19]

bcac C-a protein SAK0517 [S15-19]

Immune evasins bac C-b protein - SAK0186 [S32-34]

cps cps gene cluster GBS1237-47 SAK1251-62 SAG1162-75 [S35-37]

neu neu gene cluster GBS1233-36 SAK1247-50 SAG1158-61 [S38-41]

scpBd C5a peptidase (see above) [S7,8]

cspAc serine protease cspA GBS2008 SAK1991 SAG2053 [S42]

pbp1A/ponA penicillin-binding protein 1A GBS0288 SAK0370 SAG0298 [S43-45]

a. IS1548 is embedded upstream of scpB gene in 2603 V/R.
b. although primarily an invasin, cyl is capable of damaging phagocytes and hence also have a role in immune system evasion.
c. dual roles of both an invasin and an immune system evading gene.
d. dual roles of both an adhesin and an immune system evading gene.
Please refer to Text S3 for the reference entries.
doi:10.1371/journal.pone.0017964.t001
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GBS virulence genes in each the 15 lists produced by ICGP. It was

noted that, on average, at least one gene from a functional category

can be discovered in the top 1% of a gene rank produced by the

SVM/RBF algorithm (the best performing algorithm in the first

rediscovery experiment, Table 2) that is trained on genes of another

virulence category. A median of 4 other categories (out of total of 15)

was discoverable within the top 5% of a given rank. The cumulative

gain plot depicting this phenomenon is shown in Figure 3.

Several qualitative observations were made during the cross-

group analysis which supported the plausibility of the prioritized

gene lists. For example, at least one gene from the categories of GBS

surface C-antigens (including all bca, rib and bac genes), cps, and neu

clusters were discoverable within the top-1% of the ranks of the

other two functional categories (approximately 21 genes including

training set genes, Figure 4A). At top 5% (approximately 104 genes

including the training set) of the ranks, all but one (pbp1A) gene

category can either be used to discover through, or at least have one

gene being discovered by, another category (Figure 4B). While we

did not identify apparent directions of discovery between the major

virulence function classes (adhesins, invasins, and evasins), these

qualitative observations (of the majority of known GBS virulence

genes placed on the top of the prioritized lists of other functional

categories) reconfirmed the capacity of our method to identify genes

with potential impact on virulence within the set of remaining

highly-ranked but functionally unrecognized genes.

Highly-ranked genes are not linked with the genes in
training sets

To demonstrate that the virulence genes predicted by ICGP do

not merely discover neighboring genes, highly-ranked genes in the

NEM316 genome were plotted on the chromosome map (Figure 5).

It is evident that the newly discovered genes were scattered across

the genome. Comparing the average distance between start

codons of neighboring genes (mean: 1,056 bp, 95% confidence

interval: 1,018–1,093 bp), the average distance between the

highly-ranked genes and the closest gene of the corresponding

training set was 544,441 bp with a wide range (95% CI: 495,802–

593,080 bp), which indicates a clear difference in placement of

predicted virulence genes discovered by the ICGP method (two-

sample unpaired t-test, t = 22.1, df = 157, pv0:005).

Highly-ranked genes can reside within known or
predicted genomic islands

Several top-ranked genes are located within known genomic

islands in two or more reference genomes: (1) The gene ISSag2

(C1177), encoding a transposase, was placed within the top-10

on the fbsB rank; ISSag2 transposase flanks a 17-kbp composite

transposon found in virtually all GBS strains [35] and

Table 2. Performance of algorithms (area under ROC curve,
AUC) in the rediscovery experiment using only NEM316
genome.

Algorithms (AUC)

Virulence gene
category n ADTree IBk RBF Poly

All virulence genes 43 0.721 0.722 0.804 0.791

Adhesins 10 0.716 0.776 0.780 0.767

minor pilin cluster 5 0.970 0.763 0.980 0.881

Invasins 17 0.864 0.679 0.857 0.880

cyl cluster 12 0.824 0.648* 0.825 0.820

Immune evasins 17 0.825 0.770 0.876 0.860

cps cluster 11 0.808 0.797 0.919 0.849

neu cluster 4 1.000 0.836 1.000 1.000

cps/neu cluster 15 0.864 0.773 0.925 0.914

This analysis evaluated the relative performance of each algorithm to rediscover

virulence genes by applying stratified n-fold cross-validations with
1

n
of the

entire set of S. agalactiae NEM316 genes serving as test-set in each fold. Each
fold of training set comprised (n{1) positive and (n{1)(2094{n)=n negative
examples.n: number of virulence genes in the category. Singleton virulence
gene categories were excluded from this analysis, as it is not possible to
perform cross-validations on training sets with n = 1. All but one (labeled*) AUCs
reached the statistical significance level at a = 0.05 (two-tailed Mann-Whitley U-
test). At least 3 out of 4 algorithms were still significant after adjustment for
multiple testing (across the family of 4 algorithms) by the Bonferroni method.
Abbreviations: ADTree: alternating decision tree; IBk: nearest neighbor classifier;
SVM: support vector machine; RBF: SVM with radial basis function; Poly: SVM
with polynomial kernel. Refer to the methods section for the parameters used
to train the machine learning algorithms. The numbers in bold face indicate the
best performing algorithm for a given category.
doi:10.1371/journal.pone.0017964.t002

Table 3. The performance of inductive CGP algorithms in the
rediscovery of known virulence genes in all 3 GBS reference
genomes.

Algorithms (AUC)

Virulence gene
category n ADTree IBk SVM/RBF SVM/Poly

All virulence
genes

134 0.848 0.980 0.951 0.960

Adhesins 30 0.968 0.961 0.960 0.965

fbsA 3 0.888 0.677 0.754 0.961

fbsB 3 0.874 0.971 0.959 0.957

lmb 3 1 1 1 1

pavA 3 1 1 1 1

scpB a 3 1 1 1 1

minor pilin cluster 15 1 1 1 1

Invasins 51 0.929 0.974 0.954 0.982

cyl cluster 36 0.950 0.988 0.962 0.980

cfb 3 1 1 1 1

spb1 3 1 1 1 1

hylB 3 1 1 1 1

C-a genes b 3 0.933 0.967 0.979 0.978

Immune evasins 60 0.929 0.974 0.954 0.982

bac c 1 - - - -

cps cluster 37 0.960 0.966 0.948 0.967

neu cluster 12 1 1 1 1

cps/neu clusterd 49 0.970 0.974 0.960 0.979

cspA e 3 1 1 1 1

pbp1A/ponA 3 1 1 1 1

This rediscovery analysis applied all known GBS virulence genes by applying

stratified n-fold cross-validations with
1

n
of the entire set of S. agalactiae genes

in A909, NEM316, and 2603V/R genomes serving as test-set in each fold.

n: number of genes in the category.
a. scpB was also included as immune evasion genes.
b. Including both bca and rib; also included as immune evasion genes.
c. bac was represented by less than two genes in the three reference genomes
studied. No rediscovery experiment was performed.
d. Including all genes from the cps-neu operon. e. cspA was also included as an
invasin.
doi:10.1371/journal.pone.0017964.t003
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characterizes a pathogenicity island (PI) containing virulence

genes scpB and lmb (2603V/R: SAG1228-44, A909: SAK1314-

23). (2) Genes mtsA/C (C1443 and C1445) were discovered in

another known PI (2603V/R: SAG1527-33, A909: SAK1550-

6). (3) Genes vex1-3 and vncR/S were located within the genomic

island located at GBS0587-600 (2603V/R: SAG0608-20, A909:

SAK0692-705). While the exact functions of the vex-vnc clusters

remain to be elucidated, it has been demonstrated that mutants

lacking of vex3 are associated with altered resistance of S.

pneumoniae to vancomycin [36,37]. (4) Prioritized in the C-a/b
rank, a putative type II DNA modification methyltransferase

(C1224) was found on the predicted genomic island containing

the bac gene, the gene encoding surface protein C-b antigen,

which was bound by GBS1350 and GBS1371 in NEM316

(2603V/R: SAG1287-97; A909: SAK0720-64).

The rediscovery of virulence genes in Streptococcus
pneumoniae

To demonstrate that our approach is generalizable to other

species, the rediscovery experiments were replicated on 6,355

genes in 3 published S. pneumoniae genomes (D39, R6, and

TIGR4). Forty-seven known pneumococcal virulence genes

were arranged into 21 virulence gene groups through the review

of literature [38]: choline-binding protein genes (cpbC-G),

capsular polysaccharide gene cluster (cps), serine protease gene

htrA, hyaluronidase gene hysA, IgA protease gene iga1, autolysin

genes (lytABC), neuraminidase genes (nanAB), adhesin and ABC

transporter genes (pavA, piaA, and piuA), pneumolysin gene ply, a

manganese-binding ABC transporter gene (psaA), peptidylprolyl

isomerase genes (ppmA and slrA), and a zinc-metalloprotease

gene zmpB. It was found that: (1) Within the top-0.5% of the

cbpA-G, lytABC, nanAB, iga1, zmpB, and hysA ranks, at least one

other gene from the other virulence gene groups was able to be

identified. (2) The de novo gene lists (of top-0.5% of the

prioritized genes) have also revealed genes suggestive of

virulence functions in S. pneumoniae: putative helicase genes

spr0500-3 (in the hysA, iga1 and nanAB ranks), ferric-iron

permease fatC (in piaA, piuA, lytB, and cbpB ranks), murM and

exfoliative toxin shetA genes (in cbpD and hysA ranks),

pyrorolidone-carboxylate peptidase gene (pcp, in lytC and hysA

ranks), alpha-galactosidase gene aga (with nanAB), a Hes/MoeB/

ThiF family gene (in the cbpE and lytB ranks), as well as surface

proteins spr0583 and pcpA, galactose-1-phosphate uridylyl-

transferase genes gatT, and hypothetical protein spr0217 (in

pspC, cbpEG, and lytAC ranks) were revealed. ICGP has also

suggested a hemolysin-related protein gene (spr0737) which was

found to be closely associated with ply. The unsaturated

glucuronyl hydrolase gene (ugl) was ranked highly with hysA,

and psaA was associated with laminin-binding protein gene lmb

and ABC transporter genes adcA, psaC, adbC, and appA. These

Figure 2. Proposed candidate GBS virulence genes. The figure illustrates the putative S. agalactiae virulence genes identified in this paper, of
which the biological function have been known in other pathogens or inferred by sequence similarity with known protein motifs. The cluster IDs
(Cnumber) identify the homolog clusters defined in Table S2.
doi:10.1371/journal.pone.0017964.g002

Computational Discovery of GBS Virulence Genes
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encouraging results have thus supported the use of ICGP in

virulence gene prediction in other pathogens.

Discussion

This paper demonstrates a new approach to discover

potential virulence genes in bacterial genomes. It describes a

computational pipeline using phylogenetic profiles to identify

new virulence genes in S. agalactiae. Fifteen genes, for which

there is evidence of either confirmed or plausible associations

with virulence in other bacterial pathogens have been

identified. Many of these genes are involved in epithelial

adhesion, damaging to host cells, or evasion of the host

immune system (Figure 2). While most of these genes are

considered ‘‘general’’ virulence factors, it is likely that some of

them may play an unique role in the pathogenesis of GBS

infection in susceptible newborns. Determining the optimal

cut-off of the gene rank was, however, challenging because it

was not possible to estimate the number of virulence genes in a

genome in advance. While other criteria for determining the

significance level may be imposed, for example, inverse of the

number of genes in the target given genome [10], obtaining an

objective score for a generative classification model is less

trivial (discussed below). We adopted a more practical

approach by reviewing the top-10 genes (approximately 0.5%

of the GBS genome) of the ranks from each functional category

to examine their potential biological roles. Although the

selection of this significance level seemed arbitrary and true

virulence genes may have lower ranks, our results have

demonstrated that, by using this threshold (top-10 genes), the

probability of finding a true virulence gene could be improved

by up to 10 times compared with random selection of

candidate genes. Thus, our objective of postulating new GBS

candidate virulence genes has been fulfilled; this is also evident

through qualitative analysis of evidence retrieved from the

published literature and databases.

Our in silico gene ranking approach offers a new opportunity

to perform a genome-wide identification of virulence genes in

bacterial pathogens. The functional validity of this approach

was also strengthened by, for instance, the ability to recover 6

out of 10 known peptidoglycan genes with the PP of penicillin

binding protein gene, pbp1A. These results support our original

hypothesis that a group of virulence genes with closely-related

mechanisms can be widely distributed across bacterial genomes.

Thus, the concept of virulence gene-infectious disease relation-

ship may be modified from one that involves a simple

association between a gene and a pathogen trait, where

virulence is related to the presence or absence of incriminated

genes, to a complex repertoire of widely distributed genes that

confer specific survival advantage on the pathogen. The good

prediction results from our rediscovery experiments imply that

there are specific combination patterns of virulence genes in

bacterial pathogens. The existence of such patterns is conceiv-

able, because the co-occurrence of virulence genes is a

Table 4. List of genes encoding hypothetical proteins and their putative biological significance.

Cluster Gene* In rank(s)
Have orthologs in other genomes with annotations;
Contains Pfam Motifs{ (E-value) Predicted function

C0036 GBS0036 spb1 DUF386 (2:8|10{31)

C0255 GBS0253 fbsA quinone-reactive Ni/Fe hydrogenase, cytochrome b subunit

C0257 GBS0255 cyl lipoprotein

C0348 GBS0344 fbsA intercellular adhesion protein C ? adhesin

C0429 GBS0488 cfb superfamily II helicase

C0442 GBS0502 minor pilin ATP-dependent endopeptidase

C0560 (absent) cfb phage protein; DUF1642 (8|10{61)

C0613 GBS0616 C-a/b DUF1706 (7:2|10{111)

C0753 GBS0806 cspA, fbsA Methyltransferase; (Methyltransf_11 domain, 8:4|10{19) ? methyltransferase

C1080 GBS1195 fbsB [skc] streptokinase plasminogen activator ? staphylokinase analog

C1172 GBS1295 neu cluster DUF208 (7:7|10{115)

C1271 GBS1415 fbsA DUF2127 (5:3|10{107)

C1332 GBS1482 cspA putative O-antigen transporter; ? synthesis of unknown
antigens

Polysaccharide biosynthesis protein (Polysacc_synt, 1:4|10{60)

C1377 GBS1529 fbsB streptococcal hemagglutinin; fibrinogen-binding adhesin (SdrG_C_C, 4:3|10{41) ? adhesin

C1412 GBS1559 fbsB [blpX] bacteriocin self-immunity protein

C1716 GBS1861 cfb putative DNA-binding protein; YheO-like PAS domain (PAS_6, 3|10{41)

C1856 GBS1961 fbsA RNA-binding protein

C1860 GBS1992 cyl ABC-type transport system, permease

C1977 (absent) neu, fbsA filamentation induced by cAMP protein Fic; (Fic family domain, 1:5|10{14)

C2042 GBS0486 scpB, lmb Methyltransferase (Methyltransf_11 domain, 7:5|10{25) ? methyltransferase

This table lists the genes encoding hypothetical proteins from the top-10 genes of all 15 functional category listed in Table S1. Cluster refers to the homolog clusters
listed in Table S2. In ranks(s): within top-10 of functional categories (ranks). Each hypothetical protein was searched against KEGG [47] and Pfam database [48] to identify potential
homologous sequence motifs. Note: *) Systematic gene names in the NEM316 (serotype III) genome. {) Pfam motifs with E-value w10{5 are not presented in the table.
doi:10.1371/journal.pone.0017964.t004
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fundamental requirement for pathogen function and interaction

with the host at the cellular level [39]. However, the

interpretation and comprehension of these implicit patterns is

challenging. Bowers et al. (2004), for example, analyzed gene

co-occurrence patterns to find higher-order inter-relationships

between genes [40]. The integration of PP-based gene

prioritization methods with other data sources should be

explored. For example, mapping PP signatures to gene ontology

and annotation databases, to decipher the underlying meaning

of these highly-conserved profiles, can be of value.

There are several points to note in the selection of training data

and algorithms. First, we based our de novo predictions on the

individual categories of virulence function as opposed to a

training set consisting of all known virulence factors. Although

novel genes may be revealed by training the ICGP models with

the aggregated training set, the categorized approach can be

justified because results are likely to be skewed towards gene

functions presented with higher proportion in the training set (see

Text S1). It is also evident that training sets with higher

functional consistency at molecular level have better cross-

validation results. For example, the category of neu cluster is more

consistent over the broader category of immune system evasins.

Second, we selected ICGP algorithms based on the results of our

previous work, which showed that the discriminative classifiers

outperformed the generative model of naı̈ve Bayes in a set of

standard prioritization tasks [17]. One disadvantage of using a

discriminative model is that the classifier outputs do not generally

correspond to a true probability distribution of gene-function

relationships. Although attempts were made to rectify the

probability estimates for models such as SVM (i.e., fitting logistic

models to output and aggregating individual rankings by voting),

the distribution of scores still depends on individual algorithms.

This may also explain the disparity of good rediscovery

performances achieved by most algorithms (Table 2) and poor

agreements between individual gene rankings (Text S2). Thirdly,

our approach only aims to recover the genes having similar

phylogenetic profile to the known virulence factors. In cases

where no virulence genes are known, alternative methods would

need to be sought for the gene prioritization task.

In conclusion, we have performed a computational genome-

wide prioritization for discovering potential virulence genes in S.

agalactiae through a cross-genomic analysis of PPs. Our compar-

ative genomic approach requires fewer genomes of the target

virulence species for hypothesizing potential virulence genes. A

number of plausible molecular mechanisms have been revealed,

some of which have been documented in other bacterial

pathogens. Furthermore, we have significantly extended the

number of potential bacterial gene targets for drug and vaccine

design by identifying highly-ranked yet uncharacterized candidate

genes which may have roles in GBS virulence. This approach can

also be applicable to the discovery of virulence genes in other

bacterial pathogens.

Materials and Methods

Data sources
The phylogenetic profiles of the whole genome of three strains

of S. agalactiae A909 [41], NEM316 [42], and 2603V/R [9] were

determined by searching the occurrence of 6,214 genes in 467

annotated bacterial genomes retrieved from National Center for

Biotechnology Information database (NCBI, ftp://ftp.ncbi.nlm.

nih.gov/genomes/Bacteria/; downloaded in April 2007) by

using Basic Local Alignment and Search Tool (BLAST)

algorithm (blastp program). The presence of a potential

homologous gene was determined at the critical E-value of

10{5 (Dataset S1). For each known GBS virulence factor, a

further literature search was performed and the location of

associated genes identified and labeled in the reference genomes

(see Text S3 for more details). The criteria for grouping of the

known virulence factors into 15 functional categories were:

Figure 3. Number of other gene categories discoverable at a certain rank position. This analysis evaluated how many virulence gene
categories are discoverable at a given position of a prioritized rank. A category is considered discoverable by another if at least one virulence gene is
present above a given position in the rank is being analyzed. The gene positions were measured by rank fraction (between 0 and 1) with 0 being the
top of the rank and 1 at the bottom. Candidate genes were ranked by SVM/RBF algorithm (the best algorithm evaluated in Table 2).
doi:10.1371/journal.pone.0017964.g003
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discriminable by BLAST and a distinguishable biological

mechanism in GBS pathogenesis.

Descriptive analysis of the PPs revealed that 527 of 6,124 genes

(8.5%) were specific to GBS (present in at least 1 of the 3

genomes), including 4.2% of genes specific to individual GBS

reference strains. Four hundred and seventy seven genes (7.7%)

were present in .95% of reference genomes. Overall, the 467-

genome panel was able to characterize GBS genes into large

numbers of genotypes in 2603V/R (1,712 types), NEM316

(1,675 types), and A909 (1,689 types) genomes respectively. This

is equivalent to approximately 80–85% of unique genotypes when

compared to the number of genes per GBS genome, indicating

that our PP panel can be used to characterize individual genes

with satisfactory discriminatory power. The inclusion of multiple

genomes per species may have introduced redundancy, as all

NCBI genomes were used as the reference panel. However, it has

been previously shown that redundancy did not result in

performance penalties in machine learning-based gene prioritiza-

tion methods [17] and hence a more inclusive approach was

adopted in the selection of reference genomes.

Machine learning algorithms
Four machine learning algorithms were applied to each of the

functional categories of known GBS genes. Algorithm selection

was based on performance in our previous work [17]. The

algorithms include: support vector machine with linear kernel

(SVM/Poly, trained by sequential minimization optimization

algorithm), SVM with RBF kernels (SVM/RBF), alternating

decision tree (ADTree with number of boosting iterations set to

10), and k-nearest neighbor classifier (IBk with inverse distance

weighing where k was determined by leave-one-out cross-

validation). The output of each classifier was used for the basis

for gene ranking. Logistic models were fitted to estimate the

posterior probabilities of both SVM algorithms. Algorithms were

implemented using Waikato Environment for Knowledge Analysis

(WEKA) version 3.5.6 [43].

Rediscovery of the training genes
For each functional GBS gene category containing n virulence

genes, a n-fold cross-validation was performed, with the remaining

candidate genes assigned a negative class. Rediscovery perfor-

mance was measured by AUC for each combination of algorithm

and gene category. All genes in NEM316 genome were used

for cross-validation in the first rediscovery experiment, and all

genes from the 3 reference genomes were applied in the second

experiment.

Sub-sampling of negative examples in the de novo
discovery of GBS virulence genes

For each functional category, all of known virulence genes were

labeled as positive gene examples in the training set. To reduce the

oversampling of negative classes, only a subset of the remaining

unlabeled genes were labeled as negative examples in the training set.

The remaining
3

4
of candidate genes were randomly sampled without

replacement and were assigned a negative class. Predictions were

made on the remaining one-quarter of the unknown genes

and scores from each run were obtained for each gene to be

predicted. The above procedure was repeated for 1000 runs to

improve coverage. Scores from each run were averaged by arith-

metic means which formed the basis of ranking. This procedure is

detailed in Text S3.

Combining the ranks from multiple models
To increase the likelihood of identifying true virulence genes, we

aggregated ranks produced by 4 machine learning algorithms into

a final rank by using the following voting function:

f (g)~1{ P
N

i
P(Xvri(g))

� � 1
N
~1{ P

N

i
ri(g)

� � 1
N

where g is a candidate gene, f (g) is the final aggregated score of gene

g, N is number of ranks (~4), X is an uniform random variable, and

ri is the rank fraction (position of the rank, starting from 1, divided

by the total number of genes in the entire list) of rank i.

Clustering of homologous genes
Because homologous (including both orthologs and closely-

related paralogs) genes would appear multiple times in close

proximity in a prioritized rank due to high degrees of similarities in

Figure 4. Inter-discovery between virulence gene categories.
These figures provide two cross-sectional views of Figure 3 at the
positions of top-1% (A) and -5% (B) respectively. The arrowheads
indicates which other categories of virulence genes were discoverable
by the category at the tail of arrow.
doi:10.1371/journal.pone.0017964.g004
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PPs, the genes from each resultant rank were collated into homolog

clusters to ease the interpretation of results. The reciprocal best

BLAST hit method described by Hirsh et al. was employed [44].

The complete list of homolog clusters is shown in Table S2.

Identification of genomic islands
The participation of genes in genomic islands was examined by

search against the IslandViewer database [45] and PAthogenicity

Island DataBase (PAI-DB) [46].

Supporting Information

Dataset S1 The phylogenetic profiles of all 6,214 genes of 3 GBS

genomes (NEM316, A909/Ia, and 2603V/R) used in this paper.

(TXT)

Table S1 Top-10 genes of each virulence function category

prioritized by inductive CGP.

(DOC)

Table S2 List of homolog clusters in the three S. agalactiae

genomes defined in this paper.

(PDF)

Text S1 Prioritization of candidate virulence genes in the GBS

genomes by using all known virulence factors as training set.

(DOC)

Text S2 Correlations between prioritized gene lists produced by

different machine learning algorithms.

(DOC)

Figure 5. Positions of the training set (in red) and top-10 genes (in blue) in each of the 15 virulence gene categories in S. agalactiae
NEM316 genome (serotype III). The highly-ranked genes is shown to be scattered across the entire GBS genome and not aggregated in close
physical proximity. Physical linkages between the known and the prioritized genes are therefore unlikely. This illustration demonstrated the novelty
of the PP approach for virulence gene discovery compared with the traditional paradigm of physical linkage and gene clusters. The blue boxes refer
to the known genomic islands and are discussed in the results section. (*) Predicted by homology to other reference genomes, as islands (1) and (2)
were not listed in PAI-DB or IslandViewer for NEM316.
doi:10.1371/journal.pone.0017964.g005
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27. Xu Y, Rivas J, Brown E, Liang X, Höök M (2004) Virulence potential of the

staphylococcal adhesin CNA in experimental arthritis is determined by its

affinity for collagen. J Infect Dis 189: 2323–33.

28. Kato T, Takahashi N, Kuramitsu H (1992) Sequence analysis and character-

ization of the Porphyromonas gingivalis prtC gene, which expresses a novel

collagenase activity. J Bacteriol 174: 3889–95.

29. Jedrzejas M (2001) Pneumococcal virulence factors: structure and function.

Microbiol Mol Biol Rev 65: 187–207; first page, table of contents.

30. Soong G, Muir A, Gomez M, Waks J, Reddy B, et al. (2006) Bacterial

neuraminidase facilitates mucosal infection by participating in biofilm

production. J Clin Invest 116: 2297–2305.

31. Cantarel B, Coutinho P, Rancurel C, Bernard T, Lombard V, et al. (2008) The

Carbohydrate-Active EnZymes database (CAZy): an expert resource for

Glycogenomics. Nucleic Acids Res 37: 233–8.

32. Sutcliffe I, Black G, Harrington D (2008) Bioinformatic insights into the

biosynthesis of the group b carbohydrate in streptococcus agalactiae.

Microbiology 154: 1354–63.

33. Rooijakkers S, van Wamel W, Ruyken M, van Kessel K, van Strijp J (2005)

Anti-opsonic properties of staphylokinase. Microbes Infect 7: 476–84.

34. Bokarewa M, Jin T, Tarkowski A (2006) Staphylococcus aureus: Staphylokinase.

Int J Biochem Cell Biol 38: 504–9.

35. Franken C, Haase G, Brandt C, Weber-Heynemann J, Martin S, et al. (2001)

Horizontal gene transfer and host specificity of beta-haemolytic streptococci: the

role of a putative composite transposon containing scpB and lmb. Mol Microbiol

41: 925–35.

36. Haas W, Sublett J, Kaushal D, Tuomanen E (2004) Revising the role of the

pneumococcal vex-vncRS locus in vancomycin tolerance. J Bacteriol 186:

8463–71.

37. Haas W, Kaushal D, Sublett J, Obert C, Tuomanen E (2005) Vancomycin stress

response in a sensitive and a tolerant strain of Streptococcus pneumoniae. J Bacteriol

187: 8205–10.

38. Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of streptococcus

pneumoniae virulence factors in host respiratory colonization and disease. Nat

Rev Microbiol 6: 288–301.

39. Wassenaar T, Gaastra W (2001) Bacterial virulence: can we draw the line?

FEMS Microbiol Lett 201: 1–7.

40. Bowers PM, Cokus SJ, Eisenberg D, Yeates TO (2004) Use of logic relationships

to decipher protein network organization. Science 306: 2246–9.

41. Tettelin H, Masignani V, Cieslewicz M, Donati C, Medini D, et al. (2005)

Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae:

implications for the microbial ‘‘pan-genome’’. Proc Natl Acad Sci U S A 102:

13950–5.

42. Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, et al. (2002)

Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal

disease. Mol Microbiol 45: 1499–513.

43. Witten I, Frank E (2005) Data Mining: Practical machine learning tools and

techniques. San Francisco: Morgan Kaufmann, 2nd edition.

44. Hirsh A, Fraser H (2001) Protein dispensability and rate of evolution. Nature

411: 1046–9.

45. Langille MGI, Brinkman FSL (2009) Islandviewer: an integrated interface for

computational identification and visualization of genomic islands. Bioinformatics

25: 664–5.

46. Yoon SH, Park YK, Lee S, Choi D, Oh TK, et al. (2007) Towards

pathogenomics: a web-based resource for pathogenicity islands. Nucleic Acids

Res 35: D395–400.

47. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, et al. (2006) From

genomics to chemical genomics: new developments in kegg. Nucleic Acids Res

34: D354–7.

48. Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. (2010) The pfam protein

families database. Nucleic Acids Res 38: D211–22.

Computational Discovery of GBS Virulence Genes

PLoS ONE | www.plosone.org 10 April 2011 | Volume 6 | Issue 4 | e17964


