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A B S T R A C T

Clinical methods are used for diagnosing COVID-19 infected patients, but reports posit that, several people who
were initially tested positive of COVID-19, and who had some underlying diseases, turned out having negative
results after further tests. Therefore, the performance of clinical methods is not always guaranteed. Moreover,
chest X-ray image data of COVID-19 infected patients are mostly used in the computational models for COVID-19
diagnosis, while the use of common symptoms, such as fever, cough, fatigue, muscle aches, headache, etc. in
computational models is not yet reported. In this study, we employed seven classification algorithms to empiri-
cally test and verify their efficacy when applied to diagnose COVID-19 using the aforementioned symptoms. We
experimented with Logistic Regression (LR), Support Vector Machine (SVM), Naïve Byes (NB), Decision Tree
(DT), Multilayer Perceptron (MLP), Fuzzy Cognitive Map (FCM) and Deep Neural Network (DNN) algorithms. The
techniques were subjected to random undersampling and oversampling. Our results showed that with class
imbalance, MLP and DNN outperform others. However, without class imbalance, MLP, FCM and DNN outperform
others with the use of random undersampling, but DNN has the best performance by utilizing random over-
sampling. This study identified MLP, FCM and DNN as better classifiers over LR, NB, DT and SVM, so that
healthcare software system developers can adopt them to develop intelligence-based expert systems which both
medical personnel and patients can use for differential diagnosis of COVID-19 based on the aforementioned
symptoms. However, the test of performance must not be limited to the traditional performance metrics.
1. Introduction

The weekly epidemiological reports on COVID-19 from the World
Health Organization (WHO) shows that COVID-19's confirmed cumula-
tive cases are above 240 million with over 4.9 million deaths, as of
October 23, 2021, globally (World Health Organization, 2020a). New
cases are always reported due to the advent of different SARS-CoV-2
(Severe Acute Respiratory Syndrome Coronavirus 2) variants despite
the ongoing vaccination programme across several countries.
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SARS-CoV-2 variants, such as Cluster 5, SARS-CoV-2 VOC 202012/01,
501Y.V2, and P.1, have been reported in countries, such as Denmark, the
United Kingdom, Brazil, Nigeria, and South Africa. There are possibilities
that the variants could weaken the strength of body immune system that
is built naturally or due to vaccination and hence reduce neutralization of
the effects of the virus in human (World Health Organization, 2020a,
2020b).

The ongoing and prolonged high rates of new infections of SARS-CoV-
2, vis-�a-vis the occurrences of different variants of SARS-CoV-2, has
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continued to strain the government, private organizations and the
healthcare systems in all countries. SARS-CoV-2 is said to be ranked
number 11 among the deadliest viruses in the world, with a mortality
rate of 2.3% (Anne, 2020). These numbers call for serious concerns in the
tackling of SARS-CoV-2 and its variants. This situation is worrisome to
medical practitioners and the government. Therefore, several public
healthcare and social measures are designed to ensure the adequate
tackling of the disease in the forms of compulsory face masking, social
distancing, contact tracing, temperature check, minimizing social gath-
ering and sales/consumption of alcohol, and provision of vaccines.
However, these measures are negatively influenced by factors, such as
privacy, data security, freedom of movement and socializing, lack of IT
infrastructure, insufficient IT skill, low literacy, and ease of use (Mbunge
et al., 2021). These factors influence the decisions of the populace in
terms of embracing and complying fully with the government regulations
in the tackling of COVID-19 and further influence the spread of the dis-
ease, so there is a need to increase the diagnostic capacity and systematic
sequencing of SARS-CoV-2. As a result, many clinical methods have been
developed to diagnose SARS-CoV-2. However, there have been reports on
false-negative rates that ranged from 5% to 40% (Arevalo-Rodriguez
et al., 2020; Long et al., 2020; Weissleder et al., 2020).

Studies conducted in China and Singapore reported a few cases of
false-negative results to the tone of 29% and 11%, respectively (Fang
et al., 2020; Lee et al., 2020). This implies that the clinical methods do
not guarantee the accurate diagnosis or classification of COVID-19 and it
could be attributed to the type and quality of the specimen obtained, the
duration of illness at the time of testing, and the specific assay. Thus, the
need arises for scientists to complement the clinical diagnostic methods
with computational intelligence methods in order to ensure near to 100%
accurate diagnosis and classification.

In addition, COVID-19 and other diseases, such as Malaria, HIV/AIDS,
Tuberculosis, Flu and Pneumonia have similar symptoms and this makes
the differential diagnosis of COVID-19 at the early stage inevitable,
particularly when the infection is very mild and it cannot be established
whether the infection is that of Malaria, HIV/AIDS, Tuberculosis, Flu or
Pneumonia. Few studies have reported the differential diagnosis of
COVID-19 using chest Computed Tomography (chest CT), a medical
imaging technique and some of the studies were presented in Long et al.
(2020), Murthy et al. (2020), Zeng et al. (2020) and Zuo (2020). We
deduced that the computational models presented in the studies focused
more on the use of chest X-ray images but not on other regular symptoms,
such as, fever or chills, cough, shortness of breath or difficulty breathing,
fatigue, muscle or body aches, headache, loss of taste or smell, sore
throat, congestion or runny nose, nausea or vomiting, and diarrhea.
Moreover, the models are not suitable for the early diagnosis when the
symptoms presented are still very mild and chest CT will not be able to
show a convincing result in the X-ray images of the lungs and the car-
diovascular system. No study known to the authors has used the afore-
mentioned regular symptoms for the development of intelligence-based
systems for early differential diagnosis of COVID-19 using classification
algorithms of soft computing, machine learning, deep learning, expert
system, and Decision Spport System (DSS) using non-image-based data-
set of COVID-19 infected patients. However, chest X-ray image data of
COVID-19 infected patients are mostly used for diagnosis using deep
learning algorithm such as Convolutional Neural Network (CNN).

Therefore, we were motivated to carry out an experimental study of
the various intelligence-based classifiers that could be applied in early
differential diagnosis of COVID-19 disease by considering the afore-
mentioned regular symptoms and using non-image datasets of the
symptoms. Our specific objective is to use the available COVID-19 non-
image diagnostic dataset to test the performance of the intelligence-based
classifiers, i.e., Fuzzy Cognitive Map (FCM), Support Vector Machine
(SVM), Logistic Regression (LR), Multilayer Perceptron (MLP), Naïve
Bayes (NB), Decision Tree (DT) and Deep Neural Network (DNN) in terms
of accuracy, F-measure, recall, precision, balanced accuracy, Mathews
Correlation Coefficient (MCC) and Bookmaker informedness (BM). The
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goal is to identify the classifier(s) with the best performance in early
differential diagnosis of COVID-19. This paves way for future work in this
area to develop diagnostic systems that could apply the best performing
classifier(s) for early differential diagnosis of COVID-19 using the
aforementioned regular symptoms. In the light of this, we have the
following research questions (RQ):

a. RQ-1: What are the classifiers that are most appropriate for the dif-
ferential diagnosis of COVID-19?

b. RQ-2: What is the performance of each of the classifiers identified in
(a) above in terms of the accuracy, precision, recall, F-measure,
Mathews Correlation Cefficient, balanced accuracy, and Bookmaker
informedness?

This paper contributes to the existing literature by presenting the
behaviours of the listed classifiers when applied for COVID-19 diagnosis
using non-image based COVID-19 datasets on the regular symptoms (e.g.,
fever, headache, vomiting, diarrhea, etc.) and this is not yet reported in
literature at the time of this report. Earlier studies focus more on image-
based chest X-ray data of COVID-19 patients for diagnosis and the most
used classifier is DNN.

The rest of the paper is organized as follows: Section 2 presents the
overview of clinical methods that have been used for diagnosing COVID-
19, a detailed discussion on differential diagnosis and a review of related
works on the differential diagnosis of COVID-19 disease. The strengths
and weaknesses of the diagnostic methods are presented. Section 3 pre-
sents materials and methods. Results and discussion are presented in
Section 4 wherein the detailed discussion and analysis of the aforemen-
tioned intelligence-based techniques are done. The conclusion and
managerial implication are presented in Section 5.

2. Literature review

Several clinical diagnostic methods have been developed for COVID-
19. However, the use of intelligence-based computational methods to
tackle COVID-19 cannot be underestimated. It will be very helpful to
complement the clinical diagnostic methods with other intelligence-
based computational methods in order to increase the balanced accu-
racy, BM andMCC. This section presents a brief description of differential
diagnosis and the qualitative features of the clinical and computational
methods that have been used for COVID-19 diagnosis vis-�a-vis their
limitations in the current time.

2.1. Differential diagnosis

Differential diagnosis is the defined process that helps to differentiate
between diseases with similar symptoms and risk factors. It is a system-
atic diagnosis process carried out on patients with the view to accurately
diagnose a disease that shares the same symptoms with other related
diseases and also survives under the same conditions (Mann, 1990; Sand,
2015; Uzoka et al., 2016). Differential diagnosis is required because
rarely do physicians diagnose a disease with certainty, directly from the
presentation alone, especially in cases where the symptoms presented
relate to many diseases (Jain, 2017). For example, diseases including
HIV/AIDS, Malaria, Flu, Tuberculosis, COVID-19, Ebola Virus Disease
(EVD), Cholera, etc. have some similar symptoms. Thus, when patients
exhibit one or more of these symptoms, the physicians need to subject
them to a differential diagnostic process with the view to establishing the
actual disease in the multiple related diseases.

The differential diagnosis process entails weighing the probability of
a disease against the probabilities of other related diseases that possibly
account for patients’ illness. Differential diagnosis has shown its useful-
ness in many instances in medicine. It has helped save lives that would
have been otherwise lost and we have seenmany lives nearly lost because
of the ignorance of differential diagnosis. A notable case of a life almost
lost due to the ignorance of differential diagnosis is that of a little girl by
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the name of Isabel as reported in Rutledge (2017). The girl who was
diagnosed with chickenpox was misdiagnosed by her family doctor,
leading to wrong treatment, having her spend about 60 days in the
hospital and almost losing her life for multiple organ failures and cardiac
arrest. All is from a misdiagnosis that could have been otherwise avoided
with differential diagnosis to attain the proper diagnosis at the first time.
Though differential diagnosis consumes time, its help in making sure
doctors get the right diagnosis and treatment is undeniable.

2.2. Clinical methods for COVID-19 diagnosis

The cause of COVID-19 is attributed to SARS-CoV-2. Many health
complications that are related to the virus have been established in the
literature to include the following-failure of respiratory system, compli-
cations in cardiac and cardiovascular system, inflammatory complica-
tions, thromboembolic diseases, neurological disorders, and multi-organ
dysfunctions (Alpdagtas et al., 2020; McIntosh, 2020). Researchers are
working tirelessly on various clinical methods of diagnosing and treating
COVID-19, in order to reduce cases of identified health complications.
Thus, some of the clinical diagnostic methods employed are chest ra-
diographs, chest CT, point-of-care lung ultrasonography, clinical suspi-
cion, Nucleic Aacid Amplification Tests (NAATs), point-of-care NAATs
(Caliendo and Hanson, 2021).

CT diagnosis is generally used for auxiliary diagnosis of the SARS-
CoV-2 and the diagnosis is confirmed by positive results of a nucleic
acid amplification test (NAAT) of the respiratory tract or blood specimens
using an rRT-PCR (reverse real-time PCR assay) reaction (Dai et al.,
2020). However, it was reported that the rRT-PCR method of diagnosis
has limitations. The implication is that when the viral load is low, the
detection rate is also low. This consequently leads to the occasional
occurrence of false results. Similarly, with the use of this method, the
severity and progression of the virus cannot be known. Despite these
disadvantages, the rRT-PCR method of diagnosis has been performing
well since the outbreak of the coronavirus. However, the number of
people tested is not yet satisfactory. This can be attributed to the fact that
this method of diagnosis is relatively costly.

The authors in Lieberman et al. (2020), Nalla et al. (2020) stated that,
in ideal settings, NAATs have the analytic sensitivity. This implies NAATs
can accurately detect the low levels of viral RNA in test samples that are
known to contain viral RNA. However, the authors reported that there
has not been a systematic evaluation of the accuracy and predictive
values of SARS-CoV-2 NAATs. A report from the United States (US) Food
and Drug Administration (FDA) stated that approximately 3% of results
with BD SARS-CoV-2 Reagents for the BD Max System test, were
false-positive results (FDA, 2020). Hence clinical laboratory staff and
health care personnel in the US were cautioned due to the increased risk
of false-positive results with the test. Therefore, the FDA recommended
that clinical laboratory staff and the health care personnel should
consider carrying out an alternate authorized test to confirm any result
presumed to be positive from tests.

It was reported that false-negative rates ranged from 5% to 40%
(Arevalo-Rodriguez et al., 2020; Long et al., 2020; Weissleder et al.,
2020). Fang et al. (2020) reported cases in China where fifty one patients
with fever or acute respiratory symptoms, were ultimately tested positive
using the SARS-CoV-2 RT-PCR test, but in the initial test carried out, 15
patients (29%) had negative results. In a similar study (Lee et al., 2020) in
Singapore, where 70 patients were tested positive, the initial nasopha-
ryngeal testing was negative in eight patients (11%). These studies
established that some patients were repeatedly negative in the initial
testing but they later tested positive after rounds of four or more tests.
This implies that there are occurrences of false-negative results and
therefore, some rounds of testing are recommended, in order to confirm
the accuracy of the results.

In Alpdagtas et al. (2020), various clinical diagnostic methods for
COVID-19 were evaluated with emphasis on their pros and cons, vis-�a-vis
their performances. Immunological and RT-PCR testing methods were
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identified as the best diagnostic methods for COVID-19. However, the
knowledge of these diagnostic methods lies only with professionally
trained physicians. Non-professional personnel cannot apply it on their
own. Neither can a patient. Thus, the authors recommended the pro-
duction of point-of-care (POC) diagnostic devices that can diagnose with
little or no support from physicians. In addition, accuracy is not always
guaranteed using the diagnostic method, hence there is a need for the
development of better methods with a higher level of practicality, ac-
curacy and precision. Similarly, in Uygun-Can and Acar-Bolat (2020),
RT-PCR and CT testing methods were used to detect COVID-19 in preg-
nant women and it was established by the authors that the combination
of the two testing tools gave an accurate and safe diagnosis. This implies
that a combination of two or more clinical methods for COVID-19 diag-
nosis guarantees better accuracy and precision.

Other examples of clinical diagnostic methods have been used to di-
agnose COVID-19 and are reported in literature: Nucleic Acid Test, CT,
immunological examinations, lung ultrasound, F-FDG PET/CT (Ardakani
et al., 2020; Mertens et al., 2020; Wan et al., 2020; Xie et al., 2020);
RT-PCR, POC, Immunoassays for antibody to virus (Giri et al., 2020; He
et al., 2020; Wu et al., 2020); POC, multiplex assays, CT imaging, genome
sequencing, Electron Microscopy, and PCR (Luo et al., 2020; Udugama
et al., 2020); oligonucleotide-based molecular detection, POC immuno-
diagnostics, radiographical analysis/sensing system, biosensing pro-
totypes, and RT-PCR (Mahapatra and Chandra, 2020); clinical
computer-aided diagnosis (CAD) using machine learning algorithms
(Ardakani et al., 2021); artificial intelligence (AI) enabled medical im-
aging (Yuan et al., 2020); Molecular-based assay, POC, rRT-PCR (Yang
et al., 2020).

Our deductions are as follows:

a. Most of the studies focused on measuring the accuracy of the clinical
methods for COVID-19 diagnosis.

b. The studies provided information that helps to guide health pro-
fessionals to conduct error-free COVID-19 diagnostic tests. Similarly,
the information guides the researchers to identify limitations with
each clinical method and hence develop better clinical methods for
detecting COVID-19 cases.

c. The works affirmed that the use of a single clinical method to detect
COVID-19 does not guarantee accurate results as expected. However
better performance is always witnessed when two or more of the
clinical methods are combined in the process of diagnosing COVID-19
cases. Thus, health personnel are advised to explore the combination
of methods in the process of COVID-19 diagnosis.

d. Clinical methods mostly used are RT-PCR, POC, Molecular-based
assay and chest CT.

e. Test sensitivity is likely influenced by specimen quality, illness
duration and specific assay.

The limitations that are common to all the clinical methods are as
follows:

a. Accuracy is not always guaranteed with the use of one clinical method
for diagnosis. Therefore, there is a need to carry out an alternate
authorized test to confirm the sensitivity and specificity. The com-
bination of two or more methods of testing helps to confirm the ac-
curacy of the test results.

b. They are laboratory tests that require well equipped laboratories.
Hence the establishment of the test laboratories is expensive and the
test is relatively expensive and it takes some time.

c. The testing machines are relatively expensive (e.g., PCR machines)
and few laboratories could afford them.

d. Physicians/patients need to travel to a competent laboratory to access
the PCR machine and this may take some hours or days depending on
the location of the patients and the nearest available COVID-19 test
laboratory. Hence, results are not received immediately.



B.A. Akinnuwesi et al. Data Science and Management 4 (2021) 10–18
e. Themethods require well trainedmedical personnel to run the tests in
the laboratories; however, there is a dearth of qualified medical
personnel for the laboratories and the few personnel available are
overstretched and fatigued due to the increasing number of cases of
COVID-19. Hence there are possibilities of false-negative results in
some cases.

f. Performance is not optimal with the use of the clinical diagnostic
methods and hence, the need to apply artificial intelligence-based
systems using computational algorithms, helps to ensure better per-
formance in terms of balanced accuracy, precision, specificity and
sensitivity, Bookmaker informedness (BM), and MCC.

2.3. Computational intelligence-based methods used for diagnosing
COVID-19

In this sub-section we did a review of past works that have applied
computational intelligence-based algorithms for diagnosing COVID-19
with the view to identify the patients’ symptoms, performances, and
the metrics used for measuring their performances and limitations.

ConvolutionalNeuralNetwork (CNN)wasused inMahmudetal. (2020)
to develop CovXNet model that was used to detect COVID-19 and pneu-
monia. Themodel had an accuracy value of 97.4%. Similarly, COVIDScreen
was developed in Singh et al. (2021) using CNN. Themodel helped to carry
out the differential diagnosis of COVID-19 with an accuracy of 98.67%. In
the same light, SVM was applied in (Jin et al., 2021) for examining chest
X-ray radiograph with the view to carry out the differential diagnosis of
COVID-19. The accuracy recorded was 98.642%. In China, a team of re-
searchers developedLR-basedmodel to identify the independent predictors
of COVID-19 severity in suspected cases (Xu et al., 2020); a similar research
was also reported in Iwendi et al. (2020) where Random Forest (RF)model
was used for predicting the severity of COVID-19 in infected patients. In the
same manner, LR was used to predict mortality risk in COVID-19 patients
and the accuracy was measured at 70% (Bhandari et al., 2020). Also, RF
algorithmwas applied topredict themortalityofCOVID-19patients and the
accuracyof 95%wasobtained. Fleitas etal. (2020) alsoappliedmultivariate
LR to identify COVID-19 symptoms and infected cases of COVID-19 were
detected with the specificity of 46%. In Silahudin and Holidin (2020), an
expert system was developed for diagnosing COVID-19 using the Naïve
Bayes (NB) technique. Similarly, Naïve Bayes Decision Support System
(DSS)waspresented inAwwalu et al. (2020) forCOVID-19detection. Fuzzy
Cognitive Map (FCM) was applied in Groumpos (2020) to examine the
whole spectrum of COVID-19 by considering the causality factors. The au-
thors could not guarantee the performance of the model because real-life
data required were not available. However, the model was tested using
data that were generated from the literature. The strength of FCM in
COVID-19 classification based on causality factors was established and this
gave the directions for the future research.

Hybrid models were also developed for COVID-19 detection. For
example (Sethy et al., 2020), combined SVM and CNN were used to
develop a model for detection of the COVID-19 patients among patients
infected with pneumonia and healthy people. Accuracy and specificity
achieved were 95.33% each. Alakus and Turkoglu (2020) evaluated six
different clinical predictive models for detecting COVID-19 infection
using 18 laboratory findings from 600 patients. The techniques consid-
ered in the models are: CNN, Recurrent Neural Networks (RNN), Artifi-
cial Neural Network (ANN), Long-Short TermMemory (LSTM), CNNRNN
and CNNLSTM. The evaluation results showed 86.66% accuracy, 91.89%
F1-score, 86.75% precision, 99.42% recall and 62.50% AUC. Also LR, DT
(decision tree), SVM, DNN and RF (Random forest) were applied for early
detection of COVID-19 and the performance results are 0.971 AUC, and
0.82 sensitivity (Sun et al., 2020). CNN and DNN were used in Hassan-
tabar et al. (2020) to diagnose COVID-19 patients with CNN having
93.2% accuracy, and 96.1% sensitivity while DNN has 83.4% accuracy
and 86% sensitivity.

Similarly CNN and LR were used to develop CovNet30 system that
was used to automatically diagnose COVID-19 in Gour and Jain (2020).
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CovNet30 operates with 92.74% classification accuracy and 93.33%
sensitivity. Decision tree (DT) and CNN were also used to build a clas-
sifier for detecting COVID-19 in Yoo et al. (2020) and the classifier works
with an accuracy of 95%. CoroNet was proposed in Khan et al. (2020)
and Oh et al. (2020). CoroNet is a DCNN-based model developed to
detect COVID-19 infection using chest X-ray images. CoroNet operates at
89.6% accuracy, 93% precision and 98.2% recall rate. Classification al-
gorithms adopted were deep CNN and DNN. A similar experiment was
carried out in Mukherjee et al. (2020) using the DNN approach and the
classification accuracy was 96.28%. Fuzzy logic and DNN were used in
Shaban et al. (2021) with the performance results of 97.658% accuracy,
96.756% precision, 96.55% recall, and 96.615% F-measure.

MH-COVIDNet was proposed in Canayaz (2021) for diagnosing
COVID-19. DNN and meta-heuristic-based feature selection techniques
were adopted to develop MH-COVIDNet. X-ray images were used. The
authors reported overall classification accuracy of 99.38%. In Mansour
et al. (2021), Feature Correlated Naïve Bayes (FCNB) model was pro-
posed and it achieved 99% detection accuracy. LR and DCNN were used
to develop a classifier with an accuracy of 98.5%. In Alqudah et al.
(2020), the classification of COVID-19 cases was done using CNN, SVM
and RF algorithms with the view to compare their performances. CNN
was identified with the best performance having a testing accuracy of
95.2%.

Our deduction is that the computational models focus more on the use
of chest X-ray image data for diagnosing COVID-19 but not on other
regular symptoms, such as fever or chills, cough, shortness of breath or
difficulty breathing, fatigue, muscle or body aches, headache, loss of taste
or smell, sore throat, congestion or runny nose, nausea or vomiting, and
diarrhea. The models are not useful at the early stage of COVID-19
infection when the aforementioned regular symptoms are mild and it
appears that one is infected with flu or malaria. At this stage, the chest X-
ray images may not present the expected results because the respiratory/
cardiovascular system have not been distorted as expected. As of the time
of this study, the authors have not found any study that has applied any of
the classifiers or combination of the classifiers using the aforementioned
regular symptoms for COVID-19 diagnosis.

2.4. Quality attributes of the intelligence-based classifiers

2.4.1. Fuzzy Cognitive Map (FCM)
FCM is a knowledge representation algorithm that makes use of fuzzy

graph structure to present the causal relationship between concepts and
hence present the causal values between the concepts. The relation be-
tween the concepts helps to calculate the extent to which pairs of con-
cepts impact each other. COVID-19 is associated with several symptoms
and risk factors (i.e., concepts) that impact one another. The relationship
and strength of pairs of symptoms/risk factors are defined based on the
experiential knowledge of the medical doctors, which is fuzzy in most
cases. The doctors use their discretion, based on previous experiences.
FCM can be found useful to solve the fuzziness problem, associated with
the classification of COVID-19 patients. The signed and weighted arcs of
the FCM graph depict the causal relationship that exists among the
symptoms/risk factors and hence illustrate the interconnection between
the symptoms/risk factor and how the symptoms/risk factors influence
one another (Kosko, 1986; Papageorgiou and Stylios, 2008).

The following features of FCM as presented in Papageorgiou and
Stylios (2008), make it fit for the classification and differential diagnosis
of COVID-19:

a. FCM is used for the acquisition and representation of causal knowl-
edge, together with the causal knowledge reasoning process. This is
needed to identify the causal strength of each of the COVID-19
symptoms relative to other symptoms.

b. It is a neuro-fuzzy algorithm that can help to solve decision making
problems such as the COVID-19 classification problem. The strength
of FCM in cognitive decision making during medical diagnosis was
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presented in Chandiok and Chaturvedi (2016). It was noted that FCM
helps to represent the cognitive knowledge required in expert systems
that are used for medical diagnosis. This is utilized for rational de-
cision making and aids prediction.

c. Similarly, FCM supports the differential diagnosis of diseases. Lopes
et al. (2013) made use of FCM in the development of a DSS for dif-
ferential diagnosis of alterations in urinary elimination.

d. FCM's weights can be trained and updated using learning algorithms.
Hence, it makes it possible to compute the weights of the relationship
between all pairs of symptoms of COVID-19.

2.4.2. Support Vector Machine (SVM)
SVM is a supervised machine learning (ML) technique that is applied

in the classification and regression problems. Generally, it is best applied
in the classification problems (Land and Schaffer, 2020; Pisner and
Schnyer, 2020). SVM algorithm can process datasets with multiple
continuous and categorical variables. It labels data (i.e., input and
output) for classification. It is a non-probabilistic, and binary linear
classifier. SVM-based models are trained, using labelled data. It is a
representation of diverse classes in a hyperplane in a multidimensional
space. SVM generates the hyperplane in an iterative form with the view
to minimize errors. SVM focuses on dividing datasets into different
classes in order to find a maximum marginal hyperplane (MMH). Thus,
classification provides the basis to train the system for data processing.
The support vectors are the data points, closest to the hyperplane while
the hyperplane is a decision space that is divided between a set of objects
having different classes. The algorithms achieve the best separation of
data with the boundary around the hyperplane being maximized and
even between both sides. The SVM classification algorithm is fast and
dependable and it performs well with a limited amount of data to
analyze.

The following are features of SVM that make it fit for classification
and differential diagnosis of COVID-19:

a. SVM is a binary linear classifier (Noble, 2006; Pisner and Schnyer,
2020) and it is best applied in two-group classification problems. In
this light, SVM can be used to build learning models that could
accurately classify COVID-19 patients into two groups (i.e., True
Positive COVID-19 and True Negative COVID-19 patients) based on
the COVID-19 dataset available.

b. SVM is relatively simple and flexible to address classification prob-
lems (Pisner and Schnyer, 2020).

c. SVMs distinctly produce the balanced predictive performance in cases
where the sample data sizes are limited (Pisner and Schnyer, 2020).
This makes it suitable, even with limited COVID-19 datasets.

2.4.3. Decision Tree (DT)
DT is applied in classification and regression problems. It embraces

supervised learning method. Application of decision tree for the classi-
fication of COVID-19 cases using X-ray imaging was reported in Yoo et al.
(2020). Similarly, DT algorithm has been applied in Atieh et al. (2019)
for predicting peri-implant disease. Also, it has been used for the diag-
nosis of diabetic patients, as presented in Kamadi et al. (2016). Advan-
tages of the DT are as follows (Gupta, 2017): it is simple and easy to
understand, interpret, and visualize; variable screening and feature se-
lection are implicitly performed; it accommodates numerical and cate-
gorical data; it solves multi-output problems; relatively little effort is
required for data preparation and the performance of the tree is not
influenced by nonlinear relationships that are between parameters.
However, DTs have the following shortcomings (Gupta, 2017): over-
fitting problem and variance; needs to be lowered using bagging and
boosting methods; creation of biased trees if some classes dominate; and
optimal decision tree is not guaranteed in cases of greedy algorithms.

2.4.4. Naïve Bayes (NB)
NB is an intuitive classification method that uses Bayes’ theorem and
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assumed independence among predictors. Even though the complete
independence among predictors is impossible in real-life situations
(Dinant, 2018; Ray, 2017). It uses supervised learningmethod. NB is used
with large datasets. It is simple, fast, and easy to implement and the
classification accuracy is better compared to other classification algo-
rithms, most especially when the assumption of independence predictor
holds. There are Gaussian, Multinomial and Bernoulli types of NB. It
takes less time for training because small training data are required for
NB to estimate the test data. It linearly scales with the number of pre-
dictor features and data points. It is applied to binary and multi-class
classification problems. NB model was used to diagnose COVID-19 pa-
tients in Mansour et al. (2021). Similarly, Silahudin and Holidin in
Silahudin and Holidin (2020) modeled expert systems using the NB
technique to diagnose COVID-19 and Awwalu et al. (2020) developed a
DSS for COVID-19 diagnosis using a multinomial NB algorithm.

2.4.5. Multilayer Perceptron (MLP)
MLP is a feedforward ANN that has a minimum of three layers of

nodes or neurons (i.e. input layer, hidden layer and output layer). Each
neuron makes use of non-linear activation function except the input
neurons. MLP embraces backpropagation algorithm for training. The
well-arranged network of neurons helps data modelling with the use of
machine learning algorithms and hence facilitates accurate processing
vis-�a-vis accurate decision making. MLP is trained to carry out a given
task and MLP-based models help to analyze data and hence recognize
patterns within the data. The merits of using MLP are as follows: models
complex and non-linear problems; performs very well with large data; it
is capable of generalizing; its fault tolerance is high; good for pattern
recognition. In the light of aforementioned merits, MLP has been adopted
to develop models for diagnosing COVID-19 with remarkable perfor-
mance. For example, MLP was applied in Salman et al. (2020) for X-ray
images classification to detect COVID-19 in patients. Similarly COVID-19
early vision diagnosis using MLP was proposed in Hammam et al. (2020).
Also, MLP and LR were combined to develop a hybrid model for
COVID-19 diagnosis in Mohammadi et al. (2021). The authors estab-
lished good performance for the MLP-based models in terms of accuracy,
sensitivity and specificity. However, some limitations are attributed to
MLP, such as computational intensiveness and time consuming, problem
of scaling, and model performance dependence on quality of training.
However, solution is not always guaranteed.

2.4.6. Logistic regression (LR)
LR is the class of supervised learning techniques that is applied in

classification problems. It is used for predicting the probability of a bi-
nary-based dependent variable. Thus, the dependent variable has data
coded as either 0 (negative/no) or 1 (positive/yes). An example of lo-
gistic regression equation is presented in Equation (1) (Brownlee, 2016):

y ¼ e^(b0 þ b1*x) / (1 þ e^(b0 þ b1*x)) (1)

where y: predicted output; b0: bias or intercept term; b1: the coefficient
for the single input value (x). Each column in the input data has an
associated b coefficient (a constant real value) that must be learned from
the training data.

LR is a simple machine learning algorithms and it is well applied in
medical diagnostic problems for the detection of diseases, making it a
good algorithm for classification of the COVID-19 patients. For example,
LR was applied in several studies (Roland et al., 2020; Shang et al., 2020;
Song et al., 2020) to predict the severity of COVID-19 in infected patients.
Also LR-based system was proposed in Fink et al., (2020) for the vali-
dation of the results of COVID-19 diagnostic prediction at the time of
admission in the hospital.

2.4.7. Other deep learning classifiers
Deep learning classifiers, such as Recurrent Neural Networks (RNNs),

Generative Adversarial Networks (GANs), Radial Basis Function



Table 1
COVID-19 clinical dataset with class imbalance on percentage split (80-20).

Performance metrics LR SVM NB DT MLP DNN

Accuracy 86.7 87.5 84.2 82.5 88.3 88.3
Precision 86.7 87.5 84.2 82.5 88.3 86.0
Recall 85.8 77.9 85.6 83.0 86.3 88.0
F-measure 86.2 82.4 84.8 82.8 86.9 87.0
MCC 31.2 �3.3 29.9 17.7 31.9 25.6
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Networks (RBFNs), Self Organizing Maps (SOMs), Deep Belief Networks
(DBNs), Restricted Boltzmann Machines (RBMs) and Autoencoders are
other algorithms that could be applied for disease diagnosis but we did
not consider them in this study because they do not fit for our dataset.
Rather they are most commonly applied to analyze visual imagery, time
series data, natural-language processing, and machine translation
(Biswal, 2021).

3. Material and methods

3.1. Data collection and data pre-processing

The data are obtained from https://github.com/burakalakuss
/COVID-19-Clinical and contain 600 entries of patient records.

3.2. Data pre-processing and modeling

In order to overcome overfitting and outliers, there is need for data
pre-processing. Data pre-processing were performed using WEKA and
Python library Scikit-learn (sklearn). In this study, we experimented with
LR, SVM, NB, DT, MLP, FCM and DNN algorithms by calibrating their
parameters. The algorithms are applied to the resampled data to elimi-
nate class imbalance (520 negative cases and 80 positive cases of COVID-
19) using random undersampling and oversampling approach. The
COVID-19 clinical dataset was divided into a training dataset (80%) and
a testing dataset (20%). This study uses the training dataset to train the
COVID-19 classification model and uses the testing dataset to measure
model performance and to ensure that the results of the classification
model are robust. According to Elujide et al. (2021), classification
problems can be modeled using single-label and multi-label approach.
This study employed a single-label approach with binary classification
problem. For the deep neural network model, a two-layer neural network
was implemented with the two COVID-19 indicators to classify the
clinical COVID dataset.

3.3. Measure of performance

The performance of the classification algorithms is measured based
on the following performance metrics: accuracy, precision, recall, MCC,
balanced accuracy and Bookmaker informedness (BM).

4. Results and discussion

We did a quantitative analysis of the classifiers. The clinical dataset
on COVID-19 contains 600 entries of patient records comprising of an ID,
set of symptoms and status (label) features. This section answers: RQ-1:
What are the classifiers appropriate for differential diagnosis of COVID-
19? RQ-2: What is the performance of each of the classifiers in terms
of accuracy, precision, recall, F-measure, MCC, balanced accuracy, and
BM?

We empirically tested and verified the efficacy of the following
classification algorithms: LR, SVM, NB, DT, MLP, FCM and DNN. The
algorithms were subjected to random undersampling and oversampling.
The classification algorithms were subject to random undersampling in
order to convert class imbalance to balanced class on the target variable
(520 negative cases and 80 positive cases of COVID-19). We evaluated
the performances of the classification algorithms using the following
metrics: accuracy, precision, recall, F-measure, and MCC while balanced
accuracy, BM,MCC, accuracy, precision, recall, F-measure are considered
for FCM based on percentage split (80% for training and 20% for testing).
The COVID-19 dataset experiments were performed using python and R.

According to the Chicco and Jurman (2020), most data scientists and
machine learning experts use confusion matrix to evaluate binary clas-
sification. Few studies recently reported that it is not adequate to base the
performance evaluation results on class imbalance dataset on accuracy
and F1 score, as well as on MCC result because it puts the ratio between
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the positive and negative into consideration. The closer MCC is toþ1, the
better the binary classification; the closer MCC is to �1, the worse the
binary classification. Chicco et al. (2021) claimed that MCC is a more
reliable performance metric to put into consideration over balanced ac-
curacy, BM and markedness (MK) in evaluating binary classification.

We compared the results on the use of random undersampling, inte-
grated with the classification algorithms based on the use of percentage
split. As shown in Table 1, with class imbalance, MLP outperforms LR,
NB, DT and SVM in accuracy, precision, recall, F-measure and MCC.
Similarly, DNN has the best performance in accuracy, recall and F-mea-
sure. As shown in Table 2, without class imbalance, MLP outperforms LR,
NB, DT and SVM in accuracy, precision, recall, F-measure and MCC,
while DNN performs best with the use of oversampling.

Furthermore, we compared the results on the dataset with a class
imbalance on percentage split of 80% for training and 20% for testing
with dataset without class imbalance (use of random undersampling and
oversampling is integrated on the classification algorithms to eliminate
the class imbalance on the percentage split of 80% for training and 20%
for testing) in python and DNN with the following parameters: epoch of
150, batch_size of 10, loss ¼ binary_crossentropy, and adam optimizer.
Two-layer was added to a sequential model from Keras, with ReLu and
Sigmoid activation functions.

Comparing Tables 1 and 2, it was discovered that the classification
algorithms in Table 1 perform better with the traditional performance
metrics for evaluation (i.e., accuracy, precision, recall, and F-measure)
but it was poor in performance with the MCC performance metric. The
performance in Table 1 is due to overfitting. While in Table 2, their
performances dropped in terms of accuracy, precision, recall and F-
measure. Therefore, our findings show that without class imbalance, the
rate of improvement of performance with MCC as a performance metric
is very high for all the classifiers while there is a drop in performances for
other metrics. This aligns with the claims of Chicco and Jurman (2020)
that MCC is the best performance metric to determine the best classifier,
without class imbalance. We noticed that in Table 1, all the performance
metrics for machine learning algorithms were higher than 80% in the
MLP and DNN and this makes them better classifier over others but the
MCC is very far from 100%; while in Table 2, DNN is the best classifier
even though the MCC value is close to 100%.

In addition, this report also summarizes the development of a FCM
model that analyses COVID-19 symptoms and determines status as either
positive or negative. The FCMmodel was developed with the twenty (20)
concepts of the COVID-19 dataset. Weights for each relationship between
concepts were extracted from a weight matrix which was in term
extracted and trained from the dataset, using a simplified version of the
Hebbian Learning algorithm given by Equation (2).

wijðkþ 1Þ¼wijðkÞþ αðyiðkÞ * xjðkÞ
�

(2)

The weight matrix and imported data frame of the data were then pre-
processed by scaling column values in the [0, 1] as per the requirement of
the parameters of the inference function of the FCM model. The dataset
was split into 80% training set and 20% testing set, i.e., 480 records were
used in developing and training the weight matrix and 120 were used to
test the dataset with class imbalance, while another experiment was also
carried out on the dataset without class imbalance after applying the
random undersampling to it. The inference results from running the
fcm.infer function in twenty-five (25) iterations were stored in an array.

https://github.com/burakalakuss/COVID-19-Clinical
https://github.com/burakalakuss/COVID-19-Clinical


Table 2
COVID-19 clinical dataset without class imbalance on percentage split (80-20).

Performance metrics LR (US) SVM (US) NB (US) DT (US) MLP (US) DNN (US) DNN (OS) LR (OS) SVM (OS) NB (OS) DT (OS) MLP (OS)

Accuracy 78.1 78.1 81.3 65.6 81.3 84.4 93.8 80.2 79.3 82.45 66.8 81.8
Precision 78.1 78.1 81.3 65.6 81.3 85.0 94.0 80.2 78.8 83.1 66.7 81.6
Recall 82.6 82.6 81.1 72.6 84.4 84.0 94.0 83.1 82.9 82.4 73.1 85.2
F-measure 78.4 78.4 80.8 65.9 81.5 84.0 94.0 79.2 79.8 81.4 66.3 82.2
MCC 59.8 59.8 59.2 37.8 64.5 69.0 88.0 60.3 61.3 60.1 38.2 65.2

Note: undersampling (US); oversampling (OS).
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These results were compared with the actual labels of the test data.
Sigmoid function was used in this study. Table 3 shows the comparative
summary of the results.

We compared the results on the Fuzzy Cognitive Map for the dataset
with class imbalance on percentage split of 80% for training and 20% for
testing with dataset without class imbalance (use of random under-
sampling integrated on the classification algorithms to eliminate the class
imbalance on the percentage split of 80% for training and 20% for
testing). It was discovered that the FCM without class imbalance out-
performs the FCM with the class imbalance in all the performance eval-
uation metrics, except in MCC. Our findings, as presented in Table 3, do
not support the claims of Chicco et al. (2021) which state that MCC
performs better than balanced accuracy and BM. Our results in Table 3
reveal that balanced accuracy outperforms BM and MCC.

5. Conclusion and managerial implication

5.1. Conclusion

The increasing number of global cases of COVID-19 infection is
alarming and the large number of infected people that flood the hospitals
on daily basis has caused an overstretching of the available medical fa-
cilities as well as the healthcare workers. The patients require reliable
and accurate diagnosis and treatments. There are reports that with the
use of the clinical methods for COVID-19 diagnosis, some people who
were initially tested positive for COVID-19 and who were having some
underlying diseases, turned out having negative results after series of
further tests. This implies that true positive and true negative results are
not always guaranteed.

In this study, having analyzed the quality attributes of the clinical
methods for diagnosing COVID-19, we further employed some classifiers
which constitute intelligence-based methods, which could be applied to
the early diagnosis of COVID-19. The classifiers are considered to com-
plement the clinical diagnosis methods. The classifiers employed for the
experiment are LR, SVM, NB, DT, MP, FCM and DNN. We did experi-
ments with our data to determine the best classification technique in
terms of accuracy, precision, recall, F-measure, MCC, balanced accuracy,
and BM, based on percentage split (80% for training and 20% for testing).
Our results showed that with class imbalance, MLP and DNN outperform
LR, NB, DT, SVM and FCM in accuracy, precision, recall, F-measure and
MCC (See Table 1), but without class imbalance, MLP, FCM and DNN
outperform LR, NB, DT and SVM in accuracy, precision, recall, F-mea-
sure, MCC, BM, and balanced accuracy (See Tables 2 and 3).
Table 3
Performance evaluation metrics on FCM.

Performance metrics FCM with class imbalance FCM without class imbalance

Accuracy 79.2 87.5
Precision (PPV) 85.3 87.1
Recall (TPR) 79.5 100.0
F-measure 82.3 93.1
MCC 49.0 42.0
BM 58.2 87.1
Balanced accuracy 79.1 93.5
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It is worth noting that with class imbalance, their performances are
poor using the MCC performance metric, but without class imbalance,
MCC values increase for all the classifiers while there is a drop in per-
formances for other metrics. This agrees with the claims of Chicco and
Jurman (2020) that MCC is a good performance metric to determine the
best classifier without class imbalance. We also discovered that without
class imbalance, FCM performs better for all the performance metrics,
compared to the performance with class imbalance. The only exception is
with MCC, whose value dropped without class imbalance (See Table 3).
Thus, MCC performs better than balanced accuracy and BM.

Considering the relatively good performance values of the tested
classification algorithms (i.e., MLP, LR, NB, DT, SVM, FCM and DNN),
intelligence-based systems can be developed for COVID-19 diagnosis
using these algorithms, but our results present MLP, FCM and DNN as
better algorithms that healthcare system developers should adopt for
early differential diagnosis of COVID-19. Moreover, the test of perfor-
mance must not be limited to the classic performance metrics for eval-
uation (i.e., accuracy, precision, recall, and F-measure), other
performance metrics, such as MCC, balanced accuracy and bookmaker
informedness must also be considered. In the light of this, our future
works will be considering the development and implementation of a
COVID-19 smart medical diagnostic system (i.e., C-19-SmartMed) that
will be able to differentially diagnose patients for COVID-19 based on the
common symptom (i.e., fever or chills, cough, shortness of breath or
difficulty breathing, fatigue, muscle or body aches, headache, loss of taste
or smell, sore throat, congestion or runny nose, nausea or vomiting, and
diarrhea) and using classifiers such as MLP, FCM and DNN. The system is
envisaged to complement the effort of the physician.

5.2. Managerial implication

Automated healthcare systems are required to complement the ser-
vices of the medical personnel in the present circumstances of COVID-19
pandemic with rising cases of new variants and infection. This study has
identified MLP, FCM and DNN as better classifiers over LR, NB, DT and
SVM, that healthcare software system developers can adopt to develop
intelligence-based decision support systems and expert systems which
both medical personnel and patients can use for quick differential diag-
nosis when the following common symptoms are presented: fever or
chills, cough, shortness of breath or difficulty breathing, fatigue, muscle
or body aches, headache, loss of taste or smell, sore throat, congestion or
runny nose, nausea or vomiting, and diarrhea.

This study suggests a paradigm shift from the use of chest X-ray image
data on computational systems that are currently used to diagnose
COVID-19. Therefore, the management board in the health sector should
provide supports for the development of the new application software
that could easily diagnose patients based on the common symptoms
stated above. This is better than exposing the patients to consistent chest
X-ray which is not easily accessible, and not economical for the patients,
and which has side effect in the long run. By doing so, there will be
increasing access to quick and economical healthcare services when one
is having a feeling of COVID-19 infection particularly in low-income
countries of Africa where there is a dearth of medical personnel and
poor medical facilities.
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