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Abstract

Glucose is the major energy supply and a critical metabolite for most cells and is especially important when cell is differentiating. High or low
concentrations of glucose enhances or inhibits the osteogenic, chondrogenic and adipogenic differentiation of cell via the insulin, transforming
growth factor-b and peroxisome proliferator-activated receptor c pathways, among others. New evidence implicates the hexosamine biosyn-
thetic pathway as a mediator of crosstalk between glucose flux, cellular signalling and epigenetic regulation of cell differentiation. Extracellular
glucose flux alters intracellular O-GlcNAcylation levels through the hexosamine biosynthetic pathway. Signalling molecules that are important
for cell differentiation, including protein kinase C, extracellular signal-regulated kinase, Runx2, CCAAT/enhancer-binding proteins, are modified
by O-GlcNAcylation. Thus, O-GlcNAcylation markedly alters cell fate during differentiation via the post-transcriptional modification of proteins.
Furthermore, O-GlcNAcylation and phosphorylation show complex interactions during cell differentiation: they can either non-competitively
occupy different sites on a substrate or competitively occupy a single site or proximal sites. Therefore, the influence of glucose on cell differenti-
ation via O-GlcNAcylation offers a potential target for controlling tissue homoeostasis and regeneration in ageing and disease. Here, we review
recent progress establishing an emerging relationship among glucose concentration, O-GlcNAcylation levels and cell differentiation.
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Introduction

Glucose is a central source of energy and an important metabolite for
all organisms. Other simple sugars and related molecules derived
from sugars provide sources of energy for cells. Glucose also partici-
pates in the biosynthesis of polysaccharides, lipids, proteins and
nucleic acids and the glucose concentration in the microenvironment,
both in vitro and in vivo, markedly affects cell gene expression, prolif-
eration, apoptosis and differentiation [1–3].

Nuclear and cytoplasmic protein activities are dynamically regu-
lated by the addition and removal of O-linked-b-N-acetylglucosamine
(O-GlcNAc) at serine and threonine residues [4] and the post-tran-
scriptional O-GlcNAcylation of proteins markedly alters their function
and fate. The enzymes responsible for this modification are O-GlcNAc
transferase (OGT) and O-GlcNAcase (OGA), and the balanced O-
GlcNAc levels produced by their regulation are critical for metabolic
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homeostasis and other cellular processes. The addition and removal
of O-GlcNAc is sensitive to metabolic status [5, 6], altering the level of
uridine 50-diphosphate-GlcNAc (UDP-GlcNAc) to activate O-GlcNAcy-
lation via the hexosamine biosynthetic pathway (HBP). In addition to
the metabolic status, the removal of O-GlcNAc is also regulated by the
response of OGA to O-GlcNAcylation levels (Fig. 1). O-GlcNAcylation
contributes to diverse intracellular functions via an assortment of tar-
geted isoforms of enzymes in O-GlcNAc and is critical to transcription,
proliferation, differentiation and apoptosis [7]. The O-GlcNAc pathway
regulates many important cellular pathways, including the insulin,
transforming growth factor b (TGF-b) and mitogen-activated protein
kinase (MAPK) signalling pathways. Lastly, O-GlcNAcylation controls
cells differentiation through the proteins and signalling pathways
mentioned above in response to stress or changes nutrient levels.

The concentrations of glucose in common culture media range
from 1.0 to 4.5 g/l (5.6–25 mM) [2]. Specifically, based on conven-
tional serum glucose levels, a glucose concentration of 5.5 mM is
equal to approximately 0.99 g/l. Glucose concentrations of 11 mmol/l

(1.98 g/l) or above are considered hyperglycaemic conditions.
However, the higher end of the glucose concentration range (20–
30 mM) is nearly equivalent to glucose levels of 3.6–5.4 g/l in clinical
measurements. Regarding glucose concentrations related to cell cul-
ture medium, 5.5 mM is generally considered a low-glucose culture
medium, whereas 25 mM is considered a high-glucose culture med-
ium. The concentrations of glucose that is most often recommended
and used for maintaining stem cell in culture is 5.5 mM, and is also
called normal glucose [8].

During chondrogenic differentiation, cells migrate into the limb
field and undergo a phenomenon termed ‘pre-cartilaginous condensa-
tion’. The chondrocytes in the centre of the cartilaginous templates
are stimulated to proliferate and then proceed through stages of mat-
uration and hypertrophy. In the region of hypertrophy the chondro-
cytes are replaced by invading osteoblasts and the tissue is replaced
by bone and bone marrow [9]. And the stage of maturation of an
osteocyte, which includes pre-osteoblast proliferation, matrix forma-
tion and maturity and extracellular matrix mineralization from

Fig. 1 A schematic model illustrating O-GlcNAc pathway and influence of glucose and O-GlcNAcylation on chondrogenic differentiation. Glucose syn-

thesizes UDP-GlcNAc by HBP. O-GlcNAc pathway consists of transfer and removal of O-GlcNAc by OGT and OGA. Glucose decreases PKC activity

with O-GlcNAcylation by HBP, thus down-regulating the expression of TGFbRII in cell pellets. The reduced TGFbRII expression results in decreased

TGF-b signalling upon the activation of TGF-b ligand, further leading to reduced chondrogenesis.

770 ª 2016 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



nascence until death, defines the morphology and function of the cell
[10]. In addition, the stage of adipogenic differentiation is composed
of commitment pre-adipocyte and terminal differentiation [11].

This review highlights the influence of glucose and O-GlcNAcyla-
tion on cell differentiation, including osteogenic, chondrogenic and
adipogenic differentiation.

Chondrogenic differentiation

Glucose concentration affects chondrogenic
differentiation

The growth, development and structural integrity of joint are dramati-
cally affected by the transport of glucose into chondrocytes and
through articular cartilage [12, 13]. In chondrogenic differentiation,
glucose is the main precursor and a critical energy source for the syn-
thesis of the extracellular cell matrix (ECM) and glycosaminoglycans
[14–16]. Thus, the concentration of glucose is essential for chondro-
cyte matrix synthesis, viability and differentiation. Studies have
demonstrated that high concentrations of glucose reduce the chon-
drogenic potential of human mesenchymal stem cells (MSCs) [17],
muscle-derived stem cells [18], and adipose tissue-derived MSCs
(ASCs) [19]. And, low concentrations of glucose have been reported
to increase the chondrogenic potential of MSCs [20].

Studies in vitro and vivo have linked hyperglycaemia with local and
systemic toxicities relevant to OA, caused by high-glucose
concentration [21]. Hyperglycaemia decreases transport of dehy-
droascorbate into chondrocytes, compromising the synthesis of type
II collagen and increasing levels of reactive oxygen species (ROS) and
inflammatory mediators to mediate cartilage destruction [22, 23].
Insulin-like growth factor-1 (IGF-1) and insulin play an important role
in chondrogenic differentiation. Insulin-like growth factor-1 stimulates
the chondrogenic differentiation of MSC into chondrocytes pre-hyper-
trophic and hypertrophic chondrocytes by stimulating proliferation,
regulating cell apoptosis, inducing expression of chondrocyte markers
and enhancing extracellular matrix biosynthesis [24, 25]. Insulin is
structurally similar to IGF-1 and can activate the IGF-1 receptor, and
insulin has been shown to be an essential additive for chondrogenic
differentiation of mesenchymal progenitor cells and that it influences
the grade of chondrogenic differentiation dose-dependently [26]. Pre-
vious studies have shown that there is an accumulation of O-GlcNAcy-
lated proteins in the cartilage of human osteoarthritic patients [27]. It
has been reported that the expression and activity of matrix metallo-
protease (MMP) 2 and MMP9 [28] and the progression of chondro-
genic differentiation [29] are enhanced by OGA inhibition, which could
increase the intracellular level of O-GlcNAcylation. In addition, it has
been reported that insulin and thiamet-G (an inhibitor of OGA) produce
a obvious difference in the activation proteoglycan synthesis although
little difference in the extent of differentiation markers inductions in
ATDC5 cells. Then, the mechanisms by which glucose and O-GlcNA-
cylation influences chondrogenic differentiation are discussed below.

Activation of TGF-b signalling pathway is critical for chondro-
genic differentiation of MSCs [30]. High-glucose culture induces

hypertrophy of mouse embryonic fibroblasts and rat kidney epithelial
cells by up-regulating TGF-b signalling pathway [31]. High-glucose
culture also modulates PKC activity to up-regulate the expression of
TGF-b receptor expression of vascular smooth muscle cells [32].
Mesenchymal stem cells cultured in high glucose prior to differenti-
ation show decreased chondrogenesis [19]. High-glucose expansion
culture reduces PKC activity to chondrogenic induction, resulting in
down-regulating the expression of TGFbRII in MSCs. Then TGF-b
signalling upon the activation of TGF-b ligand was decreased by the
reduced TGFbRII, further leading to reduced chondrogenesis [17]
(Fig. 1).

However, in another report, high concentrations of glucose was
shown to enhance chondrogenesis in chick mesenchymal cells. High
glucose has been shown to up-regulate p38 and down-regulate extra-
cellular signal-regulated kinase (ERK) activity through PKCa, priming
the stimulation of chondrogenic differentiation by modulating the
expression of adhesion molecules [33] (Fig. 2). In addition, chondro-
genesis might be modulated by complex protein kinase signalling
cascades, including those downstream of ERK [34], PKC [35] and
p38 [36]. The expression levels of cell adhesion molecules, including
fibronectin, N-cadherin and a5b1 integrin are positively regulated by
PKC in mesenchymal cells [34–36]. Extracellular signal regulated
kinase negatively modulates chondrogenesis by altering the expres-
sion of cell adhesion molecules, whereas p38 plays an opposite role
at the post–pre-cartilage condensation stage [36] (Fig. 2). Activation
of p38 is necessary for the accumulation of sulphated proteoglycans
and cellular condensation. In addition, long-term effect of high-glu-
cose concentration on human media artery smooth muscle cells
down-regulates of basal RAC-a serine/threonine-protein kinase (Akt)
phosphorylation, while acute stimulation of cells in high glucose with
insulin-activated Akt [37]. The different effect of high glucose on
MSCs and chick mesenchymal cells may be caused by different cell
and induction (TGF-b/insulin). And it remains to be further exploring.

At last, high concentration glucose can also increase the forma-
tion of advanced glycation end-products (AGEs) in diabetes or in vitro
models [38]. It is reported that the proteoglycan synthesis and degra-
dation of articular cartilage were negatively affected by an increase in
AGE levels in OA patients [39]. And chondrogenic differentiation in
AGE-2–treated or AGE-3–treated MSCs were inhibited [40].

O-GlcNAcylation affects chondrogenic
differentiation

Early hypertrophic chondrocytes accumulate glycogen occurs during
the maturation phase, and it seems plausible that proteins can be O-
GlcNAcylated during chondrogenic differentiation [12]. Recent findings
demonstrate MAPK, ERK1/2 and p38 could be O-GlcNAcylated [41,
42]. Insulin and thiamet-G can induce increases in p-MAPK, p-ERK1/2
and p-p38 in some cell types [43, 44]. However, thiamet-G and other
OGA inhibitors failed to induce Akt phosphorylation [45]; intriguingly,
some studies have shown that Akt phosphorylation is critical for insu-
lin-induced proteoglycan synthesis in chondrocytes [46] (Fig. 2).

Previous studies show there is an extensive cross-talk between O-
GlcNAcylation and the phosphorylation of Akt, with both modulating its
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function [47, 48], and it has been proposed that Akt O-GlcNAcylation
and phosphorylation can be simultaneously induced [45]. Same site
competition, proximal site competition and proximal site occupation
are interrelationships between O-GlcNAcylation and phosphorylation.
The balance between O-GlcNAcylation and phosphorylation can change
the cellular function of the protein [49]. O-GlcNAcylation of Akt has no
effect or a stimulating effect on its enzymatic activity but did not inhi-
bits its phosphorylation [48]. Furthermore, Akt O-GlcNAcylation was
even more intense when Akt phosphorylation was activated in insulin-
induced chondrogenic differentiation. However, some reports have
shown that decreases in Akt phosphorylation and/or Akt activity is cor-
relation with an increase in Akt O-GlcNAcylation [50–52] (Fig. 2). O-
GlcNAcylation not only modulates Akt activity but also modulates the
cellular distribution of the enzyme. Such processes may induce further
changes in the targets of Akt [45]. PKC also plays key regulatory roles
in major signal transduction pathways controlling a wide range of bio-
logical responses including gene expression, cell morphology, prolifer-

ation and differentiation [53]. It is reported that all PKC isozymes are
dynamically modified by O-GlcNAc, and O-GlcNAc modifications corre-
late negatively with PKCa activity in rat hepatocytes [54].

Osteogenic differentiation

Glucose concentration affects osteogenic
differentiation

Bone is affected by diabetes in both humans and animal models,
leadings to osteoporosis and osteopaenia [55–58]. Diabetes alters
biochemical markers [59] and mineral density of bone in humans,
and the poor glycaemic control in diabetes mellitus contributes to
reduced bone mass and frequently to fractures. We therefore attri-
bute this complication to the high blood glucose concentrations in

Fig. 2 A schematic model illustrating the effect of glucose, thiamet-G and insulin on O-GlcNAcylation and phosphorylation of signalling molecules

during chondrogenesis. High glucose up-regulates p38 and down-regulates ERK activity through PKCa, priming stimulating chondrogenesis by

increasing the expression of adhesion molecules. Insulin and glucose/thiamet-G stimulate chondrogenic differentiation by inducing O-GlcNAcylation

and phosphorylation and of signalling molecules, including MAPK, p38 and ERK1/2. Insulin induces O-GlcNAcylation and phosphorylation of Akt,
while high glucose and thiamet-G simply induce Akt O-GlcNAcylation. Then activated-Akt stimulates proteoglycan synthesis in chondrocytes.
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diabetic patients. Indeed, glucose is reported to have a direct acti-
vating effect on osteoclasts and acts as a principal energy source
for osteoclastic bone resorption [60]. It is reported that glucose
inhibits collagen fibril formation and subsequent cross-linking in
human osteoblast-like cells in vitro [61]. Furthermore, the
osteoblastic cell proliferation-induced production of IGF-1 and the
basal and osteocalcin secretion-induced production of 1,25(OH)2D
are inhibited in human MG-63 cells in a high-glucose environment
in vitro [62, 63].

In recent decades, scientists have paid increasing attention to the
influence of glucose on cells. It has been reported that the prolifera-
tion and differentiation of MSCs, which are the common starting point
in the development of osteoblasts, are down-regulated in the strepto-
zotocin-induced diabetic mouse [30, 64, 65]. Furthermore, high-glu-
cose concentrations reduce the osteogenic potential of human MSCs
[20], mouse bone marrow-derived MSCs [66–68] and ASCs [19],
along with subsequent diminished mineralization. In addition, low-
glucose media leads to a higher degree of differentiation by human
bone marrow MSCs and mouse MSCs compared with osteocytes in
normal- and high-glucose media [69, 70]. Another report demon-
strated that glucose restriction increases the osteogenic capacity of
mouse MSCs in vitro.

High concentrations of glucose alter the differentiation of MSCs
into osteoblast lineages and their mineralization into nodules. High
glucose also interferes with the formation and mineralization of the

extracellular matrix. The deleterious effect of high glucose on BMSC-
derived osteoblast proliferation and function can be ameliorated by
insulin [66], which controls blood glucose levels and maintains the
levels of vitamin 1, 25(OH)2D, IGF-1, and parathyroid hormone (PTH)
to indirectly regulate bone development and formation in patients and
rats in vivo [71–73]. Furthermore, insulin treatment of human and
mouse osteoblasts down-regulates apoptosis, increases the presence
of transporter molecules, induces the synthesis of collagen and insu-
lin-like growth factor-binding protein-3 (IGFBP-3), increases prolifera-
tion and sensitizes cells to PTH [74–79]. Finally, glucose regulates
the distribution pattern of insulin receptors in MSCs during osteo-
genic differentiation.

Runt-related transcription factor-2 (Runx2) is a member of the
runt-domain gene family of DNA-binding proteins (Runx1, Runx2,
Runx3), which control the expression of numerous genes involved in
cell growth, proliferation and determination of cell lineage [80]. OSE2
is the specific DNA-binding site for Runx2 [81]. It is reported that
high-glucose (11 mmol/l) stimulates Runx2 expression, while higher
glucose (44 mmol/l) inhibits Runx2 expression [82]. And high
glucose can also enhance phosphorylation of CREB [83]. Long-term
incubation of human and mouse osteoblasts with AGEs decreases
cellular activity, proliferation, the expression of collagen type I, osteo-
calcin and IGF-1, alkaline phosphatase (ALP) activity, and the
formation and mineralization of the ECM [84–86]. Advanced glycation
end-products increase ALP activity and intracellular calcium content,

Table 1 Expression of proteins in MSCs under normal glucose (5.5 mM) and low glucose (1.4 mM) conditions during osteogenic

differentiation

Protein MW (kD) Characteristic Regulation Reference

Aldehyde
dehydrogenase

57.6 Protecting or detoxifying enzyme; preserves stem cells from
cytotoxic effects

Up [70]

Prolyl 4-hydroxylase
alpha subunit

61.1 Intracellular enzyme; required for synthesis and formation of all
known types of collagen

Up [71]

Laminin binding
protein

31.9 Extracellular protein; affects cell-substratum attachment, spreading,
migration, differentiation, proliferation, and neurite outgrowth

Down [63]

Mutant beta-actin 42.1 Cytoskeletal protein; participates in muscle contraction, cell motility,
cytokinesis, vesicle and organelle movement, cell signalling,
establishment and maintenance of cell junctions and cell shape

Down [64]

Sec 12 protein 80 Guanine nucleotide exchange factor; promotes the recruitment of
COPII vesicle coats and cargo selection

Down [65]

Alpha soluble
N-ethylmaleimide
sensitive fusion
protein

33.7 Homohexameric AAA ATPase; a central component of the cellular
machinery in the transfer of membrane vesicles from one
membrane compartment to another

Down [66]

Manganese
superoxide dismutase

24.9 Vesicle coats and cargo selection Down [67]

Proteasome alpha
1 subunit

29.8 Intracellular protien; modifies
proteasome

Down [68]

Ribosomal protein
S12

14.9 Locates in the cytoplasm; belongs to the S12E family of ribosomal
proteins

Down [69]
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while decrease mineralization and mature bone nodule formation in
MSCs differentiation [40].

Hyun-Jung et al. used two-dimensional electrophoresis for a
proteomic analysis of proteins in MSCs affected by calorie restric-
tion [70] and found seven proteins to be down-regulated: lami-
nin-binding protein [87], mutant beta-actin [88], Sec-12 protein
[89], alpha soluble N-ethylmaleimide-sensitive fusion protein
(SNAP) [90], manganese superoxide dismutase (MnSOD) [91],
proteasome alpha 1 subunit [92] and ribosomal protein S12 [93].
These authors also observed the up-regulation of three other pro-
teins: aldehyde dehydrogenase (ALDH) [94] and the prolyl 4-
hydroxylase alpha (P4HA) [95] subunit, under normal-glucose and
low-glucose conditions (Table 1). These proteins are critical for
cell division, development, differentiation, protein synthesis,
protein folding and assembly and the stress response. The poten-
tial of MSCs to differentiate into osteocytes may be influenced
by differentially expressed proteins under low concentrations of
glucose.

O-GlcNAcylation affects osteogenic
differentiation

An increasing number of studies report that the skeleton can act as a
nutrient stress sensor that associates bone metabolism, bone mineral
homeostasis and whole-body nutrient status through bone-specific
endocrine signals or other signalling pathways [96–100]. Among
them, the role of protein glycosylation in osteoblast function may
indicate that whole-body glucose homeostasis can affects bone meta-
bolism [96, 97, 99, 101, 102].

It has been proposed that dynamic O-GlcNAcylation is sensi-
tive to nutrient status, including extracellular glucose flux, via the
HBP [103]. O-GlcNAcylation may act as a nutrient-responsive reg-
ulatory mechanism in the skeleton because insulin receptor sub-
strates are O-GlcNAcylated [104], and insulin receptor substrates
are critical mediators of insulin/IGF-1 signalling. It has also been
reported that many proteins are O-GlcNAcylated in osteoblasts and

Fig. 3 A schematic model illustrating influence of O-GlcNAcylation on osteogenic differentiation. Elevated O-GlcNAc increases osteocalcin transcrip-

tion via OSE2 and Runx2. IL-1, TGF and BMPs influence the O-GlcNAcylation of Runx2, CBP and CREB via the TAK1 complex to increase BMP2

transcription, with all enhancing osteogenic differentiation.
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that the extent of protein O-GlcNAcylation varies during osteoblast
differentiation [105]. O-GlcNAcylation of protein may induce osteo-
calcin. It is evidently based on an observed increase in global pro-
tein O-GlcNAc modification, including CREB and TAK1 signalling
complex, in osteoblasts cultured in high concentrations of glucose
compared to low concentrations of glucose [106]. Thus, O-GlcNA-
cylation may offer a potential target for controlling bone develop-
ment at the osteoblast level.

It has been reported that the transcriptional activity of Runx2 is
enhanced in osteoblast differentiation via PTH stimulation with an
OGA inhibitor [105]. Furthermore, previous studies have demon-
strated that elevated O-GlcNAcylation of proteins enhances the
expression of differentiation markers in pre-osteoblasts and have
suggested that O-GlcNAcylation of Runx2 and osteoblast-specific cis-
element 2 (OSE2) contributes to osteoblast differentiation. OSE2
region of the osteocalcin promoter is important for elevated O-GlcNA-
cylation, priming inducing osteocalcin [107]. Runx2 transcriptional
activity is modified by elevated O-GlcNAcylation, and the transcription

of osteoblast-specific markers (such as osteocalcin) can be stimu-
lated by the binding of Runx2 to specific enhancer regions of the gene
(OSE2). Thus, the transcription of osteocalcin is increased by elevated
O-GlcNAcylation and mediated by Runx2 and OSE2 [81, 108] (Fig. 3).

It has been proposed that osteoblast function is regulated by the
O-GlcNAcylation of TGF-b-activated kinase-1/MAP3K7-binding pro-
tein-1 and -2 (TAB 1/TAB 2), which are associated with the TGF-b-
activated kinase 1 (TAK1) signalling node [109]. It is intriguing that
TAK1 interferes with osteoblast differentiation by regulating Runx2
activation and its association with the cAMP response element-bind-
ing protein (CREB)-binding protein (CBP) [110], a transcriptional co-
activator and histone acetyltransferase, plays a crucial role in
osteoblast differentiation. CBP is O-GlcNAcylated at its C-terminal
domain, at Ser-2360, which is also a phosphorylation site [111, 112].
O-GlcNAcylation and phosphorylation thus may interact at Ser-2360
to affects CBP function. Osteoblast differentiation, mineralization and
skeletal development are influenced by TAK1-modulated transcription
by enhancing the association between Runx2 and CBP [110]. Recent

Fig. 4 A schematic model illustrating influence of glucose and O-GlcNAcylation on adipogenic differentiation. High concentrations of glucose

enhances adipogenic differentiation through the ERK-mediated PI3K/Akt pathway or the ROS/PKCb pathway. O-GlcNAcylation of C/EBPa promotes

adipogenic differentiation, but O-GlcNAcylation of C/EBPb inhibits autophosphorylation thereby delaying adipogenic differentiation.
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findings demonstrate that TAB 1 [113–115], TAB 2 [109], TAB 3
[113, 114] and TAK1 [113] are O-GlcNAcylated and that TAB 2 is
essential for osteogenic differentiation [114]. IL-1, TGF and BMPs
stimulate the TAK1 complex (Fig. 3).

It has been proposed that CBP interacts with and regulates the
transcriptional activity of Runx2 and CREB and that it also enhances
CREB-mediated BMP2 [116]. Post-translational modifications modu-
lates (PTMs) the activity and protein interactions of CBP; as one class
of PTM, O-GlcNAcylation modifies CBP-, CREB and CREB-regulated
transcription coactivator-2 (CRTC2) [117] and OGT has also been
shown to co-localize with CREB at unique promoter regions [118].
Although the O-GlcNAcylation of signalling regulator such as CBP is
regarded as a mechanism controlling the fate of osteoblast, CBP is
also affected by PTH [119], insulin/IGF-1 [116], BMPs [110] and
Wnts [120] (Fig. 3).

Adipogenic differentiation

Glucose concentration affects adipogenic
differentiation

Increased adipose accumulation in marrow has recently been
shown in a streptozotocin-induced insulin-dependent diabetes
mellitus mouse model [121]. As a high level of glucose in the
blood is a major characteristic of diabetes, the glucose concentra-
tion may have an important influence on adipogenic differentiation.
It has been reported that in comparison to a low-glucose culture
medium, a high-glucose medium enhances the adipogenesis of
mouse muscle-derived stem cells, mouse bone marrow-derived

MSCs [122] and human ASCs [18, 19]. And, in another report
adipogenic capacity was impaired by transfer to a low-glucose
medium [20].

PKC activation and ROS production are crucial steps in adipo-
genesis, and both processes are induced by high glucose. The neo-
formation of adipose cells is enhanced by ROS via downstream
signalling molecules particularly PKCb [18], and previous studies
have demonstrated that PKC plays a critical role in adipogenic dif-
ferentiation and diabetes. Additionally, there are close relationship
among ROS production, PKC and adipogenesis [65] (Fig. 4). Perox-
isome proliferator-activated receptor (PPAR) and CCAAT/enhancer-
binding proteins (C/EBPs) are also crucial for adipogenic differentia-
tion [123–125]. A recently study demonstrates that the mRNA and
protein levels of C/EBPs and PPARc were increased during adipo-
cyte differentiation [126]. C/EBPa is key to the production of speci-
fic adipogenic genes, and its expression is induced by PPARc,
which is regulated by MEK/ERK signalling pathway and by C/EBPb
during adipogenic differentiation [127], in late-stage adipogenesis.
The ERK signalling pathway has both positive and negative func-
tions in the adipocytic differentiation of MSCs. Adipocyte differenti-
ation is regulated at each step by the MAPK signalling pathway
[128]. Furthermore, activation of insulin receptor substrate-1 (IRS-
1)/phosphatidylinositol 3-hydroxy kinase (PI3K)/Akt plays a crucial
role in lipid synthesis stimulated by insulin [129]. The expression
of the fork-head transcription factor gene Foxc2 is induced by
tumour necrosis factor-a (TNF-a) and insulin via PI3K/ERK1/2 sig-
nalling pathways in 3T3-L1 adipocytes [130]. Therefore, high con-
centrations of glucose enhance the accumulation of lipid in
adipogenesis via an ERK1/2-activated PI3K/Akt-regulated PPARc
signalling pathway in mouse bone marrow-derived MSCs [122]
(Fig. 4).

Table 2 Proteins that were increasingly O-GlcNAcylated during 3T3-L1 pre-adipocyte differentiation

Protein MW (kD) Characteristic Role Reference

Vimentin 53.7 Major intermediate filament protein The arrangement of vimentin intermediate
filament changes dynamically from an extended
fibrillar state to a complex cage formation
tightly associated with the forming lipid droplets
during adipocyte differentiation

[118]

Pyruvate
carboxylase

130.3 Enzyme that catalyzes the irreversible
carboxylation of pyruvate to form
oxaloacetate

Plays a crucial role in gluconeogenesis and
lipogenesis, in the biosynthesis of
neurotransmitters, and in glucose-induced insulin
secretion by pancreatic islets

[119]

Ewing sarcoma
protein

68.6 A member of the TET (TLS/EWS/TAF15)
family of RNA- and DNA-binding
proteins whose expression is altered in
cancer

Affects transcription and RNA processing and
pays a role in homologous recombination, DNA
damage response and maintenance of genome
integrity

[120]

Long-chain fatty
acid-CoA ligase 1

78.9 Isozyme of the long-chain fatty-acid-
coenzyme A ligase family

Plays a key role in lipid biosynthesis and fatty
acid degradation

[116]

Nucleoporin
p62/p98

53.2/97.9 Proteins which are the constituent
building blocks of the nuclear pore
complex

Mediates transport of macromolecules between
the cell nucleus and cytoplasm in eukaryotes

[117]
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O-GlcNAcylation affects adipogenic
differentiation

Glucose uptake, lipid storage and insulin sensitivity are affected by
the activation of HBP via the administration of glucosamine or the
overexpression of glutamine 6 fructose phosphate transaminase 1
(GFAT-1) in adipocytes [131–134], and the O-GlcNAcylation of pro-
teins may be intimately connected to this phenomenon. Indeed,
recent findings demonstrate that O-GlcNAc-modified proteins are
modulated throughout development in a complex pattern. Aberrant
O-GlcNAcylation may affect cell differentiation, which may lead to
developmental abnormalities [135]. It has been observed that protein
O-GlcNAcylation dynamically increases when 3T3-L1 pre-adipocytes
are induced to differentiate, and O-GlcNAcylation of protein may play
an important role in adipocyte differentiation with this elevation
persisting for the entire differentiation period [126]. Furthermore, the
formation of lipids in adipocytes is prevented by GFAT-1 siRNA and
GFAT-1 inhibitors although a reduction in protein O-GlcNAcylation.
The expression of C/EBPb and PPARc was reduced by GFAT-1 siRNA
treatment in adipocytes, suggesting that the HBP may regulate adipo-
cyte differentiation partly by altering the expression of C/EBPb and
PPARc. Such findings shows that the timing of the increase in O-
GlcNAcylation is associated with the timing of C/EBPa expression in
adipogenesis and that an inhibitor of GFAT-1 can block the O-GlcNA-
cylation-induced adipocyte differentiation. Thus, O-GlcNAcylation
may play an important role in adipogenic differentiation by affecting
C/EBPa expression [136].

Recently, it has been proposed that C/EBPb O-GlcNAcylation
delays adipocyte differentiation [137]. C/EBPb is sequentially phos-
phorylated on Thr188/Ser184/Thr179; and C/EBPbThr188 phosphory-
lation primes phosphorylations on Ser184/Thr179. Phosphorylations
on Thr188/Ser184/Thr179 of C/EBPb are key to the binding activity
between C/EBPb and DNA. C/EBPb is itself O-GlcNAcylated at Ser180
and Ser181, and the phosphorylation and O-GlcNAcylation sites are
very close, both being located in the regulatory domain. O-GlcNAcyla-
tion of C/EBPb inhibits the phosphorylations of itself, but it does not
affect its DNA-binding activity. Elevated O-GlcNAcylation of C/EBPb
markedly reduces both the phosphorylation and DNA-binding activity
of itself. As a result, elevated C/EBPb O-GlcNAcylation delays the adi-
pocyte differentiation programme. Furthermore, mutations on Ser180
and Ser181 significantly enhance the transactivation activity of
C/EBPb, indicating that the blockade O-GlcNAcylation promotes this
phosphorylation. In conclusion, O-GlcNAcylation and phosphorylation
compete for occupation of adjacent sites to influence C/EBPb [137]
(Fig. 4). Finally, it has also been reported that PPARc is O-GlcNAcy-

lated during adipocyte differentiation [126]; however, the site of
O-GlcNAcylation has not yet been identified. The function of the O-
GlcNAcylation of the key regulators in adipocyte differentiation should
be studied further.

At last, the O-GlcNAcylation of proteins is global increased in
adipogenic differentiation [136], including vimentin, pyruvate car-
boxylase, ewing sarcoma protein, long-chain fatty acid-CoA ligase 1
[138] and nucleoporin p62/p98 [139], Vimentin [140], pyruvate car-
boxylase [141] and Ewing sarcoma protein [142] are heavily O-
GlcNAcylated during adipocyte differentiation (Table 2). Further
studies should be performed to expand our knowledge of the roles
of the O-GlcNAcylation of these proteins in adipocyte differentia-
tion.

Conclusions and perspectives

The microenvironment, including glucose level, pH and oxygen level,
determines the fate of these cells, and glucose concentration regu-
lates differentiation proficiency. Increasing evidence suggests that O-
GlcNAcylation acts as a nutrient sensor that associates the glucose
metabolic status with cellular regulation of signal transduction, tran-
scription, protein function and differentiation. The O-GlcNAcylation of
signalling molecules involved in glucose metabolism and cell differen-
tiation has recently received greater appreciation, and the roles of this
modification to signalling molecules in the cytoplasm, nucleus, and
mitochondria in regulating cell differentiation with glucose metabo-
lism constitutes an intriguing area of research Because glucose con-
centrations, protein O-GlcNAcylation and cell differentiation affect
ageing and diseases, uncovering the underlying functions and mecha-
nisms will be very important for exploring glucose or O-GlcNAcylation
as a therapeutic target for diseases.
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