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Abstract

Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Feru-
lic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radi-
cals and activate cell stress responses. This study is aimed at investigating protective
effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro
and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then
exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance
(TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran
(FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly
attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat
stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also
effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense
material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-depen-
dent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Spra-
gue—Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment
significantly attenuated the effects of heat stress on the small intestine, including the
increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced
occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that
FA pretreatment is potentially protective against heat stress-induced intestinal epithelial
barrier dysfunction.

Introduction

The intestinal epithelium forms a selective permeability barrier allowing absorption of water
and nutrients while preventing access of luminal pathogens and antigens from the luminal
environment into mucosal tissues and the circulatory system [1,2]. However, the selective per-
meable barrier is frequently disrupted by stress and a number of studies have demonstrated
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that heat stress can impair intestinal barrier function by damaging intestinal epithelium and
increasing intestinal permeability [3-5]. As a consequence, pathogens and endotoxins enter
the circulation, resulting in endotoxemia, inflammatory bowel disease (IBD) and organ dys-
function [6-8]. Therefore, protecting the integrity of the intestinal barrier is an important goal
for treating heat stress.

The formation and effectiveness of the epithelial barrier depend on the junctional com-
plexes, including tight junctions (TJs), adherence junctions (AJs) and desmosomes [1,9]. TJs,
the most apical components of the junctional complexes, are composed of multiple proteins,
including transmembrane proteins occludin, claudins, and peripheral membrane proteins
zonula occludens-1 (ZO-1) and ZO-2 [10-12]. The proteins occludin and ZO-1 have been
shown to play important roles in maintenance of T] structure and epithelial barrier function
[13]. E-cadherin, a-catenin 1, B-catenin, catenin 61 and F-actin interact to form the adherens
junction [1]. E-cadherin protein is the major constituent of adherens junctions, which play a
key role in intestinal homeostasis and maintenance of the epithelial line of defense [14].

Ferulic acid (FA) belongs to the family of phenolic acids and is very abundant in fruits and
vegetables [15]. It has potent antioxidant activity, scavenging free radicals and inhibiting lipid
peroxidation [16,17]. Recently, ferulate was shown to protect the epithelial barrier by suppress-
ing both an increase in epithelial permeability and a decrease in expression of the TJ proteins
occludin and ZO-1 in Caco-2 cells [18]. However, no research has described protective effects
of FA against heat stress-induced intestinal epithelial barrier dysfunction in IEC-6 cells and in
vivo. Therefore, the goal of the present study was to investigate the ability of FA to protect IEC-
6 cell monolayers against heat stress-induced epithelial barrier dysfunction. Additionally, we
designed an in vivo study to assess the protection effect of FA against heat stress-induced intes-
tinal epithelial barrier dysfunction.

Materials and Methods
Reagents

FA (purity >99%) was purchased from the National Institutes for Food and Drug Control (Bei-
jing, China). Dulbecco’s Modified Eagle medium (DMEM), fetal bovine serum (FBS), antibi-
otic—antimycotic, and TRIzol® reagent were purchased from Gibco (Grand Island, NY, USA).
3-(4,5-Dimethylth-iazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) was from Sigma-
Aldrich (St. Louis, MO, USA).

Cell culture

IEC-6 intestinal epithelial cells were obtained from the Cell Resource Center (Beijing, China).

Cells were cultured in DMEM medium supplemented with 10% fetal bovine serum, 100 U/ml

antibiotics (penicillin and streptomycin) and 0.01 mg/ml insulin at 37°C in a humidified incu-
bator with 5% CO..

Cytotoxicity assay

The MTT assay was used to determine effects of FA on IEC-6 cell viability. Briefly, cells were
seeded at 1 x 10* cells per well onto 96-well plates and allowed to grow to 90% confluence in
complete medium. Cells were then washed twice with phosphate-buffered saline (PBS) and
serum-starved for 2 h prior to incubation with FA (1, 5, 10, 20, 50, 100, 200, or 500 uM) for 48
h. Medium was then removed and 10 pl MTT solution (5mg/mL) was added to each well and
incubated at 37°C for 4 h. Supernatants were removed, and dimethyl sulfoxide (Amerco, Solon,
OH, USA) was added to each well. The solubilized formazan product was analyzed with a
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multi-detection microplate reader (Synergy HT, BioTek, Winooski, VT, USA) at a fixed absorp-
tion wavelength of 490 nm and reference wavelength of 630 nm.

Measurement of TER

IEC-6 cells were seeded at 2.0 x10° cells per well on polycarbonate membranes in transwell
inserts (6.5-mm diameter, 0.4-um pore size; Corning, Cambridge, MA, USA) and monitored
daily for 2 weeks by measuring TER. When TER values were consistently above 300 Q/cm?, the
experiments were performed. For groups receiving heat stress treatment, TER measurements
were recorded prior to and after heat stress. For groups receiving FA, TER measurements were
recorded prior to pretreatment with FA (0, 5, 10 or 20 uM) for 4 h and after heat stress. TER

of the filter-grown IEC-6 intestinal monolayers was measured with a Millicell-ERS (electrical
resistance system; Millipore, Bedford, MA, USA). TER was expressed in Q/cm?, calculated by
dividing the measured resistance by the surface area of the monolayer (0.33 cm? for 6.5-mm
wells). The resistance of the polycarbonate membranes in transwell inserts (approximately 30
Q/cm?) was subtracted from all readings before calculating TER. Changes in TER under experi-
mental conditions were expressed as a percentage of the corresponding basal values.

Intestinal epithelial paracellular permeability assay

Intestinal epithelial paracellular permeability across cell monolayers was determined by mea-
suring the flux of FITC-labeled dextran of molecular mass 4 KDa (FD4, Sigma-Aldrich). IEC-6
cell monolayers were pretreated with FA (0, 5, 10 or 20 uM) for 4 h and then exposed to heat
stress for 6h. FD4 (1mg/ml) was added to medium in the apical chamber of transwells. After 2
h incubation, medium was collected from the bottom chamber and FITC was measured in a
fluorometer (excitation, 492 nm; emission, 520 nm; BioTek).

Western blot analysis

Proteins from IEC-6 cells or rat intestine samples were extracted using a total protein extrac-
tion kit (Biochain, Hayward, CA, USA) and quantified using the BCA protein assay kit (Pierce,
Rockford, IL, USA). Proteins separated by SDS-PAGE were transferred to nitrocellulose mem-
brane (Pierce). Membranes were blocked with Odyssey blocking buffer (LI-COR, Lincoln, NE)
for 2 h at room temperature (RT). The blocked membranes were subsequently incubated with
antibodies against occludin (Invitrogen, Carlsbad, CA, USA), ZO-1 (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), E-cadherin and B-actin (Cell Signaling Technology, Danvers, MA,
USA) overnight at 4°C. The membranes were then washed and incubated with the secondary
anti-rabbit and anti-mouse IgG antibodies (Santa Cruz Biotechnology) at a dilution of 1:15,000
for 1 h at RT. The protein bands were then scanned in the 800 nm channel of the Odyssey
infrared imaging system (LI-COR Biosciences) and quantified with Odyssey software version
3.0 (LI-COR Biosciences).

Immunofluorescence staining

IEC-6 monolayers were grown on coverslips to 100% confluence then treated with various
experimental conditions, as indicated in Results. At the end of the experimental period, IEC-6
monolayers were washed twice in PBS and fixed with 4% paraformaldehyde for 10 min at RT.
Then cells were permeabilized with 0.2% Triton X-100 in PBS at 4°C for 10 min, followed by
blocking in 3% BSA for 1 h at RT. Cells were incubated overnight at 4°C with primary antibod-
ies against ZO-1, occludin or E-cadherin, each at a 1:50 dilution. After washing with PBS,
coverslips were incubated with Alexa Fluor 488 goat anti-rabbit and goat anti-mouse IgG
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secondary antibodies (Life Technologies, Molecular Probes) at a dilution of 1:400 for 40 min at
RT in the dark. Cells were also incubated with DAPI (Beyotime, Jiangsu, China) for 5 min to
stain nuclei. After washing three times with PBS, cells were mounted with Prolong Antifade
medium (Solarbio, Beijing, China). Stained cell monolayers were examined with a fluorescence
microscope (OLYMPUS IX71, Tokyo, Japan).

Transmission electron microscopy (TEM)

IEC-6 cells were collected and centrifuged at 3000g for 15 min. cells were fixed in overnight
with 4% glutaraldehyde and post-fixed in cold 1% osmium tetroxide. Subsequently, cells were
dehydrated in a graded acetone series and embedded in epoxy resin. Ultra-thin sections were
stained with saturated uranyl acetate in 50% ethanol and lead citrate and then examined with a
JEM-1230 transmission electron microscope (JEOL, Tokyo, Japan).

Animals and Ethics statement

Male Sprague-Dawley rats weighing 200 + 20 g were obtained from Beijing Vital River Labora-
tory, Animal Technology Co., Beijing, China. All procedures performed on the animals were
approved by the Animal Care and Use Committee of China Agricultural University (permit
number: CAU20150806-2). The rats were housed at a constant temperature of 25°C, 60% rela-
tive humidity with a 12/12 h light-dark cycle and were allowed water ad libitum.

Experimental design

Twenty-four rats were randomly divided into three groups (n = 8) and were orally adminis-
tered various pretreatments for 7 consecutive days and otherwise treated, as follows: (A) con-
trol pretreated with 0.9% normal saline; (B) heat stress (HS) group, pretreated with 0.9%
normal saline then exposed to 40°C and 60% relative humidity from 11:00 am to 1:00 pm daily
for three consecutive days [19]; (C) FA+ HS group, pretreated with FA (50 mg/kg) and then
exposed to 40°C and 60% relative humidity from 11:00 am to 1:00 pm daily for three consecu-
tive days.

Sample preparation

After the final 2 h heat treatment, the rats were anesthetized, and a midline laparotomy was
performed. Plasma was collected by centrifuging the blood at 10,000g for 10 minutes at — 4°C
for intestinal epithelial permeability analysis. The small intestine samples from each group
were harvested for transmission electron microscopy and western blot analysis.

Intestinal epithelial permeability analysis

An in vivo intestinal permeability assay was performed to assess intestinal barrier function as
previously described [20]. Briefly, 30 min before sacrifice, rats were anesthetized with inhaled
isoflurane. A midline laparotomy was performed and a 10-cm segment of the distal jejunum
was isolated between silk ties. A solution of 1.0 mL phosphate-buffered saline (PBS, pH 7.2)
containing 25 mg FD4 (Sigma, St Louis, MO, USA) was injected into the lumen of the isolated
segment of the isolated jejunum. The bowel was then returned to the abdominal cavity and the
abdomen was closed. Rats were maintained under light general anesthesia for 30 min, at which
time systemic blood was collected. Plasma was collected by centrifuging the blood at 10,000g
for 10 minutes at — 4°C. Plasma fluorescence was measured in a fluorescence spectrophotome-
ter (Synergy HT, Biotek, Winooski, Vermont, USA). A standard curve for the assay was
obtained through serial dilution of FITC-Dextran in rat plasma.
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Transmission electron microscopy (TEM)

The jejunum were fixed in overnight with 4% glutaraldehyde and post-fixed in cold 1%
osmium tetroxide. Subsequently, jejunum were dehydrated in a graded acetone series and
embedded in epoxy resin. Ultra-thin sections were stained with saturated uranyl acetate in 50%
ethanol and lead citrate and then examined with a JEM-1230 transmission electron microscope
(JEOL, Tokyo, Japan).

Statistical Analysis

Statistical analysis was performed using the GraphPad Prism 5 program (GraphPad, La Jolla,
CA, USA). All measurements in this study are represented as means + SEM. Data were ana-
lyzed using Student’s t test when appropriate, or by a one-way analysis of variance (ANOVA)
and Tukey’s multiple comparison tests were applied when comparing more than three means.
Results were considered significant at P< 0.05.

Results
Heat stress-induced intestinal epithelial barrier dysfunction

The effects of heat stress on epithelial barrier integrity and paracellular permeability were
determined by measuring TER and the flux of FD4. Exposure to heat stress for up to 12 h pro-
duced a time-dependent decrease in TER, statistically significant by 6 h (p<0.001) (Fig 1A).
Similarly, heat stress was associated with a time-dependent increase in IEC-6 paracellular per-
meability to FD4 (Fig 1B). The FD4 flux from apical to basolateral chamber was significantly
increased by 6 h of heat stress (p<0.001). Therefore, exposure to heat stress for 6 h was selected
as the condition for subsequent experiments.

Heat stress regulated the expression of occludin, ZO-1 and E-cadherin

Because epithelial junctional complexes regulate paracellular permeability, we analyzed expres-
sion of three representative junctional complexes proteins, namely, occludin, ZO-1 and E-
cadherin, by western blotting. Heat stress significantly decreased ZO-1 expression in a time-
dependent manner (p<0.001). Expression of occludin and E-cadherin increased from 0 to 3 h
(p<0.01), but was significantly decreased by 6 h after heat stress (p<0.01) (Fig 2).

FA protected against heat stress-induced intestinal epithelial barrier
dysfunction

To exclude the possibility that FA had toxic effects under these experimental conditions, we
conducted a cell viability test using the MTT assay. In IEC-6 cells incubated with various con-
centrations (0-500 M) of FA for 48 h, FA had no cytotoxic effects (Fig 3). This finding justi-
fied our choice of 5, 10, 20 pM FA for all subsequent experiments.

Next, we investigated effects of FA on heat stress-induced changes in TER and FD4 flux.
Heat stress significantly decreased TER in the IEC-6 monolayers, as compared with controls
not subjected to heat stress. Pretreatment with FA (5, 10 and 20 uM) significantly attenuated
this heat stress-induced TER decrease in a dose-dependent manner (Fig 4A). In addition, FA
prevented the increase in paracellular permeability to FD4 induced by heat stress (Fig 4B).
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Fig 1. Effects of heat stress on TER and on FD4 permeability in IEC-6 cell monolayers. IEC-6 cells on Transwell membranes were exposed at 42°C for
0, 3,6 0r 12 h. (A) TER values were monitored across cell monolayers at the indicated times. (B) Permeability of FD4 across the cell monolayer was
measured. Data are presented as means + SEM from three independent experiments and differences among mean values were assessed by one-way

ANOVA. p<0.05 and *** p<0.001 compared with the control group.
doi:10.1371/journal.pone.0145236.9001

FA protected against heat stress-induced loss and redistribution of
occludin, ZO-1 and E-cadherin proteins

We investigated whether FA protected cells against the heat stress-induced loss of occludin,
Z0-1 and E-cadherin. Heat stress significantly reduced expression of occludin, ZO-1 and
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Fig 2. Time-dependent effects of heat stress on expression of occludin, ZO-1 and E-cadherin in IEC-6 cells. Cells were exposed to 42°C temperature
for 0, 3, 6 or 12 h and total proteins harvested for western blotting assays. Data are presented as means + SEM from three independent experiments and
differences among mean values were assessed by one-way ANOVA. * p<0.05, ** p<0.01 and *** p<0.001 compared with the control group.

doi:10.1371/journal.pone.0145236.9002
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Fig 3. Cytotoxicity of FA on IEC-6 cells. Effects of FA on viability of IEC-6 cells was measured using
the MTT assay. Cells were incubated with FA concentrations ranging from 0 to 500 pM for 48 h. Data are
presented as means + SEM from three independent experiments and differences among mean values were
assessed by one-way ANOVA.

doi:10.1371/journal.pone.0145236.9003

E-cadherin proteins and FA prevented this down regulation in a dose-dependent manner
(Fig 5).

Impacts of FA on heat stress-induced effects on the junctional localization of the occludin,
Z0-1 and E-cadherin proteins were assessed with immunofluorescence staining (Fig 6). In the
control group not subjected to heat stress, occludin, ZO-1 and E-cadherin localized at the api-
cal cellular junctions and appeared as a continuous band encircling the cells at the cellular bor-
ders. Heat exposure for 6 h caused a striking disruption to the localization of occludin, ZO-1
and E-cadherin proteins at the cellular borders. This was characterized by decreased staining
intensity and marked cytoplasmic accumulation. In cells pretreated with 5 uM FA, intensities
of staining for occludin, ZO-1 and E-cadherin proteins were slightly increased. These intensi-
ties were significantly increased with 10 uM FA treatment. Furthermore, in the group receiving
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Fig 4. Effects of FA on heat stress-induced paracellular permeability in IEC-6 cell monolayers. Cells on transwell insert membranes were pretreated
with FA (0, 5, 10 or 20 uM) for 4 h and then exposed to heat stress for 6 h. (A) TER values were monitored across the cell monolayers (B) Permeability of FD4
across the cell monolayer was measured. Data are presented as means + SEM from three independent experiments and differences between mean values
were assessed by one-way ANOVA. #p<0.05, #p< 0.01 and **#p<0.001 as compared with the heat stress group without FA.

doi:10.1371/journal.pone.0145236.9004
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Fig 5. Effects of FA on heat stress-induced changes in protein expression in IEC-6 cells by western blot analysis. Cells were pretreated with FA (0, 5,
10 or 20 uM) for 4 h and then exposed to heat stress for 6 h. Immunoblot analysis was performed to detect the expression of the proteins occludin, ZO-1 and
E-cadherin. Data are presented as means + SEM from three independent experiments and differences between mean values were assessed by one-way
ANOVA. #p<0.05, #p< 0.01 and #*#p<0.001 as compared to heat stress group.

doi:10.1371/journal.pone.0145236.9005

20 uM FA, localization and intensity of staining for occludin, ZO-1 and E-cadherin proteins
were similar to staining in cells not subjected to heat stress.

FA prevented heat stress-induced morphological disruption of the TJs

Ultrastructure of IEC-6 cells was investigated by transmission electron microcopy (Fig 7). In
the control group, TJs displayed intact structure between adjoining cells. After heat stress, T]s
became markedly “open” with large gaps between adjoining cells and the electron-dense mate-
rial of TJs was diminished. However, cells subjected to heat stress and also pretreated with

5 uM FA showed a slightly alleviated change in TJs morphology, and this improvement was
significant with 10 uM FA. In cells pretreated with 20 uM FA, the TJs showed an intact ultra-
structure, comparable to that of cells not subjected to heat stress.

FA attenuated heat stress-induced increases in intestinal permeability in
vivo

Intestinal permeability was evaluated in vivo after heat stress using FD4 (Fig 8). Rats in the heat
stress group had significantly higher levels of plasma FD4, as compared with the control group.
However, in rats also pretreated with FA, this heat stress-induced FD4 permeability increase
was diminished.
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Fig 6. Effects of FA on junctional localization of occludin, ZO-1 and E-cadherin proteins by immunofluorescence. IEC-6 cells were pretreated with FA
(0, 5, 10 or 20 uM) for 4 h and then exposed to heat stress for 6 h. The figure shows representative results from three independent experiments. Scale

bar =50 ym.

doi:10.1371/journal.pone.0145236.9006

Fig 7. Effect of FA on morphological ultrastructure of tight junction induced by heat stress.
Ultrastructure of TJs in IEC-6 monolayers cell was observed with a transmission electron microscope. (A)
Control group. (B) Heat stress group. (C) 5 uM FA-pretreated heat stress group. (D) 10 uM FA-pretreated
heat stress group. (E) 20 uM FA-pretreated heat stress group. Arrows indicate the location of the TJs (Scale

bar=0.5ym).
doi:10.1371/journal.pone.0145236.9007
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Fig 8. Effects of FA on intestinal permeability in heat stressed rats. Rats were pretreated with normal
saline for the control and heat stress (HS) groups, or with FA before heat stress. Intestinal permeability was
determined based on plasma FD4, measured by fluorescence spectrophotometry. Data are presented as
means + SEM from three independent experiments and differences between mean values were assessed by
one-way ANOVA. *** p<0.001 compared with the control group and **p< 0.01 as compared to the heat
stress group without FA.

doi:10.1371/journal.pone.0145236.g008

FA prevented heat stress-induced morphological disruption of the TJs in
vivo
The ultrastructure of the jejunum was investigated by transmission electron microcopy (Fig 9).

In the control group, TJs were intact between adjoining cells and the cells had regularly aligned
microvilli. After heat stress, TJs between cells were lost and irregularly wide and the microvilli

Fig 9. Effects of FA on morphological ultrastructural changes in TJs and microvilli induced by heat stress. Ultrastructure of TJs and microvilli in rat
jejunum was observed by transmission electron microscopy. (A) Control group. Rats were pretreated with normal saline (B) Heat stress (HS) group. Rats
were pretreated with normal saline and then exposed to heat stress (C) FA+ HS group. Rats were pretreated with FA and then exposed to heat stress. Thin
arrows indicate TJs, and Thick arrows indicate microvilli. (Scale bar =1 pm).

doi:10.1371/journal.pone.0145236.9009
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appeared damaged and were shorter. However, rats subjected to heat stress and also pretreated
with FA had significantly decreased morphological changes in TJs and microvilli in response to
heat stress compared with those not receiving FA.

FA protected against heat stress-induced loss of occludin, ZO-1 and E-
cadherin proteins

To further investigate the protective effect of FA against heat stress-induced intestinal epithelial
barrier damage in vivo, levels of T] proteins in the rat jejunum were analyzed by western blot-
ting (Fig 10). Levels of occludin, ZO-1 and E-cadherin proteins were significantly lower after
heat stress. However, in rats subjected to heat stress and pretreated with FA, occludin, ZO-1
and E-cadherin were significantly higher, compared with those receiving heat stress but no FA.

Discussion

Functional defects in the intestinal epithelial barrier are important pathogenic factors in dis-
orders such as celiac disease, inflammatory bowel disease, sepsis and cardiovascular disease
[21,22]. Heat stress is regarded as being a contributor to intestinal epithelial barrier dysfunc-
tion by increasing intestinal permeability, thus enabling entry to pathogens and antigens
[23]. Because of this, during heat stress, it is crucial to protect the function of intestinal epi-
thelial barrier. In this study, we demonstrated that FA protects against heat stress-induced
increases in intestinal epithelial permeability and the associated damage of epithelial junc-
tional complexes.

The intestinal epithelium forms a selectively permeable barrier, and it is very important that
the barrier between the gut lumen and internal tissues be maintained [21,22]. However, intesti-
nal barrier dysfunction is considered as an important adverse effect of heat stress in Caco2 cell
model [23,24]. Meanwhile, when mice exposed to heat stress, intestinal epithelial barrier per-
meability and plasma endotoxin concentrations and bacterial load in the blood, spleen and
mesenteric lymph nodes were all increased [24]. The present study showed that heat stress
reduced TER and increased permeability for the macromolecule FD4 across IEC-6 cell mono-
layers. These findings indicate that the intestinal epithelium barrier was physically impaired
with heat stress. Our results also showed that the effects on TER and FD4 were greater with
longer periods of heat stress. In IEC-6 cells exposed to heat stress for 6 h, TER was significantly
reduced and FD4 flux significantly increased. Based on this, we selected a 6-h exposure to heat
stress as the model condition for many experiments in our study.

The TJs and AJs control epithelial homeostasis, paracellular permeability and barrier prop-
erties [25]. TJ proteins include the transmembrane proteins occludin and claudins and the
peripheral membrane proteins ZO-1 and ZO-2. E-cadherin is the major component of AJs,
essential for intestinal development, homeostasis and the defense against pathogenic bacteria
[26,27]. Because T] and AJ proteins are involved in maintenance of epithelial barrier function,
we investigated the role of T]- and AJ-associated proteins, occludin, ZO-1 and E-cadherin, in
the effects of heat stress in our model. These proteins are all directly involved in establishing
and regulating intestinal barrier function [28,29]. Previous studies have shown that inhibition
of occludin protein expression in intestinal epithelial cells led to increased paracellular perme-
ability to macromolecules, indicating that occludin is critical to maintenance and assembly of
the TJ barrier [30,31]. Heat stress (39 or 41°C) increased occludin protein expression and
mRNA transcription in Caco-2 cells, which is mediated by HSF-1 activation and subsequent
binding of HSF-1 to the occludin promoter [32]. However, in our study, occludin protein
expression increased at 3 h of heat stress, but decreased dramatically, as compared to cells
maintained at normal temperature, at 6 and 12 h of heat stress. ZO-1 acts as a multi-domain
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Fig 10. Effects of FA on intestinal occludin, ZO-1 and E-cadherin protein levels in heat stressed rats. Intestinal samples were collected after heat
stress. Western blotting analysis was performed to detect levels of occludin, ZO-1 and E-cadherin proteins. Data are presented as means + SEM from three
independent experiments and differences among mean values were assessed by one-way ANOVA. ** p<0.01, *** p<0.001 compared with the control
group, *p< 0.05 as compared to the heat stress group without FA.

doi:10.1371/journal.pone.0145236.9010

scaffolding protein and the coordinated activity of multiple conserved domains is required for
TJ structure and maintenance of epithelial permeability [33]. Recent studies showed that heat
stress decreased ZO-1 protein expression in Caco-2 cells [5,32]. Our results were consistent
with this, showing that ZO-1 protein expression was significantly reduced in IEC-6 cells
exposed to heat stress for 3 to 12 h. E-Cadherin is the major component of AJs, essential for
intestinal development, homeostasis, and defense against pathogenic bacteria [26,27]. E-Cad-
herin facilitates assembly of specialized cellular junctions such as TJs and desmosomes, which
together are required to connect epithelial cells into a functional monolayer [34-36]. Our find-
ings showed that expression of E-cadherin was increased after 3 h of heat stress, but signifi-
cantly decreased with continued heat stress, at 6 and 12 h time points.

FA is a ubiquitous phenolic compound in vegetables, fruits and some Chinese medicinal
herbs [37]. It is a strong antioxidant, effectively scavenging free radicals and inhibiting lipid
peroxidation [15,38]. Recent research demonstrated that ferulate prevented tert-butyl hydro-
peroxide-induced increases in paracellular permeability in Caco-2 cells [18]. Therefore, we
investigated whether FA could protect heat stress-induced increases in paracellular permeabil-
ity IEC-6 cells. In our study, results from the MTT assay showed that FA was not cytotoxic for
IEC-6 cells at concentrations as high as 500 uM. This indicated that the effects on permeability
that we observed with much lower FA concentrations (up to 20 pM) were not due to cytotoxic-
ity. Our results also demonstrated that FA, in a dose-dependent manner, can prevent heat
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stress-induced decreases in TER and increases in FD4 flux. Therefore, our results indicate that
FA effectively inhibits heat stress-induced increased paracellular permeability in IEC-6 cells.

Both decreased expression and altered localization of apical junctional proteins are related
to epithelial barrier function disruption [39,40]. Our data showed that heat stress significantly
downregulated occludin, ZO-1 and E-cadherin in intestinal epithelial cells and that this down
regulation was attenuated, in a dose-dependent manner, by FA. By immunofluorescence, heat
stress reduced staining intensity of occludin, ZO-1 and E-cadherin proteins at the cellular bor-
ders and induced translocation of these proteins from the membrane into the cytosol. How-
ever, pretreatment with FA markedly prevented this translocation of occludin, ZO-1 and E-
cadherin proteins from the membrane of IEC-6 cells subjected to heat stress. Moreover, in heat
stressed cells, we observed a morphological change of TJs by TEM. Heat stress induced disap-
pearance of electron-dense material in TJs. FA pretreatment alleviated these morphological
changes in a dose-dependent manner. These results indicate that FA can protect the epithelial
barrier during heat stress by maintaining expression and stabilizing localization of apical junc-
tional proteins.

Furthermore, we investigated protective effects of FA against heat stress-induced intestinal
epithelial barrier damage in a rat model. Many studies have shown that heat stress increased
intestinal permeability and damaged intestinal barrier function in vivo [19,41]. The results of
our in vivo permeability assay also showed that heat stress significantly increased plasma FD4
levels and that this effect was significantly diminished by pretreatment with FA. Structurally
intact TTs are important for establishing and regulating intestinal barrier function. In recent
reports, heat stress-induced destruction of T] structure was proposed to result in intestinal bar-
rier dysfunction and increased permeability [5,42]. In our study, the T]s between cells were lost
and irregularly wide and the microvilli were damaged and shortened in the heat stress group.
Pretreatment with FA significantly decreased these heat stress-induced morphological disrup-
tions to TJs and microvilli. Because the expression of T] proteins directly influence T] mor-
phology, we also investigated expression of occludin, ZO-1 and E-cadherin proteins by western
blotting. We found that levels of these T proteins were significantly reduced after heat stress.
However, pretreatment with FA before heat stress led to significantly higher expression of
occludin, ZO-1 and E-cadherin proteins compared with in the heat stress group. Therefore,
these results indicate that pretreatment with FA alleviated heat stress-induced intestinal barrier
disruption in the rat.

Conclusion

Our study demonstrated for the first time that FA pretreatment was protective against heat
stress-induced intestinal epithelial barrier dysfunction in vitro and in vivo. These findings pro-
vide evidence that pretreatment with FA may offer a therapeutic option for preventing heat
stress-induced intestinal barrier dysfunction. Further investigations will be required to eluci-
date the precise mechanisms underlying these FA-mediated protective effects on intestinal epi-
thelial barrier function.
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