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Abstract: Cheeses are traditional products widely consumed throughout the world that have been
frequently implicated in foodborne outbreaks. Predictive microbiology models are relevant tools to
estimate microbial behavior in these products. The objective of this study was to conduct a review on
the available modeling approaches developed in cheeses, and to identify the main microbial targets of
concern and the factors affecting microbial behavior in these products. Listeria monocytogenes has been
identified as the main hazard evaluated in modelling studies. The pH, aw, lactic acid concentration
and temperature have been the main factors contemplated as independent variables in models.
Other aspects such as the use of raw or pasteurized milk, starter cultures, and factors inherent to the
contaminating pathogen have also been evaluated. In general, depending on the production process,
storage conditions, and physicochemical characteristics, microorganisms can grow or die-off in
cheeses. The classical two-step modeling has been the most common approach performed to develop
predictive models. Other modeling approaches, including microbial interaction, growth boundary,
response surface methodology, and neural networks, have also been performed. Validated models
have been integrated into user-friendly software tools to be used to obtain estimates of microbial
behavior in a quick and easy manner. Future studies should investigate the fate of other target
bacterial pathogens, such as spore-forming bacteria, and the dynamic character of the production
process of cheeses, among other aspects. The information compiled in this study helps to deepen the
knowledge on the predictive microbiology field in the context of cheese production and storage.

Keywords: fermented foods; food safety; predictive mathematical modeling; foodborne pathogens;
dairy products; outbreaks

1. Introduction

Cheeses are milk-based foods widely produced and consumed throughout the world [1].
The large acceptability of cheeses by consumers can be attributed to their pleasant sensorial
characteristics, good nutritional properties, versatility and by the advent of innovative
products with novel ingredients, packaging, and sale formats [1,2]. The organoleptic char-
acteristics of a specific type of cheese, including texture, aroma, and flavor, are dependent
on their constituent compounds and molecules, e.g., volatile compounds, free amino acids,
phenols, etc., which in turn are influenced by the milk origin, the endogenous microbiota
of milk, starter cultures used for its elaboration, the microbial populations present in
production environments, and technological aspects of the production processes [1].

During cheese-making, coagulation of milk proteins takes place by means of the
addition of rennet or other coagulating agents, resulting in curd formation, which is
followed by whey draining [3]. Cheeses are classified according to firmness, from “soft” to
“extra hard”, and according to principal ripening from “ripened” to “in brine” [3]. Ripened
cheeses are held under controlled conditions for varying periods of time, to develop their
biochemical, physicochemical, and organoleptic characteristics [3,4]. Moreover, processed
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cheeses are products that result from cheese heating and blending with melting salts and
other dairy and non-dairy ingredients [5,6].

The transmission of bacterial pathogens during cheese-making, ripening, and storage
can be attributed to direct contamination or cross-contamination events during processing,
in retail and domestic environments [7–9]. While raw milk is considered the primary source
of contamination of cheeses [10], the ability of pathogens to form biofilms and persist on
food contact surfaces has been related to cross-contamination during production [9,11].
The hands of workers and cheese-contact surfaces have been identified as vehicles for
Staphylococcus aureus in processing plants [12,13]. Hotspot contaminations have previously
been observed at the interface between reception of raw materials and industrial processing
areas, while for some pathogens such as Listeria monocytogenes, contamination could also
be disseminated in the entire processing plant, including floor drains [14,15]. Moreover,
unsafe handling and inadequate storage practices in domestic environments have been
shown to contribute to cheese contamination and to favor microbial growth or persistence,
increasing the risk of illness associated with cheese consumption [9].

The relatively low pH, due to the presence of organic acids (mainly lactic, acetic,
butyric, or sorbic acid), and the low moisture content of some types of cheeses reduce
the growth and survival capacity of pathogenic bacteria during shelf-life [16,17]. Low
refrigeration temperatures, elaboration with pasteurized milk, and the use of bio-protective
cultures represent additional hurdles to avoid microbial proliferation and persistence in
these products [16,17]. Despite that, in recent decades cheeses have been linked to many
outbreaks of illnesses in Europe and elsewhere in the world [9,18]. Soft cheeses elaborated
with raw milk have been the most common vehicle of foodborne pathogens, although
pasteurized-milk cheeses have also been carriers of the causing agents in outbreaks [19–21].
In European countries, cheese production and sale are subjected to Regulation (EC) No.
2073/2005 and microbiological criteria vary according to the microorganism of concern [22].
To support the compliance with current microbiological criteria, it is crucial to evaluate and
understand the influence of extrinsic and intrinsic factors that affect microbial behavior in
these ready-to-eat (RTE) foods.

Predictive models are mathematical equations to quantitatively describe microbial
responses in foods [23]. The use of challenge testing and predictive microbiology models
have been recognized as relevant tools for food operators to verify if microbial levels in
cheeses might exceed the established microbiological criteria and to evaluate the impact of
control measures and the consequences of cross-contamination events during production,
distribution, and shelf-life [8,24]. In this sense, these models may assist in the development
of Hazard Analysis and Critical Control Points (HACCP) plans, in the improvement of
Food Safety Objectives, and in Quantitative Microbial Risk Assessments (QMRA) [25,26].
To date, predictive models have been applied to describe the fate of various pathogenic
bacteria such as L. monocytogenes [27–29], non-enterohemorrhagic Escherichia coli [30], and
S. aureus [31,32] in QMRAs concerning the consumption of cheese.

The aim of this review, therefore, was to gather information on the mathematical
predictive models that have been developed in the context of cheese production and
storage. An overview of the most important factors governing microbial behavior in
cheeses that have been considered in modeling studies is also provided. Finally, this review
also provides information on the main bacterial pathogens of concern in cheeses considered
for the performance of fate studies.

2. Target Bacterial Pathogens in Fate Studies

It is well known that many cheese types have physicochemical characteristics and
shelf-life duration compatible with the growth or survival of pathogenic bacteria [33,34].
Moreover, there is abundant information in the scientific literature dealing with challenge
test or fate studies of pathogens in different cheese-making, ripening, or storage condi-
tions [35,36]. Selection of target microbial pathogens for fate studies may be based on their
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representativeness in the food matrix under evaluation and their potential to produce a
public health risk after being ingested.

As L. monocytogenes is ubiquitous and psychrotrophic, the production of cheeses free
of this pathogen is a challenge for producers [28,37]. As a result, most outbreaks linked to
the consumption of cheeses have been caused by L. monocytogenes [38–41]. The European
Regulation (EC) No. 2073/2005 establishes a tolerance of a maximum of 100 cfu/g of
L. monocytogenes in RTE foods, including cheese, if food operators can demonstrate that
these products do not allow growth of the pathogen during shelf-life [22]. Otherwise, the
absence of L. monocytogenes in 25 g of product is required. This regulation also mentions
that products with pH ≤ 4.4 or aw ≤ 0.92 and with pH ≤ 5.0 and aw ≤ 0.94 are considered
unable to support L. monocytogenes growth [22].

Many salmonellosis outbreaks linked to the consumption of cheeses have been re-
ported worldwide in recent years [42–47], which evidences that Salmonella is also a pathogen
of concern in these food matrices. According to European Regulation No. 2073/2005, the
current criterion for Salmonella spp. in cheeses is “absence (non-detection) of the pathogen
in 25 g of product” (n = 5, c = 0) for products placed on the market during their shelf-life [22].

S. aureus is one of the main pathogens found in cheeses produced with raw milk and
is a common cause of bovine mastitis, being detected in bulk tank milk at high prevalence
rates [48,49]. Since enterotoxin-producing S. aureus exhibits a high osmotolerance, it can
grow or survive in cheeses with aw levels as low as 0.86 [50]. Pasteurization inactivates
S. aureus in milk, but not their previously synthesized enterotoxins, which can remain
in cheeses and cause food poisoning when ingested at low doses [51,52]. Production of
toxins has been reported when the microorganism is present in foods at approximately 105

cfu/g or higher numbers [53,54]. Current regulations in the European Union (EU) establish
different criteria concerning the presence of coagulase-positive staphylococci during the
manufacturing process according to the cheese type and depending on whether the milk is
submitted to heat-treatments prior to cheese elaboration [22]. Overall, if concentrations of
coagulase-positive staphylococci detected in samples are higher than 105 cfu/g, the batches
might be tested for staphylococcal enterotoxins, which may not be detected in 25-g cheese
samples during the product’s shelf-life [22].

Enterohemorrhagic E. coli can cause disease at levels lower than 10 cfu/g and are able
to grow at the relatively low pH (4.0–4.5) characteristic of some fermented foods [55,56].
Various outbreaks associated with the consumption of raw-milk cheeses caused by Shiga
toxin-producing E. coli (STEC) have been documented worldwide in the last decade [57–60].
The E. coli O157:H7 strain implicated in one outbreak, related to the consumption of Gouda
cheese in Canada in 2013, was isolated in one core sample obtained from an intact cheese
wheel 83 days after the beginning of production [58]. This outbreak has called into question
the efficacy of ripening for more than 60 days as an alternative to pasteurization to preclude
the presence of pathogenic bacteria in cheeses elaborated with raw milk. Moreover, cheese
was the most reported incriminated food in outbreaks of strong evidence caused by STEC
in the EU in 2018 [61].

Due to the above-mentioned, L. monocytogenes, Salmonella spp., S. aureus, and STEC are
the main target foodborne pathogens evaluated in fate studies performed with cheeses. The
behavior of Yersinia enterocolitica has also been evaluated [62] and surveys have indicated
that this psychrotrophic pathogen can overcome the manufacturing process of cheeses and
be present in the final products [63]. Although less frequently associated with outbreaks,
Campylobacter [64] has also been implicated in cases of illness transmitted by cheeses and
the evaluation of its behavior in these food matrices would be worthwhile.

Bacillus spp. and Clostridium spp. are the main genera of spore-forming bacteria
found in processed cheeses [6]. Clostridium botulinum caused an outbreak associated with a
dessert made with mascarpone cheese [65]. Both vegetative cells and spores of Clostridium
sporogenes were more resistant than E. coli O157:H7, Salmonella spp., L. innocua, and S. aureus
in a vacuum-packed canned pasteurized-milk cheese [66]. Hence, fate studies to evaluate
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the responses of spore-forming bacteria to different formulations, packaging and storage
conditions are crucial to increasing the stability and safety of cheeses.

3. Main Factors Governing Microbial Fate in Cheeses

Fate studies performed in cheeses have indicated that microbial behavior in these
matrices is directly or indirectly governed by many intrinsic, extrinsic, or implicit factors
during production and storage. In general, the most common factors evaluated as indepen-
dent/explanatory variables in modeling studies are the physicochemical characteristics
of cheeses, i.e., aw/NaCl and the pH, the undissociated lactic acid concentration and tem-
perature [24,26]. These factors and their interactions condition the microbial behavior of
microbial hazards in cheeses, which can grow or die-off during the production processes
and/or storage. In addition, other aspects, which interfere in the characteristics and safety
of cheeses, have been evaluated in modeling studies; these include the impact of the appli-
cation of raw or pasteurized milk for cheese-making, the addition of starter cultures for
cheese elaboration and factors inherent to the contaminating pathogen [8,67]. It is impor-
tant to highlight that most of the fate studies performed with cheese had focused on the
behavior of L. monocytogenes and, therefore, further research is needed to elucidate/confirm
the effects of factors on other foodborne pathogens.

3.1. Physicochemical Characteristics: aw and pH

Changes in physicochemical characteristics during the production processes of cheeses
play an important role on microbial behavior. The shift from pathogen growth to survival
may be observed if the aw and pH values are reduced to values lower than the minimum
requirements for pathogen growth. Thus, it is important to know beforehand the pH
and aw combinations that allow bacterial growth; these are reported in many studies and
guidelines [68].

When comparing different types of cheeses, the higher the aw the higher is the micro-
bial growth capacity. The growth potential of L. monocytogenes in soft and semi-soft cheeses
was noted to be substantially higher than in semi-hard cheeses, which present lower aw [34].
On the other hand, regarding a specific type of cheese, the decrease of aw during ripening
and/or storage reduces the microbial growth capacity. Wemmenhove et al. [69] indicated
that low aw, as presented after prolonged ripening times, led to the complete growth inhi-
bition of L. monocytogenes in Gouda cheese. In addition to ripening times, aw of cheeses is
dependent on the position within a cheese, i.e., core and rind. Smeared cheeses elaborated
with pasteurized milk showed a decrease in numbers of L. monocytogenes during ripening
which was more marked on the rind (minimum aw value = 0.79) than in the core (minimum
aw value = 0.815) [26]. In agreement, increased outgrowth of the pathogen was noted when
inoculation was performed in the core rather than in the rind of soft cheeses [34]. The
lowering of aw on the rind is attributed to the pronounced loss of moisture during ripening
of cheeses, which leads to the increase in salt concentration in this part of the cheese [26].

The pH of cheeses decreases with the production of lactic acid during fermentation
of lactose. L. monocytogenes showed a lag phase when inoculated in a young acidic cheese
(13 days of maturation), starting to grow at days 22–23 of ripening, once an increase in
pH values was noted. When inoculation was performed in more mature cheeses, with
higher pH, growth started immediately after inoculation [24]. With regard to pH evolution
over time, in smeared or mold-ripened cheeses, after a first decrease during cheese-making
and at the early stages of ripening, the pH rises to levels around neutral during ripening
as a result of the metabolism of lactate by the microbial mixture present in the smearing
solution and/or yeasts and molds, which results in the formation of alkaline metabolites,
such as ammonia [24,69–71]. Ferrier et al. [71] also observed that the pH of a smeared soft
cheese increases from the core to the rind, which indicates more intense deacidification
activity in the rind compared to the core. Overall, these findings indicate that the lower the
pH, the lower the growth/survival potential of pathogenic bacteria in cheeses [24], either
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due to the direct effect of acidity on microbial cells or due to the increase in the degree of
dissociation of organic acids [69].

3.2. Lactic Acid

Lactic acid is produced due to lactose fermentation by the endogenous microbiota
of milk or the starter cultures added during cheese formulation. Lactic acid is active
against microorganisms in its undissociated form. The concentration of undissociated lactic
acid in cheeses increases with the increase in total lactic acid content and is negatively
correlated with pH. In addition, it decreases during the ripening process, due to lactate
metabolization [71]. In addition to lowering the pH, undissociated lactic acid permeabilizes
the membranes of bacteria and potentiates the effects of other antimicrobial substances [72].

L. monocytogenes presented lower growth capacity at higher undissociated lactic acid
concentrations in cheeses [24,26,73]. Undissociated lactic acid was reported to be the
main factor inhibiting growth of L. monocytogenes in Gouda cheese, besides pH, aw and
temperature [69]. These authors observed that if the concentration of undissociated lactic
acid is insufficient to ensure complete growth inhibition, the other mentioned growth-
inhibiting factors become more important [69]. Thus, findings of previous investigations
have indicated that when evaluating the behavior of microbial pathogens in cheeses for the
development of predictive models and/or to define their growth-no growth boundaries,
undissociated lactic acid must be included as a factor, in addition to temperature, aw,
and pH.

3.3. Storage Temperature

Among the environmental conditions affecting microbial behavior during storage,
temperature is the most widely investigated [74,75]. It has been demonstrated that when
the physicochemical characteristics of cheeses allow pathogen growth, growth rates are
higher at higher storage temperatures [8,24,76].

Growth rates of L. monocytogenes on a sliced vacuum-packed Hispanic-style fresh
cheese were higher during storage at 10 ◦C than at 4 ◦C for 35 d [76]. In addition, L. monocy-
togenes showed higher growth potential in different types of cheeses stored at 14 ◦C than at
7 ◦C [34]. The information derived from fate studies indicates that when the physicochemi-
cal characteristics of a cheese allow pathogen growth, proper storage temperature alone is
not sufficient to inhibit growth [77,78]. Therefore, further studies are needed to develop
and optimize formulations, biopreservation strategies, or to evaluate interventions, such as
high hydrostatic pressure processing application to better control the growth of pathogens
in these products [16].

On the other hand, when products do not allow pathogen growth, reductions during
cheese storage have been shown to be temperature-dependent, with bacterial cells surviving
for a longer period at lower temperatures [79–81]. For instance, the time needed for a
3-log reduction of L. monocytogenes was nearly 8.7 days at 12 ◦C and 5.5 days at 17 ◦C [79].
Furthermore, L. monocytogenes inactivation rates in a processed cheese increased with the
increase of storage temperature from 4 to 22 ◦C [82]. This issue is attributed to the fact that
in low-pH environments like some types of cheeses, the metabolism of bacterial cells is
very intense to overcome the acidic stress and maintain the vital processes, which results
in the exhaustion of their energy resources. The consumption of resources is accelerated at
temperatures which are closer to the optimum temperatures for growth. Since cells are not
so active at low temperatures, the exhaustion of energy resources is delayed and cells can
survive for longer periods [79,83].

From the microbiological safety point of view, if cheeses’ physicochemical characteris-
tics do not allow the growth of pathogenic microorganisms, it would be more appropriate
to store them at ambient temperatures than at refrigeration temperatures, since at ambient
temperatures inactivation rates would be higher [84]. On the other hand, those cheeses
allowing microbial growth may be stored at lower temperatures.
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3.4. Raw Milk vs. Pasteurized Milk

Raw-milk cheeses have been the most common vehicle of foodborne illnesses in
comparison with pasteurized-milk cheeses [1], and this has motivated the performance of
many fate studies to evaluate or/and compare microbial behavior in products elaborated
with non-heated and heated milk. Microbial growth or survival rates estimated in cheeses
have been shown to be dependent on whether milk is submitted to heat treatments prior
to production. It is worth mentioning that in these studies, the pathogen is artificially
inoculated in raw or pasteurized milk to evaluate its behavior during cheese-making and
storage, simulating insufficient heat treatments of milk or cross-contamination events in
processing environments.

Pasteurized milk favored the growth of L. monocytogenes when compared with raw
milk during cheese-making of a smeared cheese, with an increase of pathogen levels
of 2.02 log-units in the former while no increase was observed in the latter [26]. Semi-
hard Minas cheese produced with pasteurized milk was found to favor the growth of L.
monocytogenes when compared with raw-milk cheese during non-starter assisted cheese-
making and ripening [67]. The same L. monocytogenes behavior was observed in soft Minas
cheese elaborated without starter cultures during cheese-making followed by 15 days
of storage [35]. This was also demonstrated by Tiwari et al. [8] who found out that L.
monocytogenes grew at a slower rate on a semi-soft raw-milk cheese (0.05–0.37 d−1) when
compared with pasteurized cheese milk (0.18–0.85 d−1) over 28 days of storage.

When a reduction on pathogen levels rather than growth was noted on cheeses, it was
reported that inactivation rates were higher in raw-milk cheeses than in pasteurized cheeses.
For instance, Campagnollo et al. [67] found out that shorter times were required to attain
4 log-reductions of L. monocytogenes in semi-hard Minas cheeses containing added Lactic
Acid Bacteria (LAB) produced with raw-milk, i.e., 15 days, compared with pasteurized-
milk cheese, i.e., 21 days. It was also shown, L. monocytogenes inactivation was faster in
raw milk (−0.0260 h−1) than in pasteurized (−0.0182 h−1) semi-hard Minas cheese during
ripening [85].

The above-mentioned comparisons concern fate studies in which the only difference
between the elaboration process is the use of raw or pasteurized milk. The differences
in growth or survival potential noted in these fate studies may be partially explained by
bacterial competition between the evaluated pathogen and the background microbiota of
cheeses. Due to the elimination of the background microbiota during milk pasteurization,
bacterial competition is expected to be higher in raw-milk cheeses, which can explain
the lower growth rates or higher inactivation rates of microbial pathogens in raw-milk
cheeses [34]. In addition, the lactoperoxidase enzyme present in raw milk, which can exert
bacteriostatic activity against many pathogenic bacteria, is denatured by heat treatments
and therefore is not active in pasteurized cheeses [8,86].

3.5. Starter Cultures and Their Bacteriocins

Starter cultures composed of LAB strains have been frequently used in the manufac-
ture of cheeses, as they contribute to the development of the organoleptic properties of
these products [87]. Campagnollo et al. [67] isolated LAB strains from samples of artisanal
Minas cheeses and after confirming their anti-listerial capacity in vitro at 7 and 37 ◦C,
strains were selected for further cheese production. A pool of six strains of LAB was used
at a concentration of 106–107 cfu/mL of milk. L. monocytogenes exhibited lower growth
potential in raw and pasteurized soft Minas cheeses in the presence of LAB. In raw or
pasteurized semi-hard cheeses, L. monocytogenes could grow in the absence of LAB while a
survival pattern was noted in the presence of LAB, yielding more than 4-log reductions of
the pathogen [67]. The anti-listerial effects of LAB strains were further investigated and
confirmed in Minas fresh [35] and semi-hard [85] cheeses.

Isolation of LAB strains with antimicrobial activity against pathogens is common,
as demonstrated for S. aureus in milk [88], L. monocytogenes [89,90], Bacillus cereus, and
Clostridium perfringens [91] in cheeses. In general, the presence of LAB accelerates pH
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decline in cheeses during fermentation, which negatively affects the growth potential of
microbial pathogens. The mechanisms by which LAB suppress the growth of microbial
pathogens vary among strains but have been associated with competition for nutrients
and production of antimicrobial compounds, including bacteriocins [67,92]. The extent of
competition and production of bacteriocins by LAB have been shown to be influenced by a
series of factors, which include temperature and pH [92].

The antimicrobial effects of adding purified LAB-bacteriocins, mainly nisin, against
Gram-negative and Gram-positive bacteria in cheeses have been extensively reported [93–95].
The mechanisms of action of bacteriocins include the increase in permeability of the mem-
branes of microbial cells, weakening of cell walls, collapse of proton motive force, which
lead to the leakage of intracellular substances and result in bacterial inactivation [92,93].
Increasing nisin residual concentrations from 0.56 to 5.28 ppm extended L. monocytogenes
lag times in processed cheeses, at temperatures lower than 15 ◦C [96]. The antimicrobial
efficacy of nisin has been shown to be higher at higher pH values and at lower tempera-
tures [95,96]. Moreover, increasing nisin concentrations from 0 to 240 ppm, reduced the
potassium sorbate and sodium chloride (NaCl) concentrations required to achieve the
same probability of growth of C. sporogenes in a processed cheese analogue [97]. Hence,
the use of bacteriocins such as nisin could contribute to the development of low-salt and
healthier formulations of cheeses and to the optimization of processing conditions without
compromising the microbiological safety of these RTE foods.

3.6. Factors Inherent to the Target Pathogen

The stress responses of bacterial cells when exposed to the acid conditions encountered
in cheeses, including production of stress-related proteins, may be an issue during pro-
duction and storage. Microbial stress responses can lead to adaptation or cross-protection
mechanisms, which can increase the survival/growth capacity of cells or enable the recov-
ery of injured cells back to their healthy status [79]. Although no differences between the
survival rates of non-acid and acid-adapted cells were revealed when accessing the survival
of L. monocytogenes in a traditional Greek cheese in the study by Mataragas et al. [79], higher
survival capacity of acid-adapted L. monocytogenes and E. coli O157:H7 compared with
non-acid adapted strains was observed on fresh cheeses [98].

Overall, the physiological state of cells may determine that some different strains of
the same microorganism exhibit better growth/survival capacity than others during cheese
production and shelf-life [24]. Survival and growth of L. monocytogenes was reported to be
strain-dependent in Katiki, a traditional Greek soft cheese [99]. In support of this finding,
other authors also found significant variation in the growth and inactivation rates of
different strains of L. monocytogenes in cheeses [24,36]. These differences are relevant when
selecting strains for challenge tests and risk assessments. For instance, the L. monocytogenes
strain Scott A is frequently selected for use in challenge tests together with other strains as it
has shown to be resistant and able to survive for prolonged periods of time in contaminated
dairy products [80–82,100]. To account for this inter-strain variability that can occur in
contaminated milk and cheese processing environments, the application of a cocktail
composed of different strains is recommended when performing challenge tests and has
been reported in many studies [36,81,100].

3.7. Organic Acids and Salts

The effects of organic acids rather than lactic acid have been evaluated as independent
variables in modeling studies [101]. Inactivation of L. monocytogenes increases by increasing
the sorbic acid concentration from 0 to 1000 ppm in the water phase in Cottage cheese [73].
Increasing concentrations of acetic (568–3483 ppm) and citric (518–38,282 ppm) acids have
also been shown to reduce the growth potential of the pathogen on processed cheese [5,96].
The mechanisms of growth suppression by these acids seem to be similar to those of lactic
acid. Nevertheless, not much information is published on the antimicrobial effects of such
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acids in cheese matrices and, therefore more studies are needed to elucidate their joint
action with other physicochemical and environmental factors.

Melting salts, including phosphates, are well known to contribute to the microbiolog-
ical safety of spreadable processed cheese [5,102]. By increasing the pH of a spreadable
cheese to values higher than 5.7 and the moisture content to values higher than 54%, it
was necessary to increase both NaCl and/or phosphates concentrations to avoid C. bo-
tulinum toxin production [102]. This study highlights the important role of salts against
spore-forming bacteria. Moreover, the increase of phosphates salt concentrations reduced
the growth of L. monocytogenes in a spreadable processed cheese [5,96]. The presence of
salts reduces the aw of cheeses, which, therefore, may not be considered as an isolated
entity. In general, the higher the concentration of salts, the higher the microbiological safety
of cheeses.

4. Models of Microbial Behavior during Cheese Production and Storage

Many models of microbial behavior in cheeses during the production process (cheese-
making and ripening) and storage have been developed. Depending on the target mi-
croorganism requirements for growth, the characteristics of the cheeses and environmental
conditions, either a growth or a survival pattern of microbial levels have been noted. In
other cases, the objective of the study was to define the microbial interface of growth-no
growth in the so-called growth boundary models. Primary models have been used to
estimate changes in pathogen levels over time and are based on the actual observed kinetic
data, while secondary models are used to quantify the effect of extrinsic or intrinsic fac-
tors of the foods on pathogen survival, i.e., inactivation/survival rates, or growth kinetic
parameters, i.e., lag times and growth rates [23]. Primary and secondary models can be
coupled, which is defined in this study as tertiary modeling, so it is possible to estimate
changes in bacterial concentration along with cheese production and storage as a function
of environmental and intrinsic factors [26].

Although fitting a primary model followed by fitting a secondary model using the pa-
rameters estimated through primary modeling, i.e., two-step modeling approach, has been
extensively applied in the context of cheese production and storage, different approaches
have also been performed and will be discussed in the following sections. A comparison
between the one-step procedure with the classical two-step procedure was performed by
Martinez-Rios et al. [96]. In the one-step procedure the parameters of both primary and
secondary models are estimated through one global regression. Most of the fate studies
for model development has been performed in cheeses elaborated with cow’s milk, except
for some investigations where ewes [84], goat [103], or both ewes and goat [79,81] milk
cheeses were evaluated.

4.1. Growth Models

Microbial growth models developed in cheese are depicted in Table 1. The Baranyi and
logistic primary models have been the most applied to fit microbial growth data over time
observed during the production process of cheeses [26,67,70,104]. These models together
with the Gompertz model have been also used to describe growth kinetics during storage
of cheeses at constant temperatures (Table 1).
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Table 1. Microbial primary and secondary growth models developed in cheese.

Microorganism Type According to
Moisture (Cheese Name) Description Step Modeled 1 Primary Model 2 Secondary Model

(Parameter Modeled)
Independent Variables

(Ranges When Reported) Reference

Escherichia coli

Soft ad spreadable
(Mascarpone)

Non-ripened elaborated
with pasteurized milk Storage Gompertz Polynomial (Growth

rate)
Time (9–21 days),

temperature (3–15 ◦C) Kowalik et al. [74]

Soft (Brie) Ripened elaborated with
pasteurized milk Storage Baranyi Ratkowsky (Growth

rate) and linear (Lag)
Time (13 days),

temperature (4–30 ◦C)

Kim et al. [33]
Soft (Camembert) Ripened elaborated with

pasteurized milk Storage Baranyi Ratkowsky (Growth
rate) and linear (Lag)

Time (13 days),
temperature (4–30 ◦C)

Processed (Mozzarella) Non-ripened elaborated
with pasteurized milk Storage Baranyi Ratkowsky (Growth

rate) and linear (Lag)
Time (13 days),

temperature (4–30 ◦C)

Processed (Cheddar) Non-ripened elaborated
with pasteurized milk Storage Baranyi Ratkowsky (Growth

rate) and linear (Lag)
Time (13 days),

temperature (4–30 ◦C)

Listeria
monocytogenes

Soft (Camembert) Ripened elaborated with
pasteurized milk Storage Baranyi Polynomial (Growth

rate)
Time

temperature (3–15 ◦C)
Lobacz et al. [105]

Soft (Blue) Ripened elaborated with
pasteurized milk Storage Baranyi Polynomial (Growth

rate)
Time

temperature (3–15 ◦C)

Soft (Minas)

Ripened elaborated with
raw/pasteurized milk,

formulated with/without
starter cultures

Storage Baranyi ND 3 Time (15 days) at 7 ◦C

Campagnollo et al. [67]

Soft (Minas)

Ripened elaborated with
raw/pasteurized milk,

formulated without starter
cultures

Production Baranyi ND Time (22 days) at 22 ◦C

Semi-soft Ripened elaborated with
raw/pasteurized milk Storage Baranyi ND Time (0–28 days),

temperature (4–15 ◦C) Tiwari et al. [8]

Processed and spreadable Non-ripened elaborated
with pasteurized milk Storage Logistic Cardinal (Growth rate)

Time, temperature (3.8–22 ◦C), pH
(6.1–6.6), aw (0.952–0.975), lactic acid

(6371–15,328 ppm), acetic acid
(568–3483 ppm), citric acid

(518–38,282 ppm), orthophosphate
(0.14–4.98%), di-phosphate

(<0.01–5.09%) and tri-phosphate
(<0.01–5.17%), nisin (0.56–5.28 ppm)

Martínez-Ríos et al.
[5,96]

Soft and smeared Ripened elaborated with
raw and pasteurized milk Production Logistic Cardinal (Growth rate) Time, temperature, pH, aw,

lactic acid Schvartzman et al. [26]

Soft or semi-soft and
smeared

Ripened elaborated with
raw milk Production Logistic Cardinal (Growth rate) Time (30 days) Schvartzman et al. [70]
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Table 1. Cont.

Microorganism Type According to
Moisture (Cheese Name) Description Step Modeled 1 Primary Model 2 Secondary Model

(Parameter Modeled)
Independent Variables

(Ranges When Reported) Reference

Soft (Fresco) Non-ripened elaborated
with pasteurized milk Storage Gompertz ND Time at different constant

temperatures (4 and 10 ◦C) Leggett et al. [76]

Soft blue white Ripened elaborated with
pasteurized milk Storage Logistic Cardinal (Growth rate) Time, temperature, pH, NaCl,

undissociated lactic acid Rosshaug et al. [24]

Soft and smeared
(Munster)

Ripened elaborated with
pasteurized milk Storage Baranyi Cardinal (Growth rate) Time, temperature, pH, aw Ferrier et al. [71]

Soft (Fresco) Non-ripened elaborated
with pasteurized milk Storage Baranyi

Ratkowsky (Growth
rate) and hyperbolic

function (Lag)

Time (20 days),
temperature (4–30 ◦C) Thomas et al., [77]

Soft (Fresco) Non-ripened elaborated
with pasteurized milk Storage Baranyi

Ratkowsky (Growth
rate) and exponential

(Lag)

Time (43 days),
temperature (5–25 ◦C) Uhlich et al. [78]

Semi-hard (Coalho) Ripened elaborated with
pasteurized milk Storage Baranyi ND Time (14 days) at different

temperatures (7.5 and 12 ◦C) Araújo et al. [106]

Soft (Minas)

Non-ripened elaborated
with raw/pasteurized milk,
formulated with/without

starter cultures

Storage Huang Cardinal (Growth rate) Time (15 days) at 7 ◦C,
pH Cadavez et al. [35]

Soft (Minas)

Ripened elaborated with
raw/pasteurized milk,

formulated without starter
cultures

Production Huang Cardinal (Growth rate) Time (22 days) at 22 ◦C,
pH

Gonzales-Barron et al.
[85]

Soft blue-veined
(Gorgonzola)

Ripened elaborated with
pasteurized milk Storage Baranyi ND Time (100 days) at 8 ◦C Dalzini et al. [107]

Soft (Cottage) Non-ripened elaborated
with pasteurized milk Storage Logistic Cardinal (Growth rate)

Time, temperature (5–15 ◦C), pH
(5.0–5.5), water phase salt (0–2%),
lactic acid (0–2500 ppm in water

phase), sorbic acid (0–1000 ppm in
water phase)

Østergaard et al. [73]

Soft and smeared Ripened elaborated with
pasteurized milk Production Baranyi ND Time Guillier et al. [104]

Staphylococcus
aureus Semi-hard (Coalho) Ripened elaborated with

pasteurized milk Storage Baranyi ND Time (14 days) at different
temperatures (7.5 and 12 ◦C) Araújo et al. [106]

Yersinia
enterocolitica

Soft
(Camembert)

Ripened elaborated with
pasteurized milk Storage Baranyi Ratkowsky (Growth

rate and Lag)
Time,

temperature (3–15 ◦C) Kowalik & Lobacz [62]

1 Production refers to both cheese-making and/or ripening. 2 In studies where more than one primary and secondary models have been fitted to data, only the ones presenting better fit and/or performance were
reported in the table. 3 ND = Not developed.
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Regarding secondary models, some authors reported the presence of a lag phase on
growth curves during cheese storage and related lag times to storage temperatures by
means of the Ratkowsky [62], hyperbolic [77], exponential [78] and linear [33] models.
Moreover, to relate the growth rates with the most important factors governing microbial
behavior in cheeses, the cardinal secondary model [5,24,26,73], the Ratkowsky [33,62,77,78]
and polynomial models [74,105] have been used.

Several authors highlight that the application of secondary models belonging to the
“Cardinal model family” has a large advantage over the others, as they include cardinal
parameters with biological significance for the environmental factors considered, such as
the minimum, maximum and optimum values of temperature (Tmin, Tmax and Topt) for
growth, which personalizes the model to the specific microorganism under evaluation [70].
In these models, the maximum growth rate is expressed as a multiplicative effect between
the optimum growth rate (µopt) and the functions of the different physicochemical parame-
ters and environmental factors, i.e., gamma concept [108]. Furthermore, cardinal models
can account for the influence of many individual factors and their interactions, which is an
advantage considering that many factors can simultaneously influence microbial behavior
in such complex matrices. Finally, these models can be easily extended to account for the
effect of other factors on microbial growth [5,96].

4.2. Survival Models

Information on the microbial survival models developed in cheese is presented in
Table 2. Regarding survival kinetics, some authors have found that the drop in pathogen
concentrations followed a period in which pathogen populations remained relatively
unchanged, i.e., shoulder effect [80,81]. Once population levels begin to drop, survival
kinetics in cheeses generally consists of two phases [79,81]. At first, a fraction of the
population is rapidly inactivated and afterwards a slowing down in inactivation, which
is known as the tailing effect, is noted. These non-linear survival behaviors have been
described by the Geeraerd [79], Gompertz [81], and Weibull [75,80,82,84,109] primary
models. The shoulder effect describes the existence of a lag period prior to inactivation
representing the initial resistance of microorganisms. The tailing effect has been associated
with the development of defensive mechanisms by bacterial cells to survive in harsh
environment conditions, e.g., acid stress response during cheese ripening and storage, or
to changes in processing parameters such as ripening temperatures and relative humidity
which also influences survival rates [79,81]. Another hypothesis to explain differences in
survival rates is the heterogeneity within the inoculated bacterial population in terms of
resistance [79,81] or the existence of interaction phenomena with the cheese microbiota
during fermentation and ripening.

Finally, the Arrhenius [75,82,84] and polynomial [79,81] models have been the most
common secondary models used to relate survival kinetic parameters with cheese stor-
age temperatures (Table 2). While the Arrhenius equation was developed for physical
chemistry applications, considering the rate of chemical reactions and energy of activation,
polynomial models are purely statistical. In this study we encourage the development of
more mechanistic models to describe survival/inactivation rates in cheeses as a function of
environmental factors, such as the one published by Coroller et al. [110], which extended
the gamma concept to study the non-thermal inactivation of Salmonella in dried sausages.
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Table 2. Microbial primary and secondary survival models developed in cheese.

Microorganism Type According to
Moisture (Cheese Name) Description Step Modeled 1 Primary Model 2 Secondary Model Independent Variables

(Ranges When Reported) Reference

Listeria
monocytogenes

Semi-hard (Minas) Ripened elaborated with raw milk
with/without starter cultures Production Log-linear ND 3 Time (22 days) at 22 ◦C Campagnollo et al.

[67]

Processed Processed cheese derived from a hard
cheese Storage Weibull ND Time at different

temperatures (4–22 ◦C) Angelidis et al. [80]

Processed Processed cheese derived from a hard
cheese Storage Weibull Arrhenius Time,

temperature (4–22 ◦C) Angelidis et al. [82]

Soft and spreadable
(Katiki)

Non-ripened elaborated with pasteurized
milk with the starter cultures Storage Geeraerd Polynomial Time, temperature (5–20 ◦C) Mataragas et al. [79]

Soft and spreadable
(Katiki)

Non-ripened elaborated with pasteurized
milk with the addition of starter cultures Storage Gompertz Polynomial Time (40 days), temperature

(5–20 ◦C) Panagou [81]

Not specified Non-ripened elaborated with pasteurized
milk with the addition of starter cultures Storage Log-linear ND Time (15 days) at 4 ◦C Sibanda & Buys [109]

Not specified
Non-ripened grated cheese elaborated

with pasteurized milk without the
addition of starter cultures

Storage Log-linear ND Time (120 days) at different
temperatures (4 and 12 ◦C) Valero et al. [36]

Semi-hard Ripened elaborated with raw milk with the
addition of starter cultures Storage Weibull Arrhenius and

log-linear
Time (120 days),

temperature (4–22 ◦C) Valero et al. [84]

Soft (Feta) Ripened elaborated with pasteurized milk
with the addition of starter cultures Production Log-linear ND Time (90 days) at 4 ◦C Erkmen [111]

Semi-hard (Minas) Ripened elaborated with raw milk with
and without the addition of starter cultures Production Log-linear ND Time (22 days) at 22 ◦C, pH Gonzales-Barron et al.

[85]

Salmonella spp.
Hard Ripened elaborated with raw milk with the

addition of starter cultures Storage Weibull Arrhenius Time (60 days), temperature
(5–25 ◦C) Lobacz et al. [75]

Soft (Crottin) Ripened elaborated with pasteurized milk
with the addition of starter cultures Storage Churchil ND Time (42 days) at different

temperatures (2–25 ◦C) Tamagnini et al. [103]

Yersinia
enterocolitica Soft (Crottin) Ripened elaborated with pasteurized milk

with the addition of starter cultures Storage Vitalistic ND Time (42 days) at different
temperatures (2–25 ◦C) Tamagnini et al. [103]

1 Production refers to both cheese-making and/or ripening. 2 In studies where more than one primary and secondary models have been fitted to data, only the ones presenting better fit and/or performance were
reported in the table. 3 ND = Not developed.
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4.3. Growth Boundary Models

The aim of applying growth boundary models is to define combinations of physico-
chemical characteristics or/and environmental conditions that produce growth or inactiva-
tion of target pathogens or enable toxin production in cheeses. Binary logistic regression
has been used to develop a model to estimate the probability of growth of L. monocytogenes
in a Mexican-style cheese as a function of pH (5.0–6.5), NaCl (2–8% w/w) and moisture
content (42–60%) which yields conservative predictions of pathogen behavior [100]. The
same approach was applied to model the effects of NaCl (0–3% w/w), potassium sorbate
(0–0.2% w/w), and nisin (0–240 ppm) in inhibiting the growth of C. sporogenes in a processed
cheese analogue [97]. Moreover, logistic regression was applied to study the effects of NaCl
(1.23–3.95%), sodium phosphate (1.31–3.35%), pH (5.4–6.2), and moisture (51–60%) on toxin
production by C. botulinum in processed cheese [102].

More recently, Martinez-Rios et al. [5] developed a growth cardinal model which
includes the parameter psi (ψ) that quantitatively indicates the distance between specific
environmental conditions and the growth boundary of L. monocytogenes in spreadable
processed cheese (Table 1). The ψ is estimated for a set of combinations of model variables.
Where ψ is estimated to be lower than 1, it means that product characteristics and storage
conditions place the pathogen on the growth side of the growth boundary, while on the
no-growth side, ψ values are higher than 1 [112]. The mentioned model was further
extended to include residual nisin as an explanatory variable of L. monocytogenes behavior
in processed cheese, together with other environmental factors [96] (Table 1). These models
aid in selecting product formulations and environmental conditions sufficiently distant
to the growth boundary of the target pathogen, to assure that it does not grow in the
evaluated cheese.

4.4. Microbial Interaction Models

Determination of pathogen growth or survival parameters in the presence of endoge-
nous or intentionally added starter cultures in cheeses and the development of models
considering their interactions are relevant to obtain more functional and realistic models.

Some effort was made to quantify and model the interaction of L. monocytogenes
and LAB during ripening of Minas semi-hard cheese [103] and during storage of Cottage
cheese [73] and Minas soft cheese [35]. In addition, Guillier et al. [104] investigated the
mechanism of interaction between L. monocytogenes and biofilm microbiota present in
wooden shelves used during the manufacture of a French smeared cheese. In general, in
these studies the authors applied the Jameson effect or the Lotka–Volterra competition
models or compared both approaches to depict the simultaneous growth of LAB and L.
monocytogenes. In its simplest form, the Jameson-effect model assumes that LAB and L.
monocytogenes inhibit each other to the same extent that they inhibit their own growth,
and that one microorganism stops growing when the other has reached its maximum
density [113]. To account for the growth inhibition caused by microbial competition, the
Jameson model can be modified, including parameters describing the maximum critical
concentration that a population should reach to inhibit the growth of the other popula-
tion [114]. The Lotka–Volterra model assumes that the competition for a common substrate
is described by two inhibition coefficients that must be estimated from the microbial growth
curves in co-culture [115]. However, given the complexity and dynamic behavior of cheese
microbiota, there is not much information on the development of validated microbial
interaction models in the literature, and this could thus be a topic of further research.

4.5. Other Modeling Structures

In addition to primary and secondary models fitted using the classical two-step proce-
dure or the one-step procedure, other modeling structures have been developed. Response
surface methodology (RSM) has been applied to describe the influence of time (28 days)
and temperature (4–15 ◦C) and their interaction on the L. monocytogenes population during
the storage of a semi-soft cheese elaborated with raw-and pasteurized-milk cheese [8].
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These authors found that both independent variables and their interaction exert a signif-
icant effect on L. monocytogenes population. In general, RSM allows to generate models
with experimental designs consisting of a reduced number of experiments compared with
factorial designs. Furthermore, the effects of the interactions between the independent
variables on microbial populations can also be evaluated. On the other hand, the great
disadvantage of RSM in the context of predictive microbiology is that the models derived
are purely empirical and statistical and, therefore, have no biological meaning.

The use of neural networks (NN) to model the survival of L. monocytogenes in Katiki
cheese during storage at temperatures from 5 to 20 ◦C has been investigated by Panagou, [81].
The developed model described L. monocytogenes survival equally well or slightly better
compared with the classical Gompertz, Weibull and Geeraerd primary models. Validation
at two temperatures within the model domain was performed successfully. NNs directly
explore the relationship between the input variables and the output through a learning
process until the network is trained on the presented data set. An NN does not restrict the
type of relationship between input and output which means that, in contrast to conven-
tional models, a mathematical equation must not be stated beforehand [81]. A potential
practical advantage of the NN approach is that fitting and validation can be performed at
the same time by the development of a single model. However, the extensive number of
parameters and complexity of such models make them not fully suitable to be applied in
all cases. Moreover, as with RSM, NN models do not include parameters with a biological
meaning.

4.6. Computational Tools

Predictive models developed with microbial data obtained in cheeses have been
implemented in software tools with user-friendly interfaces and can be used to obtain
predictions of pathogen behavior in a quick and easy manner. The available software
tools of foodborne pathogens on cheese matrices are represented in Table 3. Some of these
applications, including ComBase Premium and MicroHibro [116] can be freely accessed
online, while others can be downloaded and installed on users’ desktops such as Food
Spoilage and Safety Predictor (FSSP) and GroPIN (Table 3). The FSSP encompasses an
extensive validated model to predict the simultaneous growth of L. monocytogenes and LAB
in Cottage cheese based on their cardinal parameter values [73]. The commercial software
Dairy Products Safety Predictor can be used to perform simulations of an exposure or risk
assessment model developed in dairy products [117].

Table 3. Software tools integrating predictive models developed in cheese.

Software Microorganisms Cheese Type Response Model References Software Available in

Food Spoilage
and Safety

Predictor (FSSP)
L. monocytogenes Cottage cheese Growth Østergaard et al.

[73]

http://fssp.food.dtu.dk/
(accessed on 5 January

2021)

Dairy Product
Safety Predictor

L. monocytogenes,
Salmonella spp.,

S. aureus,
E. coli

Blue cheese, Cooked
pressed Cheese, Soft

cheese, Uncooked
pressed cheese

Growth -
www.aqr.maisondulait.fr

(accessed on 5 January
2021)

GroPIN Various Various Growth/Survival -
www.aua.gr/psomas/
gropin/ (accessed on 5

January 2021)

ComBase
Premium

E. coli,
L. monocytogenes

Camembert, Brie,
Mozzarella, Cheddar,

Semi-soft rind
washed

raw/pasteurized
milk

Growth

Kowalik et al. [74],
Kim et al. [33],

Uhlich et al. [78],
Tiwari et al. [8]

www.cbpremium.org
(accessed on 5 January

2021)

MicroHibro L. monocytogenes Grated cheese,
Semi-hard cheese Survival Valero et al. [84],

Valero et al. [36]

www.microhibro.com
(accessed on 5 January

2021)

http://fssp.food.dtu.dk/
www.aqr.maisondulait.fr
www.aua.gr/psomas/gropin/
www.aua.gr/psomas/gropin/
www.cbpremium.org
www.microhibro.com
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The models available or to be implemented in MicroHibro can be further used to build
QMRA models in the risk assessment module of the software. Other free web resources,
such as ComBase [118] and Microbial Responses Viewer [119], include records of microbial
responses in cheeses which can be applied in the development and validation of predictive
models and in QMRA. These applications and databases have been constantly updated
with the implementation of new peer-reviewed predictive models and data of microbial
behavior and are relevant tools for decision-making to be used by food business operators,
food safety researchers, or for didactic purposes.

4.7. General Considerations

The application of the predictive models available in software tools such as ComBase
Predictor and the Pathogen Modeling Program to predict the microbial behavior in cheeses
have often resulted in non-accurate estimates, with the overestimation of pathogen growth
rates [105,106,120]. Models available in these software were developed in liquid laboratory
media, which do not reflect the complex structure of cheeses [24,26]. Furthermore, the
protective effect exerted by the technological microbiota of cheeses which limits the growth
of pathogenic bacteria through competition and/or the production of bacteriocins has not
been considered when developing the culture media models that are available in these
software programs.

Realistic models must be able to handle the dynamic environment of the food matrix.
In other words, models must reflect changes in pH, moisture, undissociated lactic acid
concentration and other factors such as temperature that do not remain constant during
cheese production and storage and play a relevant role in pathogen behavior [24]. To date,
some predictive models have been generated under dynamic conditions in smeared-soft
cheese [24,26,71] and Cottage cheese [73], reflecting the dynamic character of cheese produc-
tion and storage. To enable a better understanding of the dynamics of the physicochemical
parameters, coupling microbial models with the so-called technological models which de-
scribe changes in physicochemical parameters or the production of a metabolite throughout
time might be a good strategy to obtain better-functioning and accurate predictive models.
Examples of these technological models are those that relate the lactic acid concentration
with its undissociated form [24,26,121], models that relate the aw with the moisture content
or weight loss [122] or models that relate the aw with the NaCl concentration in the water
phase salt [5].

Other investigations aimed at developing predictive growth models to be applied for
different cheese types [123,124]. Augustin et al. [124] developed models to estimate the
growth rates of L. monocytogenes in cheese based on growth data published in different
studies and derived from challenge tests performed in many different types of cheeses,
including Camembert, Brick, Brie, Cottage, and Queso Fresco. The variability in observed
growth rates was very high and may have contributed to the poor performance of the mod-
els with regards to its accuracy (accuracy factor of approximately 3.5). The heterogeneity
in pH, aw, lactic acid concentration and other unidentified abiotic or biotic factors such as
differences in competitive microbiota between cheeses may be associated with the high
variability in growth rates, although large variations in growth rates were also found in
identical cheeses [124]. Their findings highlight the big limitation of developing a general
predictive model for estimating the growth potential of a pathogen in different types of
cheeses, which are complex and diverse food matrices.

Although several models are available in scientific literature describing microbial
fate in cheeses, documentation on successfully validated models is limited. Martinez-
Rios et al. [25] validated two models [5,73] out of nine published models to predict the
growth of L. monocytogenes in mold/smear-ripened cheeses, with regards to the impact
of temperature, pH, NaCl/aw, and lactic and acetic acids on growth rates. In addition,
Centorotola et al. [125] validated a dynamic growth/death model originally designed to
predict L. monocytogenes kinetics in a fermented meat product in Pecorino di Farindola
cheese, elaborated with raw ewe’s milk. In both mentioned studies, the validated models
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could be used to evaluate the impact of storage conditions and cheese formulations on L.
monocytogenes behavior. The use of predictive models represents a cheaper alternative to
the performance of challenge tests [125]. However, it is essential to validate the models
available in literature for a specific cheese type prior to their use, with regards to the specific
characteristics and storage conditions of this product, due to the diversity and the variety
of factors that simultaneously affect microbial behavior in cheeses.

5. Limitations and Future Challenges

Most of the fate studies performed so far were focused on L. monocytogenes behavior,
which is undoubtedly the main hazard of concern in cheeses. However, more investiga-
tion on the fate of other foodborne pathogens such as Salmonella spp., S. aureus, STEC,
and spore-forming bacteria, e.g., Clostridium spp., would be of great interest for cheese
microbiological safety.

The high growth and survival capacity of foodborne pathogens on cheeses highlight
the need for the development and optimization of control measures to increase the microbi-
ological safety of these products, such as new biopreservation strategies and the application
of non-thermal technologies.

On the other hand, although there are some published protocols reported elsewhere,
a standardization of challenge testing experiments for microbial data generation should
be considered in further studies to obtain quality data to be used for the development of
predictive microbiology models.

Some effort might be made to develop predictive models capable of predicting both
growth and inactivation on cheeses, since a shift from pathogen growth to inactivation is
frequently observed due to changes in their physicochemical characteristics, production of
lactic acid, and environmental conditions, along with production and storage.

Since cheeses are heterogenous matrices, more knowledge is needed regarding the
effect of their physical structure on microbial behavior, especially regarding the biofilm
forming ability of foodborne pathogens during cheese ripening and storage.

The interaction between the background microbiota or/and starter cultures and
contaminating pathogens may be considered for model development in cheeses, together
with the effects of processing parameters and product formulations.

Finally, the dynamic character of the cheese production process may be considered
when developing predictive models, which would yield more realistic mathematical tools.
The development of stochastic models describing microbial behavior in foods, considering
the between- and within-batch variability in the physicochemical characteristics of cheeses
would also result in more realistic estimates.

6. Conclusions

The main bacterial pathogens of interest concerning the safety of cheeses are L. mono-
cytogenes, Salmonella spp., STEC, and S. aureus, besides spore-forming bacteria which have
shown great survival and growth capacity in processed cheeses. The behavior of L. mono-
cytogenes has been extensively evaluated in soft cheeses due to the occurrence of many
listeriosis cases linked to cheese consumption. Regarding the main factors affecting micro-
bial behavior in cheeses, pH, aw, undissociated lactic acid concentration, and temperature
have been the most common explored in modelling studies, in addition to other organic
acids and salts. Many modeling approaches have been developed to describe microbial
growth and survival kinetics in cheeses during production and storage. Growth boundary
models have also been developed to optimize cheese formulations and storage conditions.
Cardinal models have shown great advantages compared with other secondary models
applied to describe microbial growth rates in cheeses. The development of models with
consideration to the dynamic character of cheese-making and ripening and microbial in-
teractions between the technological microbiota of cheeses and contaminating pathogens
result in more realistic estimates of microbial behavior. This review provides information
that will assist food business operators and food safety researchers in the application of
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current available predictive models and in the design and optimization of cheese formula-
tions, production processes and storage conditions to increase the microbiological safety of
these RTE foods.
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