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Abstract: Background: For the nonstationarity of neural recordings in intracortical brain–machine
interfaces, daily retraining in a supervised manner is always required to maintain the performance
of the decoder. This problem can be improved by using a reinforcement learning (RL) based
self-recalibrating decoder. However, quickly exploring new knowledge while maintaining a
good performance remains a challenge in RL-based decoders. Methods: To solve this problem,
we proposed an attention-gated RL-based algorithm combining transfer learning, mini-batch,
and weight updating schemes to accelerate the weight updating and avoid over-fitting. The proposed
algorithm was tested on intracortical neural data recorded from two monkeys to decode their
reaching positions and grasping gestures. Results: The decoding results showed that our proposed
algorithm achieved an approximate 20% increase in classification accuracy compared to that obtained
by the non-retrained classifier and even achieved better classification accuracy than the daily
retraining classifier. Moreover, compared with a conventional RL method, our algorithm improved
the accuracy by approximately 10% and the online weight updating speed by approximately 70 times.
Conclusions: This paper proposed a self-recalibrating decoder which achieved a good and robust
decoding performance with fast weight updating and might facilitate its application in wearable
device and clinical practice.

Keywords: intracortical brain–machine interface; reinforcement learning; adaptive decoder;
transfer learning

1. Introduction

In intracortical brain–machine interfaces (iBMIs), neural electrodes are chronically implanted into
the cortex to record the neural activity, which is then translated into control commands on assistive
devices for helping amputees or paralyzed patients restore their motor functions [1,2]. With rapid
development over past decades [3–8], iBMIs have achieved significant improvements and can assist
paralyzed patients to control their artificial limbs while performing three-dimensional movements [6,9]
or tapping on a screen to communicate with others [8,10–12]. However, the decoder, which is an
important part of an iBMI, needs daily retraining in a supervised manner to maintain a robust decoding
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performance [13,14]. The decoder is referring to a general set of algorithms commonly used in
iBMI decoding.

Daily retraining of the decoder has to be implemented for the non-stationarity of the
neural recordings [15,16]. Owing to a micromotion or insulation degradation of the implanted
electrode, a biological foreign body response, and the physiological characteristics of the neurons,
neural recordings are non-stationary [17–19], which causes variation over time in the relationship
between the neural recordings and the specific movement intentions. Therefore, the decoder of the
iBMIs must be recalibrated before usage for proper application [20,21]. To avoid recalibration of the
decoder, a direct approach is to design a more powerful decoder that can handle the nonstationarity
of the neural recordings. With the development of deep learning [22,23], this approach can be
realized. Deep neural network has achieved good and very robust performance [19] but requires
large amounts of samples to train the model. An alternative to daily retraining is to employ an
adaptive neural decoder that can automatically update the parameters and track the dynamic neural
activity [21,24]. Some studies have implemented this method and have achieved good decoding
performance; however, most of them commonly employ supervised learning and train the decoder
by mapping the recorded neural activities to some kinematic outputs, such as the real movement
trajectory or the movement labels [25–27]. In clinical applications, the kinematic outputs may be
difficult to collect, particularly for paralysis or limb amputations [28–31]. To address this problem,
reinforcement learning (RL)-based iBMIs have been developed. RL is a machine learning method that
enables an agent to learn which action obtains the best reward in an interactive environment through
trial and error [32]. Different from supervised learning, RL used a scalar reward for positive behavior
after tasks [33]. In the RL based iBMIs, the user is the agent, and the iBMI system is the environment.
The RL-based iBMI allows iBMI users to modify their brain activities and learn from their interaction
with the environment [34]. Simultaneously, a reward signal, instead of limb kinematics, sent from the
environment is used to reinforce the decoder according to the accomplishment of the task without the
real movements of the patients. Therefore, an adaptive decoder based on RL may be a good option for
iBMIs in clinical applications.

Researchers have proposed some adaptive RL algorithms for iBMIs. DiGiovanna et al. [35] first
introduced a paradigm in which a rat brain controlled a robotic arm to discriminate between two targets.
A neural network was used to represent non-linear state-action mapping. A temporal difference error
was employed to update the Q value for each action. Sanchez et al. [36] proposed a novel RL-based
BMI (RLBMI) architecture and tested three rats in controlling a robotic arm in performing a two-target
choice task. They then used Hebbian reinforcement learning to design an adaptive controller for use
by marmosets, which achieved a good performance in controlling the reaching movements of a robot
arm [37]. They further tested the performance of the RLBMI in facing the dramatic perturbations of the
neural inputs and still achieved a robust performance [28]. Moreover, Sanchez et al. [38,39] proved
that the reward information in the autonomous RLBMI can be represented by the neural activities
from the nucleus accumbens, and Marsh et al. [40] further showed that the reward information can
also be represented by the neural activities from the primary motor cortex. The above studies are
mainly based on Q-learning, which tends to cause the curse of dimensionality and is inefficient in
exploring new knowledge. To increase the exploration efficiency of the RLBMI, Wang et al. [41]
introduced attention-gated reinforcement learning (AGREL) to decode more complicated actions and
achieved a better decoding performance than the Q-learning method [34]. These studies have achieved
good results, and AGREL showed significant potential in iBMIs applications. However, AGREL is
sensitive to initialization and has to re-initialize numerous times to avoid becoming stuck in a poor
performance, which affects the real-time capabilities and prohibits it from meeting the requirements of
online decoding. Moreover, disparities between historical and new data caused by nonstationarity
enlarge the state-action space and bring about more challenges to the exploration efficiency [29,30].

Motivated by the above problems, in this study, transfer learning (TL) is introduced and integrated
with RLBMI. TL can extract knowledge from the source tasks for application to a target task [42].
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Therefore, knowledge extracted from the historical data can be used to prime the RL decoder with
current data [15]. The learning task for RLBMI is then easier, and the efficiency can be improved.
To our best knowledge, this is the first time that TL is introduced to the RLBMI. This may be due to
the fact that the RLBMI is applied in the online decoding situation, therefore, no target domain data
and labels can be used, which makes it difficult to implement the conventional TL method. The TL
method used in this study extracts the projected feature space only based on the training data in
the unsupervised manner and can be well integrated with the RLBMI. In addition, mini-batch (MB)
and some other weight updating schemes are integrated to further improve the performance of the
RLBMI. Generally, we proposed a transfer learning and mini-batch based attention-gated reinforcement
learning algorithm, which was named as TMAGRL. In the proposed TMAGRL algorithm, we first
implemented a principal component analysis-based domain adaptation (PDA) method to project
both the training data and the testing data into the same feature space, which was extracted from
the training data, thus diminishing the disparities between them while decreasing their dimensions.
We then updated the model using an MB method for selecting a small number of the latest current
samples instead of using all training data; we could accelerate the model updating and help mitigate
against over-fitting. Finally, we proposed certain weight updating schemes to optimize the updating
procedure and further avoided over-fitting. The TMAGRL algorithm was tested on real intracortical
neural data recorded from two monkeys performing reaching and grasping tasks and was compared
with other decoder calibration methods.

The main contributions of this paper are as follows: (1) We proposed a new RLBMI algorithm,
TMAGRL, which can overcome the difficulty in combining general TL with the online-RLBMI by
extracting the projected feature space only from the source domain in an unsupervised manner and
solves the problems of low learning efficiency and unstable performance in conventional RLBMI.
This might be the first time TL has been integrated with the RLBMI. (2) We also introduced MB and
weight updating schemes to the RLBMI to further speed up the weight updating and help mitigate
over-fitting. (3) The performance of TMAGRL was tested on real intracortical neural data recorded from
two monkeys performing different behavioral paradigms. TMAGRL achieved a superior performance
on the data of both monkeys, indicating a viable generalization. (4) Higher decoding accuracy and
faster online weight updating were achieved by TMAGRL compared with the other decoding methods,
which might facilitate the application of the RLBMI in wearable device and clinical practice.

The rest of this paper is organized as follows: Section 2 describes the procedures of the animal
experiments and the preparation of the neural data. The adaptive decoder based on TMAGRL is then
presented. Section 3 details the decoding results of the comparison between TMAGRL and the other
methods. This is followed by the results of the parameter updating efficiency in TMAGRL and the
effect of the batch size on the TMAGRL performance. We then discuss the experimental results in
Section 4. Finally, Section 5 provides some concluding remarks.

2. Materials and Methods

All experiments and surgical procedures used in this study were approved by the Institutional
Animal Care and Use Committee at Huazhong University of Science and Technology.

2.1. Experimental Setup and Neural Recording

The experiment was conducted with two adult male rhesus macaques (M and B), which were
trained to perform spatial reaching and grasping movements. The monkeys were seated in a custom
primate chair with the left arm restricted, and the right hand was used to reach and grasp the target
object on the experimental apparatus. The experimental apparatus mainly contained a center pad
and three target objects, as shown in Figure 1, the details of which are described in [43]. For monkey
M, all three target objects were cubes. The monkey was guided to reach and grasp the target objects
in three different positions. Unlike monkey M, these three target objects were of different shapes
(cube, triangle, and sphere) for monkey B. Monkey B was guided to reach the same position and grasp
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the target object of different shapes that could be transferred to the same position using the turntable of
the apparatus. A trial began with the center light on, which guided the monkey to touch the center pad.
Following a hold time of approximately 500 ms, the target light was on and guided the monkey to reach
and grasp the target object. After the monkey grasped the target object and held it for approximately
300 ms, the target light went off, and the monkey would receive a liquid reward.
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Figure 1. Electrode location, experimental apparatus, and sequences of the experimental paradigm. 
(a) The electrode location. Electrode arrays were implanted into the primary motor cortex (M1) (red 
circle), the somatosensory cortex (S1) (orange circle), and the posterior parietal cortex (PPC) (blue 
circle) cortex, and the interfaces of the arrays were fixed on the skull with a pedestal. (b) Experimental 
apparatus. Monkey M was guided to grasp the target objects with the same shape at three different 
positions. Monkey B was guided to grasp three target objects with different shapes at the same 
position. (c) Sequence of the experimental paradigm. The time for the monkeys to perform these 
actions was different for each trial; the timings were mean value across all the trials of two monkeys. 

When the monkeys became familiar with the experiment, microelectrode arrays were implanted 
into the cortex using standard neurosurgical techniques. We implanted the electrode arrays into the 
arm/hand area of the primary motor cortex (M1), the somatosensory cortex (S1), and the posterior 
parietal cortex (PPC), as identified by the local anatomical landmarks and further confirmed through 
an intracortical microstimulation [15]. The electrode locations are shown in Figure 1. For monkey M, 
a 32 channel Utah array was implanted in M1 and S1, respectively, and a 16 channel FMA array was 
implanted in the PPC.array was implanted in the PPC. Four 32 channel FMA arrays were implanted 
in monkey B, two in S1, and the other two in M1 and PPC. Neural activities and behavioral data were 
recorded using a 128 channel Omniplex system (Plexon, Inc.) with a sample rate of 40 kHz. The 
wideband signals were band-pass filtered between 250 Hz and 6 kHz. Threshold crossing [44] was 
used to detect the spike, and the threshold was set as a value of –4.5 times the root mean square of 
the signal in each channel. All channels of the arrays in monkey M worked well, whereas only 66 
channels of the arrays in S1 and PPC could record spike signals for monkey B. The recordings from 
these working channels were used in the following analysis. 

2.2. Feature Extraction and Data Preparation 

In this study, monkey M was trained to reach three different positions; therefore, a 300 ms time 
window with 200 ms before and 100 ms after the center release event was chosen to extract features 
with 50 ms bins, and the spike counts in each bin were used as the feature. Monkey B was trained to 
grasp three different shapes of the target objects; therefore, a 300 ms window with 100 ms before and 
200 ms after the target hit event was chosen to extract the features with 50 ms bins. For both monkeys, 

Figure 1. Electrode location, experimental apparatus, and sequences of the experimental paradigm.
(a) The electrode location. Electrode arrays were implanted into the primary motor cortex (M1)
(red circle), the somatosensory cortex (S1) (orange circle), and the posterior parietal cortex (PPC)
(blue circle) cortex, and the interfaces of the arrays were fixed on the skull with a pedestal.
(b) Experimental apparatus. Monkey M was guided to grasp the target objects with the same
shape at three different positions. Monkey B was guided to grasp three target objects with different
shapes at the same position. (c) Sequence of the experimental paradigm. The time for the monkeys to
perform these actions was different for each trial; the timings were mean value across all the trials of
two monkeys.

When the monkeys became familiar with the experiment, microelectrode arrays were implanted
into the cortex using standard neurosurgical techniques. We implanted the electrode arrays into the
arm/hand area of the primary motor cortex (M1), the somatosensory cortex (S1), and the posterior
parietal cortex (PPC), as identified by the local anatomical landmarks and further confirmed through
an intracortical microstimulation [15]. The electrode locations are shown in Figure 1. For monkey M,
a 32 channel Utah array was implanted in M1 and S1, respectively, and a 16 channel FMA array was
implanted in the PPC.array was implanted in the PPC. Four 32 channel FMA arrays were implanted
in monkey B, two in S1, and the other two in M1 and PPC. Neural activities and behavioral data
were recorded using a 128 channel Omniplex system (Plexon, Inc.) with a sample rate of 40 kHz.
The wideband signals were band-pass filtered between 250 Hz and 6 kHz. Threshold crossing [44]
was used to detect the spike, and the threshold was set as a value of –4.5 times the root mean square
of the signal in each channel. All channels of the arrays in monkey M worked well, whereas only 66
channels of the arrays in S1 and PPC could record spike signals for monkey B. The recordings from
these working channels were used in the following analysis.
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2.2. Feature Extraction and Data Preparation

In this study, monkey M was trained to reach three different positions; therefore, a 300 ms time
window with 200 ms before and 100 ms after the center release event was chosen to extract features
with 50 ms bins, and the spike counts in each bin were used as the feature. Monkey B was trained
to grasp three different shapes of the target objects; therefore, a 300 ms window with 100 ms before
and 200 ms after the target hit event was chosen to extract the features with 50 ms bins. For both
monkeys, a 300 ms window was chosen for decoding, and six features could be extracted for each
channel. The details of the feature extraction are shown in Figure 2.
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Figure 2. For one sample, the raw data in each channel were band-pass filtered between 250 Hz and
6 kHz and were then detected using the threshold crossing method to obtain neural spike trains, and the
threshold was set as a value of –4.5 times the root mean square of the signal in each channel. A 300 ms
decoding window with six bins was chosen, and the spike counts in each bin were used as the feature,
and thus each channel had six features. The feature vectors of all channels were then combined together
to construct the neural activity vector, which had n × 6 features.

The experimental data used in this study were collected during a period of approximately one month.
The data from monkey M consisted of three sessions, and the datasets in each session were collected from
consecutive days during the same week. The first session contained four datasets, and the other two
sessions contained five datasets. There were also three data sessions for monkey B, each of which contained
four consecutive datasets. The datasets in the same session were consecutively collected for several days
and labeled according to the name of the session; for example, “S1D1” meant the dataset was from the first
day of session 1. Therefore, if S1D4 was selected as the current data, S1D3, S1D2, and S1D1 all could be
regarded as the historical data. Each dataset contained approximately 600 successful trials for monkey M
and approximately 300 successful trials for monkey B.

2.3. Transfer Learning and Mini-Batch Based Attention-Gated Reinforcement Learning

2.3.1. Neural Network Structure of TMAGRL

The neural network structure of TMAGRL was based on AGREL [41], and it adopted a simple
three-layer network structure to translate neural activities into action states. The output was evaluated
using an instantaneous reward [34], as shown in Figure 3. The neural network synaptic weights were
updated according to a simple and physiologically plausible Hebbian rule [42]. The neural activity vector
(NAV) of monkey M had 480 feature elements (80 working channels with 6 features for each channel).
The NAV of monkey B had 396 feature elements (66 working channels with 6 features for each channel).
Therefore, the numbers of input neurons of the network were 480 and 396, respectively. To map the neural
activities to three action states, the output layer of the neural network had three output units. The number
of units in the hidden layer of the neural network was 30 (M = 30). The weights of the neural network,
vij and wjk, were randomly initialized at between ±0.1, and the learning rate was set to 0.01 [34].
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Figure 3. (a) Neural network structure of transfer learning and mini-batch attention-gated reinforcement
learning (TMAGRL). Three-layer neural network was trained to perform a mapping task of the neural
activities to the output states. The winning unit (the unit marked in red) fed its activity back to
the hidden layer through the connections (red lines) attached to it. (b) An example of the feature
representation learned by neural network. Connections vi j propagated activity from the input layer
to the hidden layer, and connections w jk in turn propagated the activity from the hidden layer to the
output layer.

The decoder hidden layer used a sigmoid nonlinear activation function. Connections vij propagated
the activity from the input layer to the hidden layer. The output of the hidden layer is written as follows:

γ j =
1

1 + exp(−h j)
with h j =

N∑
i=0

vi jxi (1)

Connections w jk propagated the activity from the hidden layer to the output layer. After the
output layer, the decoder adopted a stochastic softmax rule to calculate the probability that each output
unit was selected. During every trial, only the winning unit achieved activity 1, whereas the other
output units were set as activity 0. The probability of the winning unit is defined as follows:

P(Zk = 1) =
exp(ak)

C∑
k′=1

exp(ak′)

with ak =
M∑

j=0

w jkγ j (2)
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If the decoder chose the correct action, the network received a reward r, and we assumed that
r equaled 1. If the decoder chose an incorrect action, the network was not rewarded. During the
rewarded trials, a global error signal δ was defined as follows:

δ = r− E(r) (3)

Here, δ equals the difference between the amount of reward obtained and the amount expected
for a particular trial. In unrewarded trials, δ equals −1, which was used to give negative feedback to
the network. Finally, an expansion function was used to determine the change in network weight.

f (δ) =
{ δ

1−δ , δ ≥ 0
δ, δ = −1

(4)

Here, f (δ) is a biologically plausible expansive function. Specifically, if the decoder chose the
correct output action with a lower probability, it gave a stronger positive feedback to the network.
After each trial, the synaptic weights were updated according to a simple and physiologically plausible
Hebbian rule. In addition, δ determined the weights between the input units and hidden units by the
expansive function.

∆w jk = βγ jZk f (δ) (5)

The weights vi j between the input layer and the hidden layer were also modified according to the
Hebbian rule, which depended on f (δ). Here, w js represents the feedback of the winning unit s.

∆vi j = βxiγ j f (δ)[w js(1− γ j)] (6)

Because the output units participated in the competition, the winning unit received activity 1,
and the other units received activity 0; therefore, only the weight of the current selected output action
was updated. Hidden units that provided the highest excitation to the winning output unit also
received the strongest feedback. The feedback thus assigned credit to the hidden units responsible for
the choice of action, which is called the attention mechanism.

2.3.2. Training Algorithm for the Initial Decoder of TMAGRL

With TMAGRL, the basic structure described above was combined with the TL, the MB, and the
weight updating schemes for the decoder construction and updating. During the online decoding of
one dataset, only the historical data could be used for constructing the initial decoder, the current data
were invisible, and each current sample appeared in turn for testing. Because of the nonstationarity
of the neural recordings, there were disparities between the historical data and the current data.
The decoder directly calibrated by the historical data could not decode the current data accurately
without a decoder adaptation, and the disparities increased the difficulty in the decoder adaptation.
Therefore, TL was introduced to diminish the disparity for accelerating decoder adaptation. We used
the PDA algorithm to project the historical data and current data to a new feature space to diminish
the disparity [15]. In the PDA algorithm, a principal component analysis (PCA) was applied to the
historical data, and the d eigenvectors corresponding to the d largest eigenvalues were used as the
new feature space Ms. The value of d was chosen by retaining 90% of the original data variance in this
study. The Ms projection is described as follows:

Zs = Ss ×Ms (7)

where Ss is the historical sample, and Zs is the projected data. For the new current data T, each sample
Tt was projected to this same feature space Ms before testing.

Ztest = Tt ×Ms (8)
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After applying the PDA, the decoder was trained using the projected historical data. During the
decoder training process, our goal was to ensure that more samples selected the correct action with a
higher probability. Therefore, we set up a probability threshold k—if the sample can select the correct
action with a probability of more than k, the corresponding weights of the synaptic connections are no
longer updated and are applied directly to the next sample forecast. The experiments showed that
k = 0.9 was a good choice. As the convergence condition, if 98% of the training samples could choose
the correct action with a probability of more than 0.9, then the model was convergent. At the same
time, we set the maximum number of epochs to limit the maximum training time. If the maximum
number of epochs was reached, but the model could not reach the convergence condition, we selected
the optimal trained model. The optimal model was the one that can accurately predict most of the
neural signal data during the training process. The process of the decoder training is shown in the flow
chart of Figure 4.
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2.3.3. Adaptive weight Updating in TMAGRL for Online Testing

During the online testing, after each new sample was tested, the weights of the decoder were
updated using the MB sample set. We selected the latest J samples to form the MB sample set. At the
beginning of the online testing, the number of tested samples was less than J, and all tested samples
were used for weight updating. For the weights between the hidden units and the output units,
they were updated using Equation (9), in which δn represents the modulation of Hebbian plasticity by
the nth sample in the MB sample set.

∆w jk = β
NRTMB∑

n=1

γn
j Zn

k f (δn) (9)

∆vi j = β
NRTMB∑

n=1

xn
i γ

n
j f (δn) f bn

γ j
with f bn

γ j
= wn

js(1− γ
n
j ) (10)

The weights between the input layer and the hidden layer were updated using Equation (10).
The attention factor, f bn

γ j, which equaled the output action of the nth testing sample to the feedback of
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the jth hidden layer unit, also influenced the plasticity. In addition, wn
js indicates the feedback of the

winning units s of the nth sample (red connections in Figure 3).
After finishing the new testing sample prediction, this sample replaced the oldest sample in the

MB sample set. We used certain schemes in updating the weight. As with the initial decoder training,
if the decoder could choose the correct action with a probability of more than k for the current sample,
the decoder would not be updated for this sample. Otherwise, all samples in the MB sample set were
used to update the weights of the decoder. The convergence condition was the same as in the initial
decoder training. The process of weight updating is shown in the flow chart of Figure 5.
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2.4. The Evaluation of Weight Updating Efficiency in TMAGRL Method

The weight updating efficiency is an important index for evaluating an adaptive method.
The weight updating in the TMAGRL method could be divided into two parts. The first part was
the weight updating during the initial decoder training using the historical data, as described in
Figure 4. The other part was the weight updating after finishing the sample testing, as described in
Figure 5. To test the weight updating efficiency in the first part, the decoder was set to be trained
for 1000 epochs, and the weights of the decoder were updated using all historical data during each
epoch. The root mean square (RMS) value between the predicted and the actual values was used to
describe the training efficiency. This procedure was repeated 50 times to achieve the mean values
with a standard deviation. The second part of testing the efficiency of the weight updating took place
during the online testing, in which the weights were updated using the new current samples. In this
part, we used the weight updating time to evaluate the weight updating efficiency. The time spent in
parameter updating during the online testing is extremely important and must be sufficiently short to
meet the clinical requirements. The testing results are shown in the Results section.

2.5. Other Decoder Calibration Schemes

To comprehensively evaluate the performance of the TMAGRL, four common methods were
presented and compared:

1. Static decoder: With a static decoder, the historical data were used for decoder training,
and current new samples were tested without an adaptation using the support vector machine
(SVM) [24].

2. Retrained decoder: For the retrained decoder, three-fold cross-validation was used with SVM
to achieve the decoding accuracy. This scheme was generally applied in offline mode and represented
the ideal performance that online decoding could achieve [24].
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3. AGREL: AGREL has the same structure as TMAGRL, with the exception of the TL, the MB,
and the weight updating schemes, the details of which are described in [34,42].

4. Non-adaptative AGREL (NAGREL): NAGREL has the same structure as AGREL but without
an adaptation, and it was presented for a comparison of the effect of the adaptation in AGREL.

To standardize the performance evaluation of these schemes, except for the static decoder,
the testing data were tested 50 times to achieve the mean decoding accuracy. Bootstrapping was
then used to obtain 95% confidence intervals of the decoding accuracies. In the retrained decoder,
the training data were randomly selected from all current data, and the remaining data were tested.
This was also repeated 50 times to obtain the mean decoding accuracy. The SVM was implemented
based on the LIBSVM, which is a Library for Support Vector Machines [45], and the radial basis
function (RBF) kernel was used. Moreover, the grid-search method introduced by the LIBSVM was
used to obtain the best penalty and kernel parameters C and γ, respectively, which were the two main
parameters for the RBF kernel.

3. Results

3.1. Performance of TMAGRL in Calibration with Historical Data from the Previous Day

To solve the problem of daily retraining, only historical data could be used for the decoder
calibration before using the iBMIs. Under this scenario, the data from the previous day were used to
calibrate the decoder to test the new data. For the static decoder, AGREL, NAGREL, and TMAGRL,
there were 630 training samples from the previous day and 630 testing samples of the current day in
monkey M, while there were 360 training samples from the previous day and 360 testing samples of the
current day in monkey B. For the retrained decoder, there were 420 training samples and 210 testing
samples from current day in monkey M as well as 240 training samples and 120 testing samples from
current day in monkey B. The decoding performances of the presented methods are shown in Figure 6,
and the mean decoding accuracies and standard deviation across all data sessions are listed in Table 1.
On almost all testing datasets, the TMAGRL method outperformed the other four methods (even the
retrained decoder) in the confidence intervals for both monkeys. Moreover, the confusion matrix of
decoding results for both monkeys is shown in Table 2. The results in Table 2 are the mean values
across all datasets.

Table 1. Mean decoding accuracies and standard deviations for all data sessions of five methods based
on historical data from the previous day.

Monkey M

Method Static NAGREL Retrained AGREL TMAGRL

Accuracy (%) 67.8 ± 14.4 75.9 ± 13.8 85.9 ± 4.2 73.9 ± 21.0 89.8 ± 4.2

Monkey B

Method Static NAGREL Retrained AGREL TMAGRL

Accuracy (%) 70.4 ± 17.7 79.5 ± 7.7 85.1 ± 6.2 81.7 ± 8.8 91.0 ± 2.3

AGREL: attention-gated reinforcement learning; NAGREL: non-adaptative AGREL; TMAGRL: transfer learning
and mini-batch based attention-gated reinforcement learning.

SVM is one of the most common and effective classification methods, but the decoding results by
the static decoder were not robust, which might have been influenced by the nonstationarity of the
neural recordings. For the retrained decoder, it also was unable to achieve a decoding accuracy as
high as TMAGRL (monkey M: F(1, 9)= 4.72, p = 0.04; monkey B: F(1, 7)= 7.19, p = 0.02, ANOVA test),
which might have been caused by the nonstationarity among the samples of the current day. Similar to
the static decoder, NAGREL was also nonadaptive, and the decoding performance was not robust.
The AGREL method, which updated parameters adaptively, achieved a similar decoding accuracy
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as the NAGREL method that used constant parameters. With improvements, TMAGRL achieved a
higher and more robust decoding performance than AGREL in both monkeys.
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Table 2. The confusion matrix of decoding results by TMAGRL for two monkeys.

Monkey M

Confusion Matrix
Predicted Label

left middle right

Actual label
left 189 18 3

middle 16 185 9
right 4 14 192

Monkey B

Confusion Matrix
Predicted Label

cube triangle sphere

Actual label
cube 108 5 7

triangle 4 107 9
sphere 5 3 112

3.2. Performance of TMAGRL in Calibration using Historical Data with Higher Time Separation

Normally, the disparities between the two datasets increased with an increase in the time separation.
Greater disparities resulted in more difficulties in the adaptation of the decoder. In the above analysis,
the TMAGRL method achieved an effective decoding performance using historical data from the
previous day to initially train the decoder. Here, we tested the decoding performance of the TMAGRL
method using historical data with a greater time separation. For each data session of both monkeys,
the last dataset in this session was used as the testing data, and data from the other datasets were
separately used for training. Therefore, the decoding performance of the decoder using historical
data with 1, 2, 3, and 4 day separations were compared, the results of which are shown in Figure 7.
The mean decoding accuracies and standard deviations across all data sessions are listed in Table 3.

Table 3. The mean decoding accuracies and standard deviations for all data sessions of five methods
based on historical data with greater time separation.

Monkey M

Method Static NAGREL Retrained AGREL TMAGRL

Accuracy (%) 45.1 ± 14.5 60.1 ± 6.7 84.2 ± 1.7 60.5 ± 23.4 86.5 ± 3.2

Monkey B

Method Static NAGREL Retrained AGREL TMAGRL

Accuracy (%) 42.5 ± 10.6 61.1 ± 11.4 77.1 ± 0.8 76.0 ± 7.8 89.3 ± 1.3

In general, the results in Figure 7 were consistent with those in Figure 6, and the TMAGRL
method outperformed the other four methods. For the static decoder and the nonadaptive NAGREL
method, a greater time separation between the training and the testing data achieved a lower decoding
accuracy, which indicated that the disparities between the two datasets increased with the increase
of the time separation. However, the decoding accuracies of the TMAGRL method did not follow
this rule and were unaffected by the increased disparities. There was no significant difference in
decoding results of the experiments using historical data with different time separations (monkey M:
p > 0.05; monkey B: p > 0.05 ANOVA test). Because the adaptive capabilities of TMAGRL have an
important role, the adaptive decoder has a strong ability to correct its own parameters according to the
disparities between the training and the current sample sets. The decoding performance of TMAGRL
was unaffected by the increased time separation in the same session, which can improve the practicality
of this method in clinical applications. By contrast, the decoding results of the AGREL method were
still unstable.
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3.3. Weight Updating Efficiency in TMAGRL Method

As described in Section 2.4, the evaluation of weight updating efficiency in the TMAGRL method
contained two parts. For the first part, the first dataset in session one of both monkey M and monkey
B was taken as the example, and the results of TMAGRL and AGREL are shown in Figure 8. It can
be seen that the curve of the TMAGRL method was much smoother than that of AGREL. TMAGRL
began to converge at approximately 200 epochs, whereas AGREL began to converge at more than
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approximately 600 epochs in monkey B. The convergence speed of TMAGRL was faster than that of
AGREL. Moreover, the standard deviation of the RMS for the AGREL method was much larger than
that of the TMAGRL method, which indicated that TMAGRL converged more easily than AGREL
and that the convergence of the AGREL was not robust. In this part, the difference between TMAGRL
and AGREL was that the TMAGRL used PDA to project the historical data into a new feature space.
Therefore, the improvement in the initial decoder training was achieved by the PDA in TMAGRL.
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For the second part, the mean weight updating time after each sample testing in the AGREL and
TMAGRL methods, in which the initial decoder was trained using historical data from the previous
day, are summarized in Table 4. For monkey M, AGREL took approximately 391 ms to finish the weight
updating, whereas TMAGRL took only approximately 5 ms. For monkey B, the weight updating times
were 298 ms and 4 ms for the AGREL and the TMAGRL methods, respectively. The updating speeds
of the TMAGRL method were approximately 77 and 76 times faster than those of the AGREL method,
which was critical for iBMIs used in clinical applications.

Table 4. The time spent in parameter updating during the online testing of both monkeys.

Monkey M

Dataset
Name S1D2 S1D3 S1D4 S2D2 S2D3 S2D4 S2D5 S3D2 S3D3 S3D4 S3D5

AGREL
(ms) 126.5 311.9 246.6 26.7 142.6 124.3 387.1 839.0 752.2 536.3 804.1

TMAGRL
(ms) 2.8 2.3 6.1 1.0 1.1 1.8 3.4 10.2 12.0 9.9 6.1

Monkey B

Dataset
Name S1D2 S1D3 S1D4 S2D2 S2D3 S2D4 S3D2 S3D3 S3D4

AGREL
(ms) 119.2 213.5 298.4 210.9 198.7 453.5 246.5 647.7 296.5

TMAGRL
(ms) 1.0 5.3 2.9 0.2 0.7 9.1 1.7 5.6 8.1

S: session; D: dataset.

3.4. Effect of Batch Size on Performance of TMAGRL

In this study, the MB was introduced in the online weight updating of TMAGRL to reduce the
amount of data used for updating while increasing the updating speed. Differing from the full batch
that used all new current data to update the weights in each epoch, the MB only used the latest J current
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samples for updating the weight. The choice of batch size J influenced the decoding performance of
the decoder. A smaller batch size could accelerate the weight updating but might reduce the decoding
accuracy, whereas larger batch sizes might achieve a better decoding accuracy but took more weight
updating time and affected the real-time performance. We subsequently explored the impact of batch
size J on the performance of TMAGRL. With batch size J changing from 30 to all sample sizes applied
with steps of 30, the corresponding decoding accuracy of the TMAGRL was calculated as shown in
Figure 9. In this figure, a batch size of one, which used only the latest single sample for updating,
was also presented for comparison.
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The results indicated that the decoding performance when using a batch size of one was not as
robust as that using a larger batch size. A batch size of 30 and above achieved a good and robust
decoding accuracy. The weight updating time did not increase with the batch size, which might have
been caused by our proposed weight updating schemes. With our updating schemes, if the decoder
could make the right prediction with a probability of more than the threshold in new sample testing,
the decoder would not be updated for this sample. Therefore, a decoder that was updated with a
bigger batch size could maintain more robust decoding performance and might not be updated as
frequently as that with a smaller batch size. In other words, the update speed of a small batch size
was fast, but the update times were longer, while the update speed of a large batch size was slow,
but the update times were shorter. However, the user would not want to spend much time on decoder
updating in a single trial. Therefore, a small batch size (such as 30) might be a better choice.

4. Discussion

In this study, we proposed an online self-recalibrating decoder, TMAGRL, which combined RL
with TL. Using the RL, the decoder was reinforced using only a scalar evaluative signal (reward),
and the data labeling was not necessary, which improved the practicability of the iBMIs. Using TL,
the disparities between the historical data and the current data could be diminished, which reduced the
difficulty in the decoder adaptation. By further integrating the MB and the weight updating scheme,
TMAGRL achieved approximately 90% classification accuracy in all datasets for both monkeys, and the
weight updating speed increased by more than 70 times.

To evaluate the TMAGRL method comprehensively, AGREL and other related methods were
presented for comparison. Based on the results of the non-adaptive methods, we found that
nonstationarity was widespread between the historical and the current data. Without an adaptation,
the decoding performance decreased for this nonstationarity. Moreover, longer time separation between
the historical and the current data could have allowed greater nonstationarity to occur and worse
decoding performance to be achieved. The static decoder was nonadaptive and could achieve good
decoding results only when the data from the current day were similar to the data from the previous
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day. The retrained decoder also was unable to achieve a decoding accuracy as high as TMAGRL,
because it could not solve the nonstationarity among the samples of the current day, whereas TMAGRL
solved it through adaptation. NAGREL was also nonadaptive, and the decoding performance was not
robust. However, NAGREL achieved higher decoding accuracies than the SVM, which indicated that
the basic AGREL was an effective classification method but was not good at solving the nonstationarity
of the data from different days.

Compared to the non-adaptive methods, the adaptive decoder can solve the problem of this
nonstationarity. However, the decoding performance of AGREL was not robust because it was sensitive
to an initialization and could become stuck in the local minima, particularly for online learning [34].
This instability of AGREL would be further exacerbated when the disparity between historical and
current data increased. Compared with AGREL, TMAGRL used TL (PDA algorithm) to diminish the
disparities between historical and current data while also eliminating some of the noise and reducing
the computational burden. Therefore, TMAGRL converged faster and accelerated the weight updating,
and thus the performance instability of AGREL was effectively overcome.

In addition to TL, we also proposed the use of an MB and a weight-updating scheme in TMAGRL.
AGREL used all new current data to update the weights after each trial testing, which led to an increased
amount of updated data to affect the weight updating speed. The MB could effectively solve this
problem by using only the latest J samples for a weight updating. The results in Figure 9 indicated that
the decoding accuracies were unaffected compared to the full batch updating. However, we wanted to
point out that using the latest J samples to form the MB might not be the best solution. Compared to
our approach which belongs to the experience replay, the prioritized experience replay might further
improve the decoding performance [46]. Even though our MB scheme was not the best solution,
it was simple and did not need to spend time in choosing suitable samples. Therefore, the real-time
performance of our MB scheme was good, which was important for online decoding. Moreover, we used
a weight-updating scheme in TMAGRL to avoid the over-fitting problem. In AGREL, Equation (4)
gave unexpected rewards with more weight updating, which might prevent over-fitting. However,
this cannot stop samples with a high prediction accuracy from participating in the weight updating,
resulting in over-fitting. In our weight updating scheme, samples with a prediction accuracy above
the threshold cannot participate in the updating, which could effectively prevent over-fitting while
reducing the burden on the weight updating and improving the updating speed.

In this study, we integrated the TL with RL technology to solve the decoder recalibration problem,
which was caused by nonstationarity of neural recordings. Nonstationarity of neural recordings
also exists in electroencephalogram (EEG)-based BMI. TL based methods have been used to solve
this problem. Krauledat et al. proposed a TL approach on common spatial patterns to finish the
session-to-session transfer by finding invariant common spaces to project the new testing data [47].
Using the same idea that knowledge is transferred by finding invariant common spaces, this work
was extended to subject-to-subject transfer by many other researchers [48–50]. Meanwhile, Sam et al.
proposed a TL approach of stationary subspace analysis and attempted to find a stationary subspace of
data from multiple subjects and/or sessions [51]. Many TL methods have been applied in the EEG-based
BMI and achieved good decoding performance. However, these methods were not integrated with RL
for online decoding. During RL-based online decoding, no target domain data and labels could be
used, which made it difficult to implement a conventional TL method. Our TMAGRL overcame this
difficulty and might be used in EEG-based BMI research to achieve better decoding performance.

In general, TMAGRL achieved a higher decoding accuracy and a faster decoding speed than
AGREL. However, in this study, TMAGRL was tested using the collected data, not in the total online
brain control task. Therefore, only the adaptive ability of the decoder was tested. For the brain
control task, the brain, the decoder, and the environment are considered as a whole, and the brain is
continuously adapting while the decoder updates the weights, which is the process of co-adaptation.
Moreover, this study only used the TMAGRL for three classifications; the study about using TMAGRL
for more classifications or continuous neural decoding can be explored. Additionally, learning from
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other RL system [52] or using a wearable sensor system [53,54] to determine the reward of the RL
system may further improve the practicability. In the future, we intend to test our method integrated
with a wireless wearable sensor system on a brain control task to further verify its effectiveness in
clinical application.

5. Conclusions

In this paper, an adaptive decoder based on the TMAGRL algorithm was proposed to solve the
problem of daily retraining in a supervised manner. The TMAGRL algorithm combined transfer
learning with reinforcement learning to construct an adaptive decoder. This adaptive decoder can
effectively close the gap between historical and current data, and it achieved a good and robust
decoding performance. The adaptive decoder did not require an every-day recalibration; only the
neural data after each testing were needed in the minibatch calibration to update the weights of the
decoder in real time. Moreover, this adaptive decoder could maintain a good decoding performance
even when the historical data used for the initial training were obtained from some of the previous
days. In addition, the weight updating speed was improved by approximately 70 times when using
TMAGRL compared to the original AGREL, which might improve the practicability of iBMIs in
clinical applications.
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