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Abstract. Type 2 diabetes mellitus (DM) is a metabolic 
disease with worldwide prevalence that is associated with a 
decrease in the number and function of endothelial progenitor 
cells (EPCs). The aim of the present study was to explore 
the potential hub genes of EPCs in patients with type 2 DM. 
Differentially expressed genes (DEGs) were screened from a 
public microarray dataset (accession no. GSE43950). Pathway 
and functional enrichment analyses were performed using 
the Database for Annotation, Visualization and Integrated 
Discovery. The protein-protein interaction (PPI) network 
was visualized. The most significantly clustered modules and 
hub genes were identified using Cytoscape. Furthermore, hub 
genes were validated by quantitative PCR analysis of EPCs 
isolated from diabetic and normal subjects. Subsequently, 
weighted gene co-expression network analysis (WGCNA) 
was performed to identify the modules incorporating the 
genes exhibiting the most significant variance. A total of 
970 DEGs were obtained and they were mainly accumu-
lated in inflammation‑associated pathways. A total of 9 hub 
genes were extracted from the PPI network and the highest 
differential expression was determined for the interleukin 8 
(IL8) and CXC chemokine ligand 1 (CXCL1) genes. In the 
WGCNA performed to determine the modules associated 
with type 2 DM, one module incorporated IL8 and CXCL1. 

Finally, pathway enrichment of 10% genes in the pink module 
ordered by intramodular connectivity (IC) was associated with 
the IL17 and the chemokine signaling pathways. The present 
results revealed that the expression of IL8 and CXCL1 may 
serve important roles in the pathophysiology of EPCs during 
type 2 DM and inflammatory response may be critical for 
the reduced number and hypofunction of EPCs isolated from 
patients with diabetes.

Introduction

Diabetes mellitus (DM) is a worldwide health care problem 
that places a heavy burden on patients and society. Diabetes 
and other parameters of metabolic disorder are considered risk 
factors for cardiovascular disease. Diabetic patients exhibit 
a two- to four-fold increased risk of cardiovascular disease, 
while endothelial cell dysfunction has a major role in the 
initiation and progression of vascular complications (1). The 
endothelium is a semipermeable monolayer of spindle-shaped 
endothelial layers that help maintain vascular homeostasis 
under physiological conditions (2). In diabetes, endothelial 
function is compromised, including reduced plasma nitric 
oxide, increased generation of reactive oxygen species, 
increased leukocyte infiltration and subsequent inflammation 
load (3,4). Therefore, ameliorating endothelial dysfunction 
is a major focus for the prevention and treatment of diabetic 
vascular complications. Compared with type 1 DM, which is 
characterized by the autoimmune destruction of β-cells, type 2 
DM accounts for 90‑95% of all cases of diabetes (5). Type 2 
DM is insulin-independent and usually characterized by a 
partial reduction of insulin secretion and insulin resistance (6).

Endothelial precursor cells (EPCs) are a group of cells 
with the inherent capacity to differentiate into mature 
cells (7). Asahara et al (8) reported on the isolation of these 
CD34-positive mononuclear cells from human peripheral 
blood. EPCs have been indicated to integrate into the 
capillary-vessel endothelium of rodent hindlimbs induced by 
ligation of the artery (9). Previous studies also revealed the 
potency of EPCs in the treatment of endothelial dysfunction 
induced by diabetes (10,11). However, compared with those in 
healthy subjects, EPC counts were lower, and the function was 
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also disturbed in patients with either type of DM (12-14). The 
development of strategies to improve the counts and activity 
of EPCs in patients with DM is a major focus in the field of 
autologous cell therapy. As EPCs from patients with diabetes 
exhibit different behaviors compared with those from healthy 
subjects, several different approaches have been investigated 
to restore their dysregulation and dysfunction by targeting 
specific sites (15‑18).

In the present study, differentially expressed genes (DEGs) 
in EPCs from patients with type 2 DM vs. healthy subjects were 
identified. These DEGs were then subjected to gene ontology 
(GO) and pathway enrichment analyses. A protein-protein 
interaction (PPI) network was then constructed and visual-
ized, and hub genes were identified by molecular complex 
detection (MCODE). The top 9 hub genes were subsequently 
verified by reverse transcription‑quantitative (RT‑q)PCR in 
an independent sample set originating from our study center. 
To further explore the genes that may be associated with the 
hub genes, a weighted gene co-expression network analysis 
(WGCNA) was performed to determine a relevant module that 
incorporates the hub genes, especially interleukin 8 (IL8) and 
CXC chemokine ligand 1 (CXCL1).

Materials and methods

Obtainment and pre‑processing of microarray data. Gene 
expression profiles of EPCs from healthy and type 2 diabetic 
subjects were obtained from the Gene Expression Omnibus 
database (GEO; www.ncbi.nlm.nih.gov/geo/). The accession 
number was GSE43950, and this dataset included a total of 
14 samples: A total of 9 type 2 diabetes late stage EPC samples 
and 5 healthy late EPC stage samples. The definition of early 
and late stage EPCs is discussed in a previous study (19). Late 
EPC samples referred to the EPCs appeared aged 2-4 weeks 
and exhibited a cobblestone-like morphology (8). The 9 type 2 
diabetes late EPC samples consisted of 5 samples obtained 
from the type 2 diabetes patients with microvascular compli-
cations and 4 samples from the type 2 diabetes patients 
without clinical microvascular injuries. To identify the DEGs 
in patients with type 2 diabetes vs. non-diabetic controls, the 
9 diabetes samples were analyzed together. The platform used 
was the Rosetta/Merck Human RSTA Custom Affymetrix 2.0 
microarray GPL10379. First, the expression matrix from the 
GEO database was pre-processed using the robust multi-array 
analysis method. The probe ID for each gene was then 
converted to a gene symbol using annotation files obtained from 
the platform. DEGs were identified by the limma algorithm 
(http://www.bioconductor.org/packages/2.9/bioc/html/limma.
html) in R software (20,21). A P-value of <0.05 and |log2 fold 
change|≥1 were used as the cutoff criteria for this analysis.

Enrichment analysis of DEGs. GO and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway functional enrichment 
analyses were performed using the database for annotation, 
visualization and integrated discovery (DAVID; https://david.
ncifcrf.gov/) (22). P<0.05 was considered to indicate statistical 
significance and the GO results were ranked by P‑value. The 
significant terms for biological process (BP), cellular compo-
nent (CC) and molecular function (MF) were visualized 
in Cytoscape (23). Furthermore, the top 10 GO terms in the 

categories BP, CC and MF, and the top 10 KEGG pathways were 
presented in bubble plots generated with ggplot2 (https://cran.
rproject.org/web/packages/ggplot2/index.html) in R.

PPI network construction. A PPI network was generated 
to infer the interactions among proteins. The PPI network 
was constructed using the Search Tool for the Retrieval 
of Interacting Genes and proteins (STRING) database 
(https://string-db.org/) (24). To explore the regulatory mecha-
nisms, interactions with the highest confidence of a combined 
score >0.900 were imported into Cytoscape to construct the 
PPI network.

Module selection. To obtain clusters of genes in the PPI 
network, MCODE was used to identify the modules in the 
PPI network. The cutoff criteria were ‘degree cutoff=2’, ‘node 
score cutoff=0.2’, ‘k-core=2’ and ‘maximum depth=100’.

Analysis of hub genes. To obtain a balance between the 
core genes and to avoid missing any key gene, hub genes 
were extracted using cytoHubba. A total of 12 topological 
analyses were provided by the cytoHubba plugin (25). In 
accordance with previous reports, a total of 3 most widely 
used topological analysis methods, including maximal clique 
centrality (MCC), maximum neighborhood component 
(MNC) and density of maximum neighborhood component 
(DMNC), were used to identify potential hub genes (25,26). 
The overlapping genes were selected as the hub genes using 
Venn diagrams.

Construction of the co‑expression network and identification 
of significant modules. The WGCNA package in R was used 
to construct a co-expression network (27). After calculating 
the correlation of all pairwise genes by Pearson's correlation 
matrices, the appropriate soft-threshold power β was selected 
for the construction of modules using the pickSoftThreshold 
function ranging from 1 to 30. The power of β=16 (scale-free 
R2=0.818) was selected to construct a scale-free network. The 
topological overlap matrix (TOM) was therefore constructed 
to measure the network connectivity of each gene, defined 
as the sum of its adjacency with all other genes for network 
generation (28). The interaction analysis among different 
co‑expression modules was performed using the flashClust 
function, and the average linkage hierarchical clustering 
was used with a minimum size of 500 for the gene dendro-
gram (29). The module-trait association was estimated using 
the correlation between the module eigengene and the pheno-
type. Gene significance (GS) was defined as the absolute value 
of the correlation between expression profile and clinical trait. 
Module membership (MM) was designated as the correlation 
of the expression profile and each module eigengene (30). Genes 
with higher intramodular connectivity (IC) were thought to 
have biological significance compared with other genes in the 
module (31). Therefore, the top 10% genes ordered by IC were 
functionally annotated. Finally, KEGG functional enrichment 
analysis of pathways in the pink module was performed using 
the clusterProfiler package (32).

Isolation and cultivation of circulating EPCs. The EPCs used 
in the present study were obtained from patients diagnosed 
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with type 2 DM or from non-diabetic controls at Sir Run Run 
Shaw Hospital (Hangzhou, China). Type 2 DM was diagnosed 
according to the American Diabetes Association criteria (33). 
Inclusion/exclusion criteria for the patients enrolled in the 
present study were as follows: Age >50 years, willingness to 
provide written informed consent, no acute myocardial infarc-
tion and no acute stroke. The patients with type 2 DM were 
diagnosed >5 years previously. Furthermore, major diabetic 
complications (diabetic retinopathy, diabetic nephropathy, 
diabetic neuropathy, lower limb arteriopathy) were recorded 
according to criteria described previously (34). A total of 
8 patients were enrolled in the present study between April 
2017 and April 2018. EPCs were isolated, cultured and char-
acterized according to methods previously reported (35). 
The study procedure was approved by the Ethics Review 
Board of Sir Run Run Shaw Hospital, School of Medicine. 
In brief, peripheral blood mononuclear cells were isolated 
by density gradient centrifugation. Cells were cultured in 
Endothelial Basal Medium-2 (Lonza Group, Ltd.) supple-
mented with corresponding nutrient factors including 10% 
FBS (Gibco; Thermo Fisher Scientific, Inc.). Non‑adherent 
cells were removed after 4 days of primary culture. The 
culture was maintained for another 7 days following addition 
of fresh medium. The purity of the EPCs was verified using 
tetramethylindocarbocyanine-labelled acetylated low-density 
lipoprotein (DiLDL) uptake and lectin binding under a laser 
scanning confocal microscope (data not shown) (Zeiss AG). 
The third generation of EPCs was selected for the subsequent 
analysis. Detailed information on these patients is provided in 
Supplemental Table SI.

Validation of microarrays by RT‑qPCR. To verify the major 
conclusions drawn from the microarray data, the expression 
levels of genes encoding for identified hub genes in EPCs 
from patients were determined. The RNA of EPCs was 
extracted using TRIzol reagent (CWBIO) and converted into 
complementary (c)DNA using a PrimeScript RT reagent Kit 
(Takara Biotechnology, Co. Ltd) according to the manufac-
turer's protocol. Subsequently, qPCR was performed using 
UltraSYBR Mixture (Low ROX; CWBIO) on the Lightcycler 

480 II system (Roche Life Science). For each well, the reaction 
mixture contained 2 µl cDNA, 0.4 µl forward primer (0.2 µM), 
0.4 µl reverse primer (0.2 µM), 7.2 µl RNA-free water and 
10 µl 2X UltraSYBR Mix. The reactions were incubated at 
95˚C for 10 min, followed by 40 cycles of 95˚C for 15 sec and 
60˚C for 1 min. The expression data were normalized to the 
reference GAPDH. FCs of relative mRNA expression were 
calculated using the change-in-threshold method (2-ΔΔCq) (37). 
The primer sets used for qPCR are listed in Table I.

Statistical analysis. All experiments were performed at least 
three times. All results are expressed as the mean ± standard 
deviation. Statistical analyses were performed using 
Student's t-test with GraphPad Prism 7 software (GraphPad 
Software, Inc.). P<0.05 was considered to indicate statistical 
significance.

Results

Identification of DEGs and clustering analysis. A total of 970 
DEGs were finally screened from the expression profiles and 
are presented in a volcano plot in Fig. 1A.

Clustering analysis was then performed using the pheatmap 
package in R and 970 DEGs were divided into two major 
clusters (Fig. 1B). They included 822 upregulated and 148 
downregulated genes (Fig. 1C). The top 10 upregulated and 
top 10 downregulated DEGs ranked by P-value are presented 
in Table II.

Enrichment analysis of DEGs. To explore the GO terms and 
pathways in which the DEGs were mainly involved, the 970 
DEGs were uploaded onto the DAVID website. The most 
enriched GO terms in the category BP included ‘inflammatory 
response’, ‘cellular response to lipopolysaccharide’, ‘innate 
immune response’, ‘immune response’ and ‘lipopolysaccha-
ride‑mediated signaling pathway’ (Fig. 2A). In the category 
CC, the GO terms with the highest enrichment were mainly 
associated with ‘extracellular exosomes’, ‘plasma membranes’, 
‘lysosomes and cell surface’ (Fig. 2B). As for the category MF, 
the GO terms with the highest accumulation of DEGs were 

Table I. Primers used for quantitative PCR.

 Primer sequence (5'→3')
 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Gene Forward Reverse

IL8 TTTTGCCAAGGAGTGCTAAAGA AACCCTCTGCACCCAGTTTTC
FPR1 AAGGCCATGGGAGGACATTG CAGGGCCCAATGATCACCTT
CXCL1 CTGGCGGATCCAAGCAAATG GCCCCTTTGTTCTAAGCCAG
GNAI3 ATCGACCGCAACTTACGGG AGTCAATCTTTAGCCGTCCCA
FPR2 CTGAATGGATCAGAAGTGGTGG CCCAAATCACTAGTCCATTGCC
GNAI2 TACCGGGCGGTTGTCTACA GGGTCGGCAAAGTCGATCTG
ANXA1 GCGGTGAGCCCCTATCCTA TGATGGTTGCTTCATCCACAC
GNB1 GTGAGCTTGACCAGTTACGG TGTGATCTGAGAGAGAGTTGCAT
LPAR5 CGCCATCTTCCAGATGAAC TAGCGGTCCACGTTGATG
GAPDH CCTGCACCACCAACTGCTTA GGCCATCCACAGTCTTCTGAG
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‘protein binding, receptor activity’, ‘carbohydrate binding’ and 
‘lipopolysaccharide receptor activity’ (Fig. 2C).

To identify pathways significantly enriched by the DEGs, 
KEGG pathway analysis was performed. The enrichment 
analysis of the KEGG pathways demonstrated that DEGs were 
mainly enriched in the ‘NF‑κB signaling pathway’, ‘tumor 
necrosis factor (TNF) signaling pathway’ and ‘inflammatory 
bowel disease’ (Fig. 2D).

PPI network construction and module analysis. A total of 394 
nodes and 1,486 interactional pairs were included in the PPI 
network (Fig. 3). Among them, proteins with degrees of ≥20 
were visualized in detail. A total of 5 proteins had degrees 
of interaction of ≥30 [IL8, 43; ubiquitin conjugating enzyme 
E2 D1 (UNE2D1), 35; G protein subunit beta 1 (GNB1), 33; 
E1A binding protein p300 (EP300), 32; Cbl proto-oncogene 
(CBL), 30]. In addition, a subnetwork clustering analysis was 
performed using the MCODE plugin. The top 3 subnet modules 
were identified (Fig. 4A‑C). Module a (score=20.634) included 
42 nodes and 423 interactional pairs (Fig. 4A). Module b 
(score=12.000) included 12 nodes and 66 interactional pairs 

(Fig. 4B). Module c (score=7.641) included 40 nodes and 149 
interactional pairs (Fig. 4C).

Hub gene selection. The hub genes were determined by 
overlapping the top 20 genes obtained using three topological 
analysis methods, MCC, MNC and DMNC (Fig. 5A). A total 
of 9 genes were selected, including 8 upregulated genes and 1 
downregulated gene (Fig. 5B; Table III).

Validation of hub genes by RT‑qPCR. RT-qPCR was used to 
validate hub genes obtained in the above analysis. EPCs were 
isolated from 4 non-diabetic controls and 4 diabetic patients. 
The detailed information of these patients were presented 
in Table S1. The patients that met the criteria were included 
from April 2017 to April 2018. The mRNA expression levels 
of IL8, formyl peptide receptor 1 (FPR1), CXCL1, GNAI3, 
FPR2, GNAI2, annexin A1 (ANXA1), GNB1 and lysophos-
phatidic acid receptor 5 (LPAR5) were determined. Overall, 
the results were similar to those of the microarray analysis, 
while the RT-qPCR results indicated greater fold changes 
than those calculated from the gene array data (Fig. 6). Of 

Figure 1. The volcano plot and heatmap of differentially expressed genes in type 2 DM. (A) Volcano plot of DEGs. The x‑axis represents the log2 FC and the 
y-axis represents the log10 (P-value). The green dots represent downregulated genes and red dots represent upregulated genes. (B) Heat map of DEGs following 
clustering analysis. The vertical axis represents the sample, and the horizontal axis represents DEGs. Red indicates upregulated and blue represents down-
regulated genes. (C) DEGs were selected according to P<0.05 and |log2 FC|≥1. DEGs, differentially expressed genes; DM, diabetes mellitus; CTRL, control; 
FC, fold change.
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all 9 genes, IL8 and CXCL1 exhibited the most significant 
changes.

WGCNA and key module identification. To further explore 
the roles of chemokines in EPCs under diabetic condi-
tions, WGCNA was used to identify the relevant modules 
incorporating IL8 and CXCL1. Prior to construction of the 
co-expression network, the soft-threshold power of 16 was 
selected to define the adjacency matrix based on the criterion 
of approximate scale‑free topology (Fig. 7A and B). After 
determining the soft-threshold, the TOM was built. A total 
of 9 distinct gene co-expression modules for EPCs were 
constructed and are presented in different colors (Fig. 7C). 
IL8 and CXCL1 are included in the pink module (Fig. 8A).
The values between module membership (MM) and gene 
significance (GS) in the pink module were presented in 
Fig. 8B. Genes with high IC were indicated to be tightly 
associated with other genes. The top 10% genes in the pink 
module ordered by IC were mainly enriched in the pathway 
of IL17 and the chemokine signaling pathway using KEGG 
pathway analysis (Fig. 8C).

Discussion

EPCs are a group of multipotent precursor cells that have 
the capacity to differentiate into blood vessels and blood 
cells (38). However, in previous studies, the number and 
function of EPCs were indicated to be decreased in patients 
with type 2 DM (12,39). Thus, identification of DEGs may be 
beneficial for the elucidation of the pathophysiology of EPCs 
in patients with diabetes. By analyzing the expression profiles 
in the dataset GSE43950 downloaded from the GEO data-
base, 970 DEGs were identified, including 822 upregulated 
and 148 downregulated genes. Subsequent analyses included 
GO enrichment analysis of DEGs, KEGG pathway analysis, 
module selection by MCODE and identification of hub genes 
by cytoHubba. Thereafter, hub genes selected from the PPI 
network were validated by RT-qPCR and associated modules 
containing hub genes with the highest FC were investigated. 
To the best of our knowledge, the present study was the first 
aiming to determine potential genes associated with EPCs in 
patients with type 2 DM. The present study provides novel 
insight into the molecular mechanisms of dysfunctional EPCs 
in patients with type 2 DM.

Through the use of DAVID, GO enrichment analysis of the 
970 DEGs was performed and the most enriched GO terms in 
the category BP were associated with ‘inflammatory response, 
response to lipopolysaccharide’ and ‘innate immune response’ 
in patients with type 2 DM. In the category CC, enriched GO 
terms were mainly associated with ‘extracellular exosomes’, 
‘plasma membranes’ and ‘lysosomes’. In the category MF, 
GO terms enriched for DEGs in DM groups included ‘protein 
binding’ and ‘receptor activity’. KEGG pathway analysis 
indicated that the DEGs of the type 2 DM group were mainly 
enriched in the ‘TNF signaling pathway' and ‘NF‑κB signaling 
pathway’. The GO terms ‘inflammatory response’, ‘response to 
lipopolysaccharide’ and ‘innate immune response’ fit well with 
concept of an inflammatory phenotype in the EPCs of type 2 
DM as described previously (15). Indeed, it has been indicated 
that anti-diabetic drugs that possess the capacity to increase 
EPC numbers and inhibit premature apoptosis may protect 
EPCs from injury by DM partly through alleviation of inflam-
mation (40). In the category CC, the GO term ‘extracellular 
exosome' was indicated to be of high relevance. Exosomes have 
been reported to have an important role in the performance 
of EPCs under certain physiological and pathological condi-
tions (41-43). It is reasonable to speculate that the decreased 
number and inhibited function of EPCs may partially be attrib-
uted to the altered exosome content of EPCs in patients with 
type 2 DM. These exosomes may perform multiple biological 
functions, including angiogenesis and wound healing (43,44). 
In the category MF, DEGs were mainly enriched in ‘protein 
binding’, ‘receptor activity’ and ‘lipopolysaccharide receptor 
activity’. As for the KEGG pathways, the ‘NF‑κB signaling 
pathway’ and ‘TNF signaling pathway’ were enriched in EPCs 
of patients with type 2 DM. Above all, these results indicated 
that inflammation may have a major role in the initiation and 
progression of dysfunction of EPCs in patients with DM, in 
accordance with previous studies (15,43).

To illustrate the interaction of the DEGs, a PPI network 
was constructed using the STRING database. The top 3 subnet 
modules based on the PPI network were then selected by 

Table II. Top 10 up- and downregulated differentially expressed 
genes.

A, Upregulated genes   

Gene Average expression value Log2 FC P‑value

NLRP3 7.94243 3.05234 2.44x10-10

NINJ1 8.64930 2.94253 2.39x10-9

G0S2 9.91064 6.10854 1.88x10-8

CKAP4 6.42605 2.65448 8.77x10-8

MAFB 9.35177 3.80994 1.78x10-7

C20orf24 9.77482 1.48972 2.72x10-7

C5AR1 7.62619 4.01330 3.48x10-7

PTX3 6.21338 3.11387 3.64x10-7

PFKFB3 8.33607 2.69583 4.12x10-7

ID2 10.66494 1.77079 5.55x10-7

B, Downregulated genes   

Gene Average expression value Log2 FC P‑value

TRUB2 4.16713 -1.14507 8.59x10-7

PKIA 5.22172 -1.33779 3.09x10-5

GPATCH4 7.44535 -1.25382 3.87x10-5

EIF5B 8.92228 ‑1.07249 4.75x10-5

CNNM3 6.16580 -1.40637 1.23x10-4

CD72 3.27212 -1.55625 1.30x10-4

ZDHHC14 5.93256 -1.11224 1.68x10-4

ENO2 4.21881 -1.58752 1.72x10-4

PPM1K 3.60385 -1.38364 2.05x10-4

DAZAP1 9.80455 -1.03973 2.29x10-4

FC, fold change.
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MCODE. GO enrichment analysis of these modules (including 
subnet modules a, b, and c) revealed that these subnet modules 
were mainly enriched in the terms inflammation, endocytosis 
and Golgi vesicle-mediated transport processes. The results of 
the enrichment analysis in the subnet modules further demon-
strated that inflammation may be crucial for the dysfunction of 
EPCs in patients with type 2 DM.

By overlapping the top 20 genes obtained from the MCC, 
MNC and DMNC methods, 9 genes were selected (IL8, 
FPR1, CXCL1, GNAI3, FPR2, GNAI2, ANXA1, GNB1 and 
LPAR5). Among these genes, IL8 exhibited the most signifi-
cant difference between the diabetic and control samples. IL8, 
as a member of the chemokines, has been reported to activate 
the motile apparatus of neutrophils, inducing the surface adhe-
sion of inflammatory cells (45). Monocytes and macrophages 
are usually considered the principal cellular source of IL8. 
However, a wide variety of nucleated cells, including EPCs, are 
potential sources of IL8 (46). Previous studies have indicated 

that in patients with type 2 DM, IL8 is elevated in the plasma 
compared with that in healthy subjects (47). IL8 is considered a 
canonical angiogenic factor and has a crucial role in the protec-
tion of EPCs for attenuating injury and prompting recovery of 
damaged tissues (48-50). Consistent with a previous study, the 
current study indicated that IL8 was significantly higher in the 
microarrays of EPCs isolated from patients with diabetes (51). 
Furthermore, the results of detecting mRNA expression in 
EPCs under type 2 DM by RT‑qPCR were similar. All these 
results indicated that elevated IL8 may be involved in the 
dysfunction of EPCs during the long-term injury associated 
with type 2 DM.

Besides IL8, CXCL1 was also significantly elevated 
with a similar degree to that of IL8. CXCL1, best known 
for its chemotactic activity toward neutrophils and mono-
cytes/macrophages, is also a potent angiogenic factor (52). 
Herlea-Pana et al (53) reported that CXCL1 and its cognate 
receptor, CXC motif chemokine-receptor-2 (CXCR2), were 

Figure 2. GO and KEGG enrichment analyses of DEGs. (A‑C) Scatterplots of the top 10 enriched (A) BP, (B) CC and (C) MF terms for the DEGs. (D) The 
top 10 KEGG pathways for the DEGs. The size and color of the dots represent the gene number and the range of P-values, respectively. DEGs, differentially 
expressed genes; GO, Gene Ontology; BP, Biological Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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increased in Reversa mice, an animal model apt to develop 
plaques when fed an atherosclerosis-inducing western diet. Of 
note, elevated CXCL1-CXCR2 was indicated to have a protec-
tive effect to prevent the progression of plaque formation, 
while CXCR2 was able to recruit EPCs to the plaques to repair 
the injured endothelium. Likewise, the chemokine system was 
indicated to be associated with homing and engraftment of 
EPCs (54). Above all, these results indicated that the chemo-
kine system has an important role in the regulation of EPCs 
under diabetic conditions.

To further explore the genes that may be associated with IL8 
and CXCL1 in the microarray data, WGCNA was performed to 
determine the relevant module that incorporates IL8 and CXCL1. 
A total of 9 modules were recognized by dynamic tree cut, of 
which the pink module contained IL8 and CXCL1. Most genes 
in this module were enriched in the TNF signaling pathway, 
the chemokine signaling pathway and the NOD-like receptor 
signaling pathway. These pathways fit well with the concept of an 
inflammatory and immune system disorder in type 2 DM (55,56).

The microarray data analyzed in the present study were 
deposited in the GEO as the dataset GSE43950. By analyzing 
these microarray data, the present study aimed to identify 
candidate genes that may be helpful for understanding the 
roles of EPC dysfunction under type 2 DM conditions and the 
associated mechanisms. Furthermore, to minimize the bias in 
the original expression profiles and to better understand the 

functional terms and pathways of the DEGs in the EPCs influ-
enced by type 2 DM, the array data were analyzed in three steps. 
First, DEGs between healthy subjects and diabetes patients 
were determined from the microarrays using the classical 
bioinformatics analysis tool, limma. Subsequent enrichment 
analysis was performed by DAVID. Hub genes and associated 
modules based on PPI network were selected using cytohubba 
in Cytoscape. Thereafter, the predicted hub genes were vali-
dated by RT-qPCR of EPCs isolated from patients at Sir Run 
Run Shaw Hospital (Hangzhou, China). IL8 and CXCL1 were 
found to exhibit the greatest variation in the EPCs of patients. 
To identify the genes that were co-expressed with IL8 and 
CXCL1, WGCNA, which is an algorithm recently wide used in 
microarray data analyses to identify the modules with similar 
expression patterns, was applied in the current study (57). 
After selecting the appropriate soft-threshold power β, the pink 
module was indicated to incorporate IL8 and CXCL1.

The present results indicated that inflammation may be an 
important mechanism underlying the difference in function 
and number of EPCs isolated from healthy individuals and 
diabetic patients. EPCs have long been regarded as a potential 
therapy to accelerate re-endothelialization of impaired vessels. 
Elevated IL8 expression is also thought to be involved in the 
repair progress (18). Compared to the successful preclinical 
results, the results of clinical trials on the efficacy parameters 
are conflicting (58,59). Certain studies indicated no beneficial 

Figure 3. Protein‑protein interaction network of differentially expressed genes. Proteins with degrees ≥20 were visualized in detail. Circles with green and red 
margins represent the downregulated and upregulated genes, respectively. Lines indicate protein-protein interactions.
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Figure 5. Obtainment of 9 hub genes, construction of PPI network and enrichment analysis of hub genes. (A) Overlapping DEGs among the three topo-
logical cytoHubba methods including, maximal clique centrality, maximum neighborhood component and density of maximum neighborhood component. 
(B) PPI interaction network of DEGs determined by STRING and visualized in Cytoscape. Lines indicate protein-protein interactions. GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction; DEG, differentially expressed gene.

Figure 4. Results of the subnet analysis of the PPI network. Three modules, (A) Module a, (B) module b and (C) module c were extracted from the PPI network 
in Cytoscape using the MCODE plugin. Circles with green and red margins represent the downregulated and upregulated genes, respectively. Lines indicate 
PPIs. PPI, protein-protein interaction.
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effect of autologous EPC transplantation in diabetic patients 
with critical limb ischemia (58). The controversy may be 
attributed to the heterogeneity of survival and different sources 
of EPCs in these trials (7,58). The present results revealed that 
inflammatory responses and associated genes may be partially 
involved in the abnormal function and number of EPCs in 
patients with diabetes.

Taken together, the present study identified DEGs in the 
EPCs of patients with type 2 DM vs. healthy subjects, which may 
be involved in the changes in the number and function of EPCs 
in patients with type 2 DM. Hub genes (IL8, FPR1, CXCL1, 
GNAI3, FPR2, GNAI2, ANXA1, GNB1 and LPAR5) extracted 
from the PPI network may be helpful as potential diagnostic 
and prognostic biomarkers of disordered EPCs. In addition, 

Table III. Information on the 9 hub genes.

Gene  Log2 FC P‑value Degree  Expression alteration

IL8 3.89158  9.02x10-6 43 Upregulated
FPR1 3.04300  4.82x10-5 22 Upregulated
CXCL1 2.49797  3.30x10-4 22 Upregulated
GNAI3 2.09317  1.38x10-3 24 Upregulated
FPR2 2.83408  2.84x10-3 26 Upregulated
GNAI2 1.01805  3.26x10-3 22 Upregulated
ANXA1 2.18436  4.56x10-3 26 Upregulated
GNB1 1.12879  1.48x10-2 33 Upregulated
LPAR5 -1.20699  2.81x10-2 25 Downregulated

FC, fold change; IL8, interleukin 8; FPR1, formyl peptide receptor 1; CXCL1, C‑X‑C motif chemokine ligand 1; GNAI3, G protein subunit 
alpha I3; FPR2, formyl peptide receptor 2; GNAI2, G protein subunit alpha 2; ANXA1, annexin A1; GNB1, G protein subunit beta 1; LPAR5, 
lysophosphatidic acid receptor 5.

Figure 6. Validation of microarray data by quantitative PCR. The expression of the top 9 hub genes identified from the microarray in detected in endothelial 
progenitor cells from patients with DM and healthy controls is provided in bar graphs. (A) IL8, (B) FPR1, (C) CXCL1, (D) GNAI3, (E) FPR2, (F) GNAI2, 
(G) ANXA1, (H) GNB1, (I) LPAR5. Values are expressed as the mean ± standard deviation (n=4 in each experiment). *P<0.05, **P<0.01 vs. control group. DM, 
diabetes mellitus; C, control; IL8, interleukin 8; FPR1, formyl peptide receptor 1; CXCL1, C‑X‑C motif chemokine ligand 1; GNAI3, G protein subunit alpha 
I3; FPR2, formyl peptide receptor 2; GNAI2, G protein subunit alpha 2; ANXA1, annexin A1; GNB1, G protein subunit beta 1; LPAR5, lysophosphatidic acid 
receptor 5.
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Figure 8. Network analysis of gene expression in type 2 DM and investigation of the module containing IL8 and CXCL1. (A) Module‑trait associations. Each 
row corresponds to an ME, containing the corresponding correlation and P-value. The column represents the clinical trait of type 2 DM. The table was colored 
according to the correlation between ME and clinical traits. (B) The MM vs. GS plot for the pink module indicated that MM and GS are highly correlated. 
(C) Scatterplot of enriched Kyoto Encyclopedia of Genes and Genomes pathways for the pink module. The size and color of the dots represent the gene number 
and the range of P‑values, respectively. ME, module eigengene; GS, gene significance; DM, diabetes mellitus; MM, module membership; IL8, interleukin 8; 
CXCL1, CXC motif chemokine ligand 1.

Figure 7. Appropriate soft‑threshold power selection and construction of the cluster dendrogram. (A) Analysis of the scale‑free fit index for various soft‑threshold 
powers. (B) Analysis of the mean connectivity for various soft-threshold powers. (C) The co-expression modules constructed by weighted gene co-expression 
network analysis and visualized in the cluster dendrogram. Each colored row represents a color-coded module that contains a group of highly connected genes.
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inflammatory responses are critical for the reduced number and 
hypofunction of EPCs isolated from diabetic patients.

The present study has several limitations that should be 
pointed out. First, it was not possible to conclude whether 
changes in gene expression were the cause or consequence of 
the complex physiological environment in patients with type 
2 DM. Furthermore, the sample size of EPCs was relatively 
small (n=4 for each group). Third, due to the lack of a sorting 
machine, the EPCs in the present study were isolated and 
cultured in culture dishes. EPCs isolated from the patients 
in Sir Run Run Shaw Hospital were cultured in vitro while 
CD34+ cells were directly sorted in GSE43950. Therefore, 
the fold changes of identified hub genes may not fit well 
with the predicted outcomes of microarrays in GSE43950. 
Finally, as the clinical traits in the dataset GSE43950 were 
limited, the exact clinical characteristics of these patients 
were not known. In the current, the probes were annotated 
using the platform annotation file, which was last updated in 
July 09, 2014 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GPL10379). Therefore, some proteins discovered in 
the past few years may not be identified in the present study.
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