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Abstract: Concerns about children’s weight have steadily risen alongside the manufacture and use
of myriad chemicals in the US. One class of chemicals, known as metabolic disruptors, interfere
with human endocrine and metabolic functioning and are of specific concern to children’s health
and development. This article examines the effect of residential concentrations of metabolic
disrupting chemicals on children’s school performance for the first time. Census tract-level ambient
concentrations for known metabolic disruptors come from the US Environmental Protection Agency’s
National Air Toxics Assessment. Other measures were drawn from a survey of primary caretakers of
4th and 5th grade children in El Paso Independent School District (El Paso, TX, USA). A mediation
model is employed to examine two hypothetical pathways through which the ambient level of
metabolic disruptors at a child’s home might affect grade point average. Results indicate that
concentrations of metabolic disruptors are statistically significantly associated with lower grade point
averages directly and indirectly through body mass index. Findings from this study have practical
implications for environmental justice research and chemical policy reform in the US.

Keywords: environmental justice; body mass index; obesity; obesogen; children; academic
achievement; metabolic disruptors; endocrine disrupting chemicals; NATA

1. Introduction

In recent years, environmental justice (EJ) researchers have examined the relationship between
exposure to air toxics and children’s school performance at the level of the school [1–7]. These studies
have found a negative association between school-based exposure to air toxics and academic
performance, usually measured as aggregated standardized test scores and/or rate of absenteeism.
One of the first studies used United States Toxic Release Inventory (TRI) data and 1990 census tract-level
estimates of respiratory air toxics risk to predict standardized test scores in Los Angeles Unified School
District (LAUSD) schools [6]. They found that air pollution levels at schools negatively and statistically
significantly predicted standardized test scores, adjusting for school demographics. In a follow up
study that included all public schools in California, Pastor et al. [7] found that the general pattern
observed in the LAUSD held for the rest of the state. Outside of California, similar findings have
been found in Baton Rouge, Louisiana [3,4] and Massachusetts [8]. Using the USEPA’s (United States
Environmental Protection Agency’s) 2002 Risk-Screening Environmental Indicators (RSEI) geographic
microdata, Lucier et al. [3] identified twelve known developmental, neurological and respiratory
toxicants and found that the levels of these pollutants at school were linked to decreased test scores.
Considerable research shows that respiratory and neurological toxins have negative impacts on school
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performance [3–7], as does diesel particulate matter (PM) [9,10]. To date, no research has examined the
influence of ambient concentrations of metabolic disrupting chemicals on academic achievement.

Metabolic disrupting chemicals, or metabolic disruptors (MDs) as they are henceforth called,
are important to consider because of the widespread use of these chemicals and the insufficient
knowledge about the health effects of long term, low dose exposures. MDs are a specific class of
endocrine disrupting chemicals (EDCs) that remain understudied despite growing evidence linking
them to serious negative health consequences. Common MDs are bisphenol A, diethylstilbestrol (DES),
phthalates, and organotins. MDs were first known as “obesogens” when scientists discovered that
some EDCs predisposed laboratory mice to gain weight. In the last ten years, the term “metabolic
disruptors” has become more common than “obesogens” because the effects of these chemicals extend
beyond only weight gain and include altered liver and cardiovascular function and altered glucose
homeostasis [11].

As endocrine disrupting chemicals, MDs interfere with the endocrine hormonal system in
human and wildlife species and alter bodily functions [12]. They have been linked to obesity and
also have negative impacts on neurological and thyroid function, insulin, metabolism, and glucose
function/regulation, as well as adverse reproductive outcomes such as cancer of reproductive organs,
endometriosis, infertility, and birth defects [12,13]. MDs, like other ECDs, function to mimic naturally
occurring hormones such as estrogens, androgens, and thyroid hormones.

The link between environmental chemicals and weight gain is relatively novel [14], and
evidence confirming the link between exposure to MDs and obesity has mounted in the past two
decades [15–17]. Understanding the implications of exposure to MDs at the individual and population
level is critical, because the use of MDs is widespread and highly unregulated; MDs are in food,
pharmaceuticals, household products, and air emissions from a variety of sources. Many of these
chemicals bioaccumulate and persist in the environment and have been detected in most people
who have participated in biomonitoring studies [18]. We hypothesize that there may be a link
between ambient outdoor air concentrations of MDs and individual children’s academic achievement.
Previous studies linking air pollution to academic achievement have focused on explaining the
association through respiratory health effects e.g., missing school due to asthma attacks [6,7] or
through neurological effects on children’s development [2–4,10,19]. We propose an additional possible
explanation, which is that MDs influence children’s weight, which negatively impacts their school
performance. This is informed by studies finding a negative association between higher body mass
indexes and reduced school performance in children [20–23].

The evidence for this link between children’s weight and school performance is not as well
documented as the non-cognitive effects of obesity (e.g., glucose intolerance, high blood pressure, high
cholesterol, sleep apnea, depression, and anxiety) [24,25]. Findings connecting obesity in childhood
to academic outcomes are beginning to appear in the literature and some studies assert that the
linkage is neurological as opposed to social/behavioral [26–29]. Recently, two studies found that
childhood obesity was associated with poorer working memory performance and a decreased ability
to regulate one’s cognitive control network, which includes inhibition, working memory, and cognitive
flexibility [29,30]. This is significant because the relationship between the cognitive control network
and school performance is well-documented [31]. While a neurological link is probable, there are
also social and behavioral factors that likely influence the relationship between weight and school
performance, such as bullying, discrimination from peers and teachers, and low self-esteem [32–36].

This study on MDs and children’s school performance builds from a large body of environmental
health and environmental justice (EJ) scholarship. In the US, the academic EJ literature has shown
that environmental risks have disproportionately fallen on minorities and the poor, and that race
and class are often the greatest predictors of exposure to hazardous air pollutants in the US [37,38].
Previous school-based EJ studies have not examined MDs as an environmental hazard nor have they
included body weight as a mediating variable in the relationship between residential exposure to air
toxics and academic achievement. Specifically, we examine the impacts of ambient MDs at children’s
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home sites on grade point averages among a representative sample of 1319 fourth and fifth graders in
El Paso, Texas directly and indirectly through body mass index using a mediation model.

Research Questions and Proposed Model

The research questions and hypotheses are: (1) What is the direct effect of residential
MD concentration on children’s grade point average (GPA), controlling for relevant covariates
(e.g., economic deprivation, mother’s education, mother’s English proficiency, and teenage
motherhood)? We hypothesize that MD concentration will be negatively associated with children’s
GPA; (2) What is the direct effect of body mass index (BMI) on children’s GPA, controlling for relevant
covariates? We hypothesize that BMI will be negatively associated with children’s GPA; (3) Does BMI
mediate the association between residential MD concentration and children’s GPA, controlling for
relevant covariates? We hypothesize that while MDs will have a direct effect on GPA, this effect will be
mediated by BMI.

2. Materials and Methods

2.1. Study Context

The study took place in El Paso, Texas, USA. El Paso is located on the US-Mexico border, and has a
population of 833,487 [39]. The population is 81% Hispanic (compared to 38% in Texas and 17% in the
US). About 14% of El Paso residents are non-Hispanic white, while 4% are non-Hispanic black. El Paso
has a rate of poverty (23% in 2011, when the survey was conducted) that is considerably higher than
the national average (17%). Among El Paso residents, 26% are foreign-born, 15% are not US citizens,
and 73% of the population over the age of five speaks a language other than English (predominately
Spanish) at home.

High body mass indexes (BMIs) and being overweight are health concerns in El Paso
County [40,41]. El Paso County has a lower percentage of obese adults (24%) than Texas (29%) and the
US (27%). However, the county has a higher percentage of overweight adults (39%) compared to Texas
(37%) and the US (36%) [40].

El Paso is also a city that struggles with air pollution problems, and this includes ambient MDs.
The use of MDs is extensive and many of these chemicals are emitted into the air through polluting
facilities and among other sources of air pollution. Diesel exhaust has been identified as a MD [42,43]
and this pollutant is of great concern in El Paso. El Paso is home to a large binational trucking
industry which experienced significant growth after the passage of the 1994 North American Free
Trade Agreement. In 2014, nearly 760,000 trucks crossed from Ciudad Juárez (Mexico) through El
Paso’s Ysleta-Zaragoza and Bridge of the Americas Ports of Entry [44], transporting items produced
in Ciudad Juárez’s maquiladora industry. Two recent studies found that diesel PM was statistically
significantly associated with decreased school performance in El Paso schoolchildren [9,10]. Apart from
the trucking industry, El Paso is also home to numerous large scale polluting facilities such as Western
Refining, Phelps Dodge Copper Products, and those associated with Fort Bliss and its US Army Air
Defense Artillery Center, as well as a high flight volume international airport, all of which elevate
levels of air pollution in El Paso County [45].

2.2. Data Collection

Data on socio-demographics, BMI, and academic achievement were collected through a
cross-sectional mail survey that was sent to all caretakers of fourth and fifth graders in the El Paso
Independent School District in 2012 [46]. The El Paso Independent School District (EPISD) is the tenth
largest district in Texas and in 2012, there were over 64,000 students (K-12) enrolled in 94 campuses.

We used the Tailored Design Method to obtain the highest response rate possible [47]. We first
sent out a survey package containing a consent form, English and Spanish versions of the survey,
a return envelope, and a two-dollar incentive. The following week we sent out a bilingual reminder
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postcard to non-respondents, and the third week, we resent the package to all non-respondents.
In total, 6295 surveys were delivered to the caretakers and we received 1904 responses, which gave
us a response rate of 30 percent. Research has shown that comparable response rates can yield
representative samples [48–51]. The sample was generally representative of EPISD fourth and fifth
graders in terms of Hispanic ethnicity (82.2% versus 82.6%). The sample was slightly less economically
poor as the percent of students qualifying for free or reduced price meals was 60.0% versus 71.3%
among all EPISD fourth and fifth graders.

Information was gathered through the survey on both the primary and secondary caretakers
of the child. Primary caretakers were 83% mothers and 10% fathers. Secondary caretakers were
57% fathers and 13% mothers. We drew from questions asked about the primary and secondary
caretaker to create variables applicable to the child’s mother for the analysis, because mother’s
attributes were the most commonly included covariates in a review of the literature on children’s
academic achievement outcomes.

Six children were excluded from this analysis because they lived outside of the county limits and
three children were excluded because of unconventional home and alternative schooling arrangements.
567 children were excluded from the sample due to substantial missing data for the analysis variables,
leaving a total of 1319 children for analysis.

2.3. Variables

Descriptive statistics for all variables are presented in Table 1.

Table 1. Descriptive statistics for all analysis variables.

Continuous Variables N % Missing Min. Max. Mean Standard Deviation

Grade Point Average (GPA) 1240 6 0.20 4 3.40 0.70
Ambient concentration of known
metabolic disrupters (MDs) (ln) 1319 0 −0.07 2.48 0.84 0.43

Known and suspected (ln)
ambient concentration of MDs 1 1319 0 −0.02 2.61 0.94 0.44

Body Mass Index (BMI) 1273 3.50 6.67 46.48 19.59 5.16
Child’s age (years) 1312 0.50 9 13 10.40 0.80
Mother’s education (years) 1208 8.40 1 21 13.70 3.60
Mother speaks English 1180 12.70 0 3 2.20 1

Dichotomous Indicators N % Missing Frequency % Yes No
Child is male 1299 1.50 49.60 644 655
Free/reduced priced meals 1209 8.30 40.90 494 715
Teenage motherhood 1178 8.40 8.10 95 1083
Mother is Hispanic 1185 10.20 76.70 909 276
Mother is non-Hispanic black 1198 9.20 3.00 36 1162

1 Used only in the sensitivity analysis.

2.3.1. Children’s Academic Performance

GPA is the dependent variable in this study and it was calculated using caretaker-reported grades
from five different subjects (reading, language arts, math, social studies, and science) from the survey.
The list of subjects and response options are identical to the official EPISD report cards and the subject
grades were recoded so that F = 0; D = 1; C = 2; B = 3; and A = 4. The subject area scores were summed
and divided by five to create the continuous GPA dependent variable. Children had a mean GPA
of 3.3 out of 4.0 which is reflective of the national pattern for grades received in elementary school.
According to the US Department of Education [52], 82.2% of students received either mostly A’s or
mostly B’s nationwide in 2007. While not an exact match to these Department of Education figures,
78.4% of children in our sample had GPAs above 3.0.

2.3.2. Concentration of Metabolic Disruptors

We used the USEPA’s 2005 National Scale Air Toxics Survey (NATA) census tract-level database
to create the child-level MD values used in the analysis. The NATA includes all air toxics regulated
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by the US Clean Air Act (except criteria pollutants) that are known or suspected to cause cancer or
neurological, respiratory and immunological diseases, as well as reproductive ailments [53]. NATA is
currently the best available secondary data source for spatially explicit characterization of air toxics
exposure risk in US metropolitan areas [54–58]. The USEPA works with states and industries to gather
data about air toxics emissions and then compiles them in the NATA. Due to space restrictions, details
pertaining to the NATA modeling procedures are provided elsewhere [59].

To generate the estimates for the ambient concentrations of MDs at each child’s home residence,
we identified both known and suspected MDs from published lists and through a thorough
review of toxicological and environmental health literature. Currently, the most comprehensive
compilations of EDCs (including MDs) are provided by The Endocrine Disruption Exchange [60]
and the Institute for Environment and Health [61], but these lists are not currently monitored
or updated by agencies such as the USEPA. These lists include chemicals that are also included
in the NATA [62]. A total of eight “known MDs” were identified in the 2005 NATA. These are
arsenic, benzene, cadmium chloride, chlordane, dibutyl phthalate, diesel exhaust, ethylene glycol,
and naphthalene. In the Endocrine Disruption Exchange [60], chemicals are grouped by various
characteristics. Chemicals classified as “byproducts, intermediates, and reactants” are those that
are used in the synthesis or creation of other chemicals and/or are the byproducts of these
processes and are contaminants or impurities. “Solvents” are chemicals that are used to breakdown
other chemicals. “Industrial additives” are used as surfactants, preservatives or antioxidants in
industrial production processes [60]. As for the chemicals in our known MD variable, arsenic is
an industrial additive and a byproduct/intermediate/reactant; cadmium chloride and chlordane
are also industrial additives; diesel exhaust is a byproduct/intermediate/reactant; ethylene
glycol and dibutyl phthalate are byproducts/intermediates/reactants, industrial additives, and
solvents; benzene is a byproduct/intermediate/reactant and a solvent; lastly, naphthalene is a
byproduct/intermediate/reactant [60]. While MDs are ubiquitous in the environment, due to data
limitations, we are only able to examine MDs in air emissions that are captured by NATA. Another eight
MDs were identified as “suspected MDs” and these are carbaryl, epichlorohydrin, ethylbenzene, lead
compounds, styrene, phenol, nickel compounds, and selenium compounds.

For each MD, we used the “ambient concentration” measurement provided by the NATA to
assess the level of the MD in each census tract. Ambient concentrations refer to raw concentrations
of toxics in outdoor air. These concentrations are surrogate for exposures as they do not take into
account human activity patterns (among other factors) as do the “risk” variables available in the
NATA. These concentrations are additive so we summed the eight ambient concentrations to create a
tract-level “known MD” variable, and then summed the 16 values together to create the “known or
suspected MD” value. Next, using a Geographic Information System, we assigned each child the total
ambient concentration of known and known or suspected MDs of the census tract in which he/she
resided (based on home address). We report results using the “known MD” variable, and considered
the “known or suspected MD” variable in a sensitivity analysis. The average ambient concentration
of known MDs was 0.84 micrograms/m2 while the average ambient concentration of known and
suspected MDs was 0.94 micrograms/m2. We used the natural log of the two MD variables to reduce
skewness and kurtosis in the statistical analysis. Figure 1 depicts the distribution of known MDs in El
Paso census tracts.

2.3.3. Body Mass Index

We calculated BMI using caretaker reported height and weight values for the child. The weight in
kilograms was divided by the square of the height in meters. It is the mediating variable in our model.
In our sample, children had an average BMI of 19.59.
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In this study, we controlled for eight individual-level variables associated with children’s 
academic performance. Previous research has found that economic disadvantage is associated with 
decreased academic performance [63]. It is operationalized as (1) qualifying for free or reduced price 
meals (FRPM) at school [64]. We used this variable instead of poverty because it is a less conservative 
measure of socioeconomic disadvantage than is poverty. FRPM is 185% of the poverty line.  

We controlled for (2) mother’s education (measured as years of schooling completed) because 
children of mothers with higher levels of education tend to perform better in school, compared to 
those of mothers with lower levels of education [65]. We controlled for (3) teenage motherhood 
because children born to younger mothers tend to fare worse in school as it is more challenging for 
these mothers to provide intellectually stimulating homes [65]. Our continuous mother’s age at the 
birth of her child variable was dichotomized into 1 = teenage mother (19 and younger) and 0 = not a 
teenage mother (20 years and older).  

Having a (4) black/African American and/or (5) Hispanic mother has been linked with lower 
levels of academic performance among children. The academic achievement gap between students 
of color and white students has been well studied and documented [63,66–68] and is due to multiple 
factors including school tracking, institutional racism and discrimination, and parenting  
styles [66,67,69]. To determine whether the mother was Hispanic or non-Hispanic black, we drew from 
two questions that asked, “Are you of Hispanic, Latino, or Spanish origin?” and “What is your race?”  

We controlled for (6) mother’s English proficiency because mothers who are not proficient in 
English may be unable to help with schoolwork [63]. Mother’s English proficiency was treated as a 
continuous indicator and was measured on a four-point scale (0 = not at all; 1 = not well; 2 = well; and 
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children’s homes in the El Paso, TX Study Area.

2.3.4. Control Variables

In this study, we controlled for eight individual-level variables associated with children’s academic
performance. Previous research has found that economic disadvantage is associated with decreased
academic performance [63]. It is operationalized as (1) qualifying for free or reduced price meals
(FRPM) at school [64]. We used this variable instead of poverty because it is a less conservative measure
of socioeconomic disadvantage than is poverty. FRPM is 185% of the poverty line.

We controlled for (2) mother’s education (measured as years of schooling completed) because
children of mothers with higher levels of education tend to perform better in school, compared to those
of mothers with lower levels of education [65]. We controlled for (3) teenage motherhood because
children born to younger mothers tend to fare worse in school as it is more challenging for these
mothers to provide intellectually stimulating homes [65]. Our continuous mother’s age at the birth of
her child variable was dichotomized into 1 = teenage mother (19 and younger) and 0 = not a teenage
mother (20 years and older).

Having a (4) black/African American and/or (5) Hispanic mother has been linked with lower
levels of academic performance among children. The academic achievement gap between students
of color and white students has been well studied and documented [63,66–68] and is due to
multiple factors including school tracking, institutional racism and discrimination, and parenting
styles [66,67,69]. To determine whether the mother was Hispanic or non-Hispanic black, we drew from
two questions that asked, “Are you of Hispanic, Latino, or Spanish origin?” and “What is your race?”

We controlled for (6) mother’s English proficiency because mothers who are not proficient in
English may be unable to help with schoolwork [63]. Mother’s English proficiency was treated as a
continuous indicator and was measured on a four-point scale (0 = not at all; 1 = not well; 2 = well;
and 3 = very well). We also controlled for (7) children’s current age in years and the (8) sex of the child
(0 = female; 1 = male).
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In terms of our sample, the average BMI for children in our study was 19.59. Sixty percent of
participating students qualified for free or reduced priced meals; 9% of children had a teenage mother
at the time of their birth. Mothers had 13 years of education on average. Eighty percent of mothers
were Hispanic while another 2% were non-Hispanic black. Lastly, mothers had an average score
of 2.17 for English proficiency on a four-point scale. Because the sample only included fourth and fifth
graders, the average age of the child was ten. Fifty percent of children were male while the other half
were female.

2.4. Analysis Methods

To address non-response bias, we used multiple imputation techniques in IBM SPSS version 23
(IBM, Armonk, NY, USA). Multiple imputation (MI) is currently the best method to address
missing data in quantitative analysis and is used to avoid bias that may occur when values are
not missing completely at random [70]. We imputed missing values for ten data sets to increase power
using a regression-based approach, and we specified 200 between-imputation iterations to ensure
independence between the data sets [71]. Analyzing a single imputed data set would effectively
treat the filled-in values as real data, so even the best imputation technique, when used with just one
imputed data set, may underestimate sampling error. MI techniques appropriately adjust the standard
errors for missing data [71]. We included all relevant variables in the multiple imputation procedure.
The percent missing for the variables ranged from 0% to 12.7% (see Table 1). We pooled the data
from each of the ten models in order to generate the results of our mediation analysis. We analyzed
the originally ordinal measure (i.e., mother’s English proficiency) as a continuous predictor in the
statistical model. This approach is considered a best practice in MI when imputing missing data
and estimating model parameters, since rounding off imputed values based on discrete categorical
specifications has been shown to produce more biased parameter estimates in analysis models [71].

For this paper, we ran bivariate correlations and then used the “PROCESS” macro [72] in SPSS
to run a mediation model to examine if MDs operate through BMI (our mediating variable) to affect
GPA. Mediation models are composed of two antecedent variables (X and M) and two consequent
variables (M and Y). The X variable causally influences Y and M; M causally impacts Y [72]. In other
words, mediation analyses are used to examine how one variable affects another variable through
two pathways: through a direct pathway (X on Y) and through a mediating variable (X through M
on Y) [72]. The mediating variable carries the influence of the independent variable on the dependent
variable and the indirect effect is a measure of how much of the effect of the X variable on Y is mediated
by M. We used the normal theory approach (i.e., the Sobel test) to test for the significance of the indirect
effect of X on Y. The Sobel test is a specialized t-test that determines whether the change in the effect
of the independent variable, after the inclusion of the mediator, is a statistically significant change
and whether the mediator’s effect in the model is significant [72]. Previous research has found that
exposure to environmental toxics negatively impacts school performance in children (e.g., [4,9]), but it
is not yet known through which mechanism this association works. The mediation model allows us to
examine one potential pathway, i.e., through BMI.

3. Results

3.1. Correlations

Correlations are presented in Table 2. BMI (r = −0.141, p < 0.01) and the outdoor air concentration
of known MDs (r = −0.226, p < 0.01) were negatively associated with children’s GPA, as was the
known and suspected MDs (r = −0.228, p < 0.01) variable. In terms of GPA and the control variables,
qualifying for free or reduced priced meals (r = −0.316, p < 0.01) exhibited the strongest correlation
with children’s GPA, followed by mother’s education (r = 0.298, p < 0.01). Mother being Hispanic
(r = −0.201), having a teen mother (r = −0.100), being younger (r = −0.074), and being male (r = −0.096)
were also associated (p < 0.01) with lower GPA.



Int. J. Environ. Res. Public Health 2016, 13, 874 8 of 16

Table 2. Correlation Matrix.

Variables GPA Known
MDs

Suspected/
Known MD

Child’s
BMI

Child Is
Male

Age of the
Child

Free
Meals

Teenage
Motherhood

Mother’s
Education

Mother Is
Hispanic

Mother Is
Non-Hispanic Black

GPA
Known MDs (ln) −0.226 **

Suspected/known MDs (ln) −0.228 ** 0.999 **
Child’s BMI −0.141 ** 0.104 ** 0.103 **

Child is male −0.096 ** 0.030 0.031 0.077 **
Age of the child −0.074 ** 0.054 * 0.054 * 0.099 ** 0.033

Free meals −0.316 ** 0.329 ** 0.328 ** 0.149 ** −0.008 0.089 **
Teenage motherhood −0.100 ** 0.083 ** 0.088 ** −0.008 0.015 0.049 0.116 **
Mother‘s education 0.298 ** −0.298 ** −0.299 ** −0.106 ** 0.009 −0.075 ** −0.487 ** −0.079 **
Mother is Hispanic −0.201 ** 0.256 ** 0.257 ** 0.123 ** −0.005 0.010 0.256 ** 0.074 * −0.238 **

Mother is non-Hispanic black 0.016 −0.068 * −0.067 * −0.026 0.040 0.025 −0.067 * 0.020 0.060 * −0.321 **
Mother’s English proficiency −0.066 * 0.136 ** 0.137 ** 0.042 0 0.048 0.112 ** 0.012 −0.030 0.327 ** −0.078 **

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).
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Greater BMI was positively and significantly associated with known MD concentrations (r = 0.104,
p < 0.01). Qualifying for free or reduced priced meals (r = 0.149, p < 0.01) exhibited the strongest
correlation with BMI, followed by mother’s education (r = −0.106, p < 0.01). Having a Hispanic mother
(r = 0.123, p < 0.01) was also positively associated with BMI.

In terms of the ambient outdoor air concentrations of known MDs, qualifying for free or reduced
priced meals (r = 0.329, p < 0.01) exhibited the strongest correlation. Mother being Hispanic (r = 0.256,
p < 0.01), Mother being non-Hispanic black (r = −0.068, p < 0.05), having a teen mother (r = 0.083,
p < 0.01), and mother’s English proficiency (r = 0.136, p < 0.01) were also associated with concentrations
of known MDs.

3.2. Mediation Model

Results are shown in Figure 2. The effect of known MDs (X) on BMI (M) were positive and
statistically significant (r = 1.2191, p < 0.01). The direct effect of known MDs (X) on GPA (Y) was
negative and statistically significant (r = −0.0114, p = 0.03) and this effect was mediated by the indirect
effect of BMI (M) on GPA (Y), which was negative and statistically significant (r = −0.1423, p < 0.01).
Because the relationship between X and M is significant and positive, higher levels of known MDs are
associated with higher BMI. The direct effect of X on Y is significant and negative meaning that higher
levels of known MDs are associated with lower GPA. Lastly, the indirect effects of X on Y (through M)
are statistically significant and negative, meaning that higher levels of known MDs negatively impact
GPA through higher BMI. When using the known/suspected MD variable, instead of the known MD
variable, results were identical in terms of direction and significance. Note those effects are significant
adjusting for the full suite of control variables. In terms of the control variables, mother’s education
was positively associated with GPA (r = 0.0274, p < 0.01), while being male (r = −0.0965, p = 0.03) and
qualifying for free or reduced priced meals (r = −0.2341, p < 0.01) were associated with lower GPAs.
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4. Discussion

This study is novel in that it is the first to address a limitation in the literature on pollution
and academic performance, and the EJ literature more generally, with its focus on MDs. It is a first
foray into examining the potential impacts of ambient concentrations of MDs on school performance.
The relationship between exposure to hazardous air pollutants and academic achievement has been
clearly documented [1,3,4,9,10], yet the pathways through which this relationship works remain
unclear. Researchers have suggested that the relationship between exposure to air pollutants and
decreased school performance can be explained in two ways [9,10]. First, exposure to air pollutants
can be linked to respiratory illnesses and more missed school due to these illnesses. Second,
the relationship can be explained through neurological impacts. Exposure to air toxicants may damage
critical areas of children’s brains [73], resulting in reduced capacities to learn and retain information.
In the study, we hypothesized that air toxics, specifically MDs, also have negative implications for
children’s academic achievement both directly and indirectly through children’s BMI. This hypothesis
encompasses three relationships, which we will discuss in turn.

The first relationship is the path connecting the concentrations of MDs at the child’s home to
BMI, which was positive and statistically significant, supporting our hypothesis. This finding seems to
substantiate the previously hypothesized environmental link between toxics and weight [11,14–17].
This finding is not surprising given that MDs disrupt the body’s endocrine and metabolic functioning,
meaning that the children are more susceptible to weight gain, diabetes, and metabolic syndrome [11].

The second relationship is the path from BMI to GPA, which was negative and statistically
significant, indicating that higher BMI was associated with lower GPA. In terms of why this
association was found, there are currently two hypotheses in the literature. The first is a psychosocial
explanation, which asserts that heavier children tend to face bullying and discrimination and have
lower self-esteem, which translates into generally worse school outcomes [32–36]. The second is a
biological explanation, which posits that obesity affects brain and memory functions, contributing to
poor academic performance outcomes [26–29].

The third relationship is the direct effect of MD concentrations on GPA, which was negative and
statistically significant. This reveals that although BMI significantly mediates the relationship between
MDs and GPA, there is an additional direct effect whereby MDs predict lower GPAs, apart from their
associations with BMI. This is likely because MDs harm bodies in myriad ways beyond promoting
weight gain. The impacts of MDs even extend beyond metabolic and endocrine disruption to include,
for example, neurological and developmental effects [11]; it is probable that these chemicals inflict
additional damage that may degrade school performance.

These findings are important at both the individual and the population level. At the individual
level, they are significant because school achievement predicts both future success in the labor
market and health outcomes in adulthood [74]. The environmental justice literature has documented
that poor and minority children are exposed to greater levels of air pollution than their white and
more affluent counterparts [5–7,10,75]. Thus, it stands to reason that the greatest impacts of this
insidious association between toxics and school performance are being borne by those who also
struggle with other educational challenges. Additionally, it is unlikely that parents or teachers would
notice small decreases in GPA and attribute them to either pollutants or BMI, making these findings
particularly concerning and difficult to address through behavioral interventions. It suggests that few
will take action to prevent exposure to these chemicals, since these associations will almost always
go unrecognized.

At the population level, the bodily impacts of chemicals, including MDs, can have catastrophic
effects. In addition to the growing cost of obesity and obesity-related diseases within the healthcare
sector, Colborn [76] posited that decreased cognitive abilities due to chemical exposure could
place a greater strain on remedial education while leading to the development of fewer people
deemed intellectually “gifted.” Ultimately, population-level neurological and cognitive damage
stemming from chemical exposures could place a dramatic burden on the healthcare sector and
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negatively impact the development of human capital, decreasing societal capacities for scientific and
technological innovation.

Limitations and Directions of Future Research

This study has several limitations. One relates to the measurement of MDs. There is not yet an
official list of endocrine or metabolic disrupting chemicals, which impacts this study and others seeking
to examine the effects of MDs on human and ecological well-being. Researchers with The Endocrine
Disruption Exchange and the Institute for Environment and Health have provided lists of known and
suspected MDs, but these are not monitored, regulated, or regularly updated by agencies such as
the USEPA, US Centers for Diseases Control, or World Health Organization. Additionally, as of 2016,
over 1000 EDCs have been identified [60]; the 2005 NATA includes data on only 177 chemicals which
are all regulated by the Clean Air Act (Environmental Protection Agency 2014), many of which may
have metabolic disrupting effects that are currently unknown. Because many chemicals in industrial
use and on the consumer market are not regulated, many such chemicals now in circulation (or in
development) may be identified as MDs for generations to come.

There are limitations with the USEPA’s NATA data. First, we paired our 2012 survey data with
2005 NATA estimates, which were the most recent estimates available when the study was conducted.
Despite the time lag, we believe that the concentrations between 2005 and 2011 have remained relatively
constant given that all major freeways, roads, factories, refineries, airports, train stations, and ports of
entry within the EPISD have remained in the same locations since 2005. Secondly, this study examined
only MDs that are emitted in the air and regulated under the Clean Air Act, and hence included in the
NATA. Airborne emissions do not fully encapsulate the multiple forms of exposure to MDs, as MDs
and EDCs are found in household and personal care products [77,78], in indoor air and dust [79],
and food products and packaging [80,81], in addition to ambient air emissions.

Lastly, there are limitations associated with our survey data. We lack variables related to children’s
health behaviors (e.g., exercise and diet), which would be important to control for in future studies.
The effects of exposure to MDs, and EDCs more generally, are mediated by sleep patterns, the
microbiome, preexisting health conditions, and other social and genetic determinants of health not
included in our model [11]. The data used in our BMI calculations were reported by caretakers as
opposed to collected through in-person measurements of the children. Research has shown that bias
in height and weight reporting is greatest among parents of young children (ages 2–5) and reduced
when they have older children [82]. Given that the children under study are ages 10–11, reporting
bias is likely less of an issue than if we were studying preschoolers. Note also that researchers have
concluded that parent-reported height and weight measures are accurate enough to be applied in
studies on obesity in children ages 3–17 [83]. The use of cross-sectional survey data means that we
examined associations at only one point in time and cannot determine if levels of MDs preceded
decreased school performance.

5. Conclusions

The findings from this study report a disturbing association between probable chemical exposures
to a new and relatively unregulated class of chemicals and academic performance in elementary school
children. Children are more susceptible to the adverse effects of exposure to air toxics because they
have larger lung surface in relation to their body weight compared to adults, meaning that they breathe
in more air per kilogram of body weight. Additionally, children spend more time outside than adults
do, and often engage in activities such as playing sports and running that require them to breathe
in more air so their body weight burden is significantly greater than that of adults [84]. They also
have more open pathways of environmental exposure (e.g., through hand-to-mouth contact) than do
adults. These children, the majority of whom are ages 10–11, are in the pre-pubescent development
stage. According to the developmental origins of disease theory, children at this stage of life are
in a critical window whereby the body is much more sensitive to environmental exposures and
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stressors than it is at older ages; environmental exposures during these critical windows can radically
alter gene development and, in turn, affect organ and tissue function [11,85]. Additionally, these
environmental exposures are more likely to result in adverse health outcomes in children due to their
rapidly developing systems. Exposure to MDs during this critical window of vulnerability may impact
children’s abilities to learn and retain information.

These results contribute to discussions about the environment and obesity and the growing
literature on children’s weight and academic achievement. Findings corroborate previous studies
linking exposure to air toxics to academic achievement and demonstrate that, even after controlling for
economic and demographic factors, MDs have negative impacts on children’s academic performance
both directly and indirectly through BMI. The relevance of research on MDs is difficult to overstate,
since rates of childhood obesity are expected to double in the next 20 years [26].

Research on MDs is in its infancy; in the future, more chemicals will be found to have metabolic
disrupting properties, making such studies increasingly important. In terms of chemical-testing
policy in the US, there is an urgent need to move beyond the cancer paradigm (i.e., a focus solely
on cancer when testing a single chemical) and to develop innovative ways to test entire classes of
chemicals (e.g., MDs) for multiple health effects at the same time. MDs have insidious effects on
the endocrine system, which serves as the body’s “biological highway” [76]. Non-cancer outcomes
including memory loss, decreased neurological capabilities, and behavioral disorders, such as autism
and attention deficit/hyperactivity disorder, have serious consequences for human well-being. In order
to reduce exposure to MDs and reduce the body burdens of toxic chemicals in humans, chemical
manufactures could be required by US law to show “proof of safety” before chemicals are sold, as
opposed to the current model, which allows chemicals to be sold until they are proven to cause adverse
health effects. Researchers should also develop methods of monitoring both personal and community
exposure to MDs across generations. The effects of environmental exposures may have a greater
impact on health and non-health outcomes (including school performance) than genetic determinants,
even though environmental determinants receive less focus and research funding.
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