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Abstract: Nitric oxide (NO) and hydrogen sulfide (H2S) are known as biological 

messengers; they play an important role in human organism and contribute to many 

physiological and pathophysiological processes. NO is produced from L-arginine by 

constitutive NO synthase (NOS) and inducible NOS enzymatic pathways. This gaseous 

mediator inhibits platelet aggregation, leukocyte adhesion and contributes to the vessel 

homeostasis. NO is known as a vasodilatory molecule involved in control of the gastric 

blood flow (GBF) and the maintenance of gastric mucosal barrier integrity in either healthy 

gastric mucosa or that damaged by strong irritants. Biosynthesis of H2S in mammals 

depends upon two enzymes cystathionine-β-synthase and cystathionine γ-lyase. This 

gaseous mediator, similarly to NO and carbon monoxide, is involved in neuromodulation, 

vascular contractility and anti-inflammatory activities. For decades, H2S has been known to 

inhibit cytochrome c oxidase and reduce cell energy production. Nowadays it is generally 

considered to act through vascular smooth muscle ATP-dependent K+ channels, interacting 

with intracellular transcription factors and promote sulfhydration of protein cysteine 

moieties within the cell, but the mechanism of potential gastroprotective and ulcer healing 

properties of H2S has not been fully explained. The aim of this review is to compare 

current results of the studies concerning the role of H2S and NO in gastric mucosa 

protection and outline areas that may pose new opportunities for further development of 

novel therapeutic targets. 
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1. Introduction 

Gastric mucosa is constantly exposed to exogenous food products, providing vital nutrients to the 

human body in order to maintain physiological homeostasis. Unfortunately, many of these food 

products, harsh substances and drugs delivered via the oral route can affect gastric mucosal integrity. 

Ethanol, nicotine and ingestion of drugs, in particular, nonsteroidal anti-inflammatory drugs (NSAIDs) 

(e.g., aspirin, ASA) are considered as the major causative factors in the development of acute mucosal 

damage and gastric ulcers [1–3]. Moreover, Helicbacter pylori infection, hyperosmolar solutions, bile 

salts, the exposure to chronic stress, and ischemia to the gastric tissue followed by reperfusion were all 

reported to act as the risk factors of peptic ulcer disease [4,5]. 

The physiological protective mechanisms involved in maintaining gastric mucosa integrity include 

epithelial cells secreting mucus and bicarbonate, the gastric blood flow (GBF) [6,7], endogenous 

prostaglandins (PGs) [8–11], metallothionein [12], melatonin [13] and recently discovered food intake 

controlling peptides such as ghrelin [14], orexin-A [15] and leptin [16]. Moreover, gaseous molecule 

nitric oxide (NO) and other gaseous vasoactive mediators such as hydrogen sulfide (H2S) and carbon 

monoxide (CO) were shown to play an important role in the mechanism of mucosal defense and 

gastroprotection [17,18]. It is now generally accepted that gaseous mediators NO (Figure 1) and H2S 

contribute to many physiological and pathophysiological processes including the maintenance of 

gastrointestinal (GI) integrity and the mechanism of gastroduodenal protection. 

 

Figure 1. Beneficial actions of nitric oxide (NO) in the mechanism of gastrointestinal mucosal defense.  
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2. Biosynthesis of NO and Its Major Functions in Various Body Systems 

NO is produced and released from vascular endothelium and sensory nerve endings via the 

enzymatic activity of constitutive NO synthase (cNOS) and inducible NOS (iNOS) [19]. The agonists, 

such as acetylocholine (ACh), bradykinin or serotonin (5-HT) were shown to stimulate their membrane 

receptors in endothelial cells of gastric vessels and release NO [19]. A substrate for NO synthase to 

produce NO is amino acid L-arginine [20]. NO diffuses from endothelium to smooth muscles, located 

in vascular wall, where NO reacts with soluble guanylyl cyclase (sGC), leading to cellular rise of a second 

messenger cyclic guanosine monophosphate (cGMP). NO activates sGC, transforming guanosine 

triphosphate (GTP) to cGMP. This cGMP, acting via protein kinase G leads to relaxation of smooth muscle 

cell and subsequent increase of vessel diameter and an enhancement in the organ blood flow [8,21]. The 

biological action of NO may be mimic by the exogenous administration of NO donors, such as sodium 

nitrate, nitroprusside or other organic nitrates, the 3-morpholinosydnonimine (SIN-1), S-nitroso-N-

acethyl-D,L-penicylamine (SNAP), gliceryl trinitrate (GTN) or NO-releasing aspirin [22,23]. Thiols 

(R-SH), for example, glutathione (GSH) cooperate with NO. Other vasodilators, for example, 

pentoxifylline (PTX) may act on smooth muscle causing their relaxation but this effect seems to be NO 

independent [24]. 

The fact that NO acts on blood vessels causing vasodilatation implies that this gaseous molecule 

contributes to the maintenance of gastric mucosal barrier integrity. This is supported by the 

observation that the inhibition of NO production by a nonspecific NG-nitro-L-arginine (L-NNA) not 

only markedly impaired gastric secretion and gastric motility but also abolished the protective activity of 

gastroprotective agents [25]. Moreover, the inhibition of NOS has been shown to delay the healing of 

chronic gastric ulcers and diminish the restoration of the GBF at ulcer margin associated with this 

healing process [26]. Interestingly, the adverse effect of blockade of NOS by L-NNA or L-NG-monomethyl 

arginine citrate (L-NMMA) on gastric integrity can be reversed by administration of L-arginine,  

a substrate for this enzyme, administered in the presence of this inhibitor [21,26]. 

3. Role of NO in the Mechanism of Gastric Integrity, Protection and Ulcer Healing 

The evidence based medicine indicate that NO, the afferent capsaicin-sensitive C fibers and products 

of cyclooxygenase (COX) activity, are major factors, involved in the maintenance of gastric mucosal 

integrity due to their potent role in the control of the GBF, gastroprotection and ulcer healing [21,26]. 

Inhibition of NOS that results in a decrease in local NO production, impairs gastric microcirculation 

and aggravates gastric lesions induced by noxious agents. In physiological conditions, NO is produced 

by NOS from L-arginine, which is transformed to L-citrulline [27]. In pathological conditions, L-arginine 

may be involved in another metabolic pathway, catalyzed by protein arginine methyltransferase 

(PRMT). PRMT, in presence of proteins containing methylated arginine residues, produces 

asymmetric dimethylarginine (ADMA) [28]. ADMA acts as an endogenous NOS inhibitor in 

decreasing the NO production. Depletion of NO has multifactorial consequences and may be 

considered as a phenomenon in pathogenesis of numerous global diseases such as hypertension, 

arteriosclerosis, heart failure, chronic kidney disease, diabetes mellitus [29–32]. Then, ADMA can be 

metabolized to L-citrulline by enzyme dimethylarginine dimethylaminohydrolase (DDAH) [32]. 
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Recently, the administration of ADMA failed to cause spontaneous gastric lesions but exacerbated 

gastric lesions induced by various ulcerogenes including stress and ischemia-reperfusion injury [33,34] 

suggesting that the inhibition of NO-synthase can increase the gastric mucosa susceptibility to damage 

induced by various stressors and gastric ulcerogenes. 

Mechanism of beneficial action of NO-donors has been attributed to the vasodilatation induced by 

these agents resulting in an increase of perfusion of target organs [35]. For instance, SIN-1-induced 

release of NO exerted anti-atherogenic properties by alteration of low density lipoprotein (LDL) 

metabolism in macrophages [36]. Another NO-donor administration, S-nitroso-N-acethyl-D,L-penicylamine 

(SNAP), potently affected the regulation of cardiovascular system in hypertension [37]. The 

administration of NO-donors accelerated healing of gastric mucosa damage and experimental gastric 

ulcers [38]. For example, GTN attenuated damaging effect of ethanol by improvement of the changes in 

potential difference across the stomach wall [39]. SNAP demonstrated gastroprotective properties 

against ethanol-induced gastric lesions due to an increase in the GBF in this animals. Moreover, SNAP 

has been shown to inhibit gastric acid secretion documented in vitro in isolated parietal cells, which at 

least in part, may contribute to the observed gastric protection by this agent in vivo [40]. 

The major complication related to NSAIDs such as ASA ingestion in humans is the increased risk 

of adverse GI-side effects associated with their world-wide use as anti-inflammatory therapy. These 

adverse effects of ASA were originally attributed to the inhibition of COX and the deficiency of 

endogenous PGs, an increase in reactive oxygen species (ROS), lipid peroxidation and a fall in 

antioxidizing activities of gastric mucosa exposed to ASA [41]. The mechanism of NSAID-induced 

side effects is inhibition of constitutive isoform COX-1 and inducible isoform COX-2 [41]. The COX-1 

plays gastroprotective role, because it produces PGs involved in protection of GI-mucosa while COX-2, 

which is induced but proinflammatory mediators, results in detrimental effects such as an increase of 

vessels permeability, pain and fever due to production of large amount of proinflammatory PGs [42,43]. 

The administration of non-selective COX inhibitors, e.g., ASA causes, except for therapeutic effects 

resulting from COX-2 inhibition, also side effects, resulting from COX-1 inhibition [42]. However, the 

selective inhibition of COX-2 aggravates acute gastric lesions induced by stress and ischemia-reperfusion 

and delays the healing of preexisting gastric ulcers [43]. 

A new class of NO-releasing NSAIDs was shown to inhibit COX-1 and COX-2 activity and PGE2 

generation without causing mucosal damage [22,44]. Furthermore, NO-ASA, despite inhibition of COX 

enzymes was shown to protect the gastric mucosa against ethanol, stress and NSAID-induced gastric 

damage and accelerate the healing of gastric ulcers, mainly due to release of NO enhancing GBF [44–46]. 

Mechanism of this beneficial action of NO should be further investigated but NO, which is released 

from NO-ASA, could compensate for the inhibition of COX-1 and COX-2 activity and subsequent fall 

in PG synthesis induced by ASA [47]. Fiorucci et al. [48] demonstrated that NO-ASA compared with 

native ASA exerted sparing effect on gastric mucosa by inhibition of apoptosis and impairment of 

proinflammatory cytokines TNF-α and IL-1β. Takeuchi et al. [49] have confirmed the protective 

activity of NO donating ASA against formation of gastric lesions induced by cold stress. However, the 

excessive release of NO from its donors could exert deleterious influence on the gastric mucosa 

because the application of SNAP in higher doses exaggerated ethanol-induced gastric damage [40]. 

The scavenging effect of these new NO derivatives of NSAID on ROS production has been 

demonstrated during healing of chronic gastric ulcers and this action was accompanied by a decrease 
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in lipid peroxidation [50]. Wallace et al. [51] revealed that NO-ASA exhibited inhibitory effect on 

neutrophil adherence to the vascular endothelium and the neutrophil infiltration of gastric tissue and 

these effects resulted in diminishing of oxidative GI tissue damage. Neutrophils produce superoxide 

radical anion (O2
•−), which belongs to group of reactive oxygen species (ROS). Superoxide radical 

anion reacts with cellular lipids, leading to the formation of lipid peroxides. The major anti-oxidative 

enzyme is superoxide dismutase (SOD). SOD catalyzes the dismutation of superoxide radical anion 

(O2
•−) into less noxious hydrogen peroxide (H2O2), that is further degraded by catalase or glutathione 

peroxidase (GPx) [52,53]. The reaction of superoxide (O2
•−) with NO is however approximately three 

times faster than the elimination of superoxide by SOD, which could question the role of SOD in 

protecting NO bioavailability. Animal models have however clearly indicated that the inhibition of 

SOD by diethyldithiocarbamate (DETC) leads to a very significant attenuation of endothelium 

dependent NO-mediated vasorelaxation [53]. 

In contrast, Konaka et al. [54] observed an intensification of lipid peroxidation and 

myeloperoxidase (MPO) activity, accompanied by increase of NO production in rats with 

indomethacin-induced small intestinal lesions. The alternative therapy against GI lesions induced by 

ASA could be administration of other NO-donors because the experimental combined therapy of ASA 

with GTN, SIN-1, SNAP, molsidomine, sodium nitroprusside ameliorated the formation of ASA-induced 

gastric damage and improved the status of gastric mucosa treated with non-selective and selective 

COX-1and COX-2-inhibitors [52,53,55]. 

Disturbances in blood perfusion of gastric mucosa, during stress, result in local episodes of 

ischemia to the gastric tissue, followed by reperfusion and enhanced generation of ROS [56]. Previous 

studies revealed that ROS may cause a peroxidation of membrane lipids to lipid peroxides and 

impairment of cellular physiological functions leading to increased acid back-diffusion [56,57]. The 

determination of SOD activity and level of reduced glutathione (GSH) serve as suitable for the 

assessment of antioxidizing status of gastric mucosa injured by various damaging agents [57,58]. Three 

types of SOD can be distinguished: cytoplasmatic, mitochondrial and extracellular. SOD catalyzes the 

dismutation of superoxide radical anion (O2
•−) into less noxious hydrogen peroxide (H2O2), that is 

further degraded by catalase or glutathione peroxidase. Catalase is an enzyme which accelerates 

degradation of H2O2 into water and oxygen. The second pathway of H2O2 metabolism depend on 

activity of GPx and cooperating glutathione reductase. The reduction of H2O2 into water by GPx is 

accompanied by the conversion of GSH into oxidized form (GSSG) [58]. Interestingly, NO-releasing 

ASA increased gastric mucosal expression of anti-oxidative enzymes SOD and GPx in rats with  

stress-induced gastric lesions and greatly attenuated the rise in mucosal expression and release of 

proinflammatory cytokines IL-1β and TNF-α [58]. 

4. Role of NO in the Esophageal and Intestinal Protection 

The esophageal mucosal integrity depends upon the non-keratinized stratified squamous epithelium, 

hydrophobic lipid bilayer, tight junctions and intensive cell replication and regeneration after acid 

exposing mainly the distal esophageal mucosa [59]. Importantly, the esophagus, unlike stomach  

and duodenum, has no viscoelastic surface mucous layer and its epithelial cells do not secrete 

bicarbonate [59–61]. Consequently, the esophagus does not effectively trap of luminal bicarbonate 
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allowing for a buffering gastric acid as it back diffuses from lumen toward epithelium [62]. To keep 

such acidity from injuring the cell, cell membrane is capable of removing excess H+ from the cell and 

restoring pH to neutrality due to a sodium-dependent, chloride-bicarbonate, exchanger and a  

sodium-hydrogen ion exchanger of isotype-1 [63,64]. In esophageal epithelial cells, these transporters 

are localized to the basolateral membrane and include a sodium-dependent, chloride-bicarbonate, 

exchanger and a sodium-hydrogen ion exchanger of isotype-1 [64,65]. These barrier and transport 

functions of the esophageal epithelium as well as the adequate blood supply are integral processes for 

protection of the tissue against injury upon exposure to gastric acid [63–66]. 

NO and guanylate cyclase signaling were proposed to play a major role in the control of lower 

esophageal sphincter (LES) relaxation after stimulation of intrinsic inhibitory motor neurons [62].  

In studies by Lanas et al. [67,68], the preexposure of the esophageal mucosa to acidified saline 

significantly decreased both the mucosal damage and the mucosal barrier dysfunction induced by 

acidified pepsin. The concomitant treatment with either the nitric oxide synthase inhibitor, L-NNA or 

the perfusion of immunospecific EGF-receptor antibodies or tyrphostin-25, an inhibitor of the tyrosine 

kinase activities [67,68] completely reversed the protection induced by acid. They concluded that the 

rabbit esophageal mucosa develops mucosal adaptation to acid and pepsin dependent, at least in part, 

on nitric oxide and EGF-receptor-mediated mechanisms [67,68]. NO could mediate the 

esophagoprotective activity of certain radical scavenging substances e.g., melatonin, because the 

administration of L-tryptophan, a precursor of this indoleamine, or exogenous melatonin itself 

attenuated the esophageal damage in experimental models of rodent esophagitis [69,70]. Moreover, 

angiotensin-(1-7), a major vasoactive metabolite of angiotensin I, prevented the esophageal damage 

induced by experimental reflux esophagitis in rats via the modulation NO/NOS activity and gastric 

epithelial NO release [71]. In contrast, the co-administration of sodium nitrite and ascorbic acid in 

study by Ishiyama et al. [72] aggravated the esophageal damage compared with baseline reflux 

esophagitis, while the damage was unchanged when either of the reagents alone was given. This 

aggravatory effect of NO has been referred to the diffusion of the luminal NO into the adjacent 

superoxide-enriched inflamed tissue of the esophagus and excessive production of the highly toxic 

agent peroxynitrite, thus causing exacerbation of esophageal damage [72]. This notion was supported 

in their study [72] by observation that superoxide scavengers efficiently prevented the exacerbation of 

esophageal damage by exogenous NO exposure, suggesting an essential role of superoxide in the 

development of esophageal injury induced by gastric reflux. Interestingly, variations in saliva nitrite 

concentration in swallowed saliva failed to modify LES pressure and rate of gastric emptying and did not 

predispose to gastro-esophageal reflux (GERD) symptoms in humans [73]. The conventional NSAID 

such as ASA have been shown to augment esophagitis in experimental animals and humans but the 

new NSAID-releasing NO such as NO-ASA, exerted the beneficial protective effect against reflux 

esophagitis via the enhancement of esophageal microcirculation due to NO release and an inhibitory 

effect of this gaseous molecule on expression and release of pro-inflammatory cytokines [74]. 

Both ulcerative colitis and Crohn’s disease are collectively included in the chronic intestinal 

disorders of inflammatory bowel diseases (IBDs) which reflect a chronic and relapsing inflammatory 

condition of the GI-tract [75]. The pathophysiology of IBD involve the combination of factors 

including patients’ genetic predisposition, immune dysregulation, barrier dysfunction and the 

alterations in microbiota [75]. The environmental factors, such as changes in diet, stress, the use of 
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antibiotics, smoking or improved domestic hygiene (e.g., eradication of intestinal helminthes) were 

implicated in the development and an increased prevalence of IBD world-wide [76]. The role of NO in 

IBD is controversial since there is evidence of proinflammatory and beneficial actions of this 

endogenous and exogenous gaseous molecule in the treatment of IBD [77,78]. For instance, a protective 

action of exogenous NO in inflammation has been suggested by demonstration the treatment with 

Lactobacillus farciminis, which produces NO in vitro attenuated the colonic damage in experimental 

TNBS-induced colitis with the extent similar to that exhibited by sodium nitroprusside (SNP), a NO 

donor [77]. In another study, the increased production of pro-inflammatory cytokines and NO through 

the inducible nitric oxide synthase (iNOS) pathway has been proposed to play a role in pathogenesis of 

human ulcerative colitis (UC) [78]. In their study [78], the inflamed and not inflamed mucosa from 

patients with severe UC were incubated with a highly selective iNOS inhibitor 1400W, with or without 

a relatively selective cNOS inhibitor L-NAME, or an NO-donor, SNAP. They concluded that NO seems 

to exacerbate the inflammatory response, and selective iNOS inhibition may have therapeutic promise in 

the treatment of UC [78]. This notion was supported by observation that the selective inhibition of 

iNOS besides inhibition of NO release, suppressed mucosal TNF-α and IL-6 release in colonic mucosal 

explants of patients with active UC [78]. The protective role of NO in rodent models of experimental 

dextran (DSS)-induced colitis was developed by Jädert et al. [79], who revealed that inorganic nitrate 

and nitrite can serve as an alternative substrates for NO generation in the GI-tract. The administration 

of nitrate in their study [79] inhibited the disease activity score (DAI) and improved DSS-induced 

colitis by increasing the thickness of the protective mucus secretion in colonic mucosa. Nitrite not only 

alleviated inflammation associated with DSS administration but also displayed therapeutic effects by 

ameliorating established colonic inflammation due to the attenuation of enhanced colonic expression 

of iNOS and the preservation of adherent mucus layer [79]. Arginase is the endogenous inhibitor of 

inducible NO synthase (iNOS), that uses the same substrate, L-arginine and synthesizes ornithine, 

which is metabolized by the enzyme ornithine decarboxylase (ODC) to produce polyamines [80]. In a 

study using the same animal model of DSS-induced colitis, the administration of nor-NOHA, an 

inhibitor of arginase activity, ameliorated the colonic damage and the upregulation of arginase at both 

mRNA and protein levels, and decreased the content of L-arginine in colonic tissue [80]. As a result, 

the decreased concentration of NOx in colonic tissues during colitis was restored to almost normal 

levels [80]. These authors concluded that arginase-induced depletion of NO production could 

contribute to the pathogenesis of the colonic inflammation and arginase inhibition should be further 

considered as the therapeutic strategy in the treatment of colitis [80].The dysbiosis of bacteria as a 

source of NO has been hypothesized to initiate UC in humans and the prolonged production of 

bacterial NO with sulphide could contribute to the initiation and mucosal barrier breakdown [81]. It is 

proposed that the production of NO by colonic bacteria and that produced by the colonic mucosa 

should be considered as two separate sources of NO in the lumen of lower GI-tract [81]. 

5. Biosynthesis of H2S and Its Major Functions in Various Body Systems 

H2S is biosynthesized form L-cysteine by the activity of two main pirydoxal-5-phosphate (vitamin B6) 

dependent enzymes: cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) (Figure 2) [82,83]. 

Moreover, H2S may be synthesized by 3-mercaptopyruvate sulfotransferase (3-MST) in coactivity with 
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cysteine aminotransferase [84,85]. H2S concentration in mammalian blood ranges between 30 and 100 µM. 

In the brain upper limit is 160 µM. Values higher than 200 µM exerts toxicity [86,87]. 

 

Figure 2. Simplified hydrogen sulfide synthesis pathway.  

In experimental models, D,L-propargylglycine (PAG) or β-cyanoalanine are commonly used to 

inhibit CSE activity, whereas hydroxylamine or aminooxyacetic acid serve as a tool to inhibit CBS [88,89]. 

To increase endogenous H2S level, researchers use precursor of the gaseous mediator synthesis,  

L-cysteine or a direct donors of this gaseous mediator, such as NaHS, diallyl disulfide (DADS) or 

Lawesson’s reagent [2,90].  

Recent studies have shown that H2S, likewise NO and CO, is involved in various physiological 

activities [17,87]. Those gaseous molecules indicate vasodilatory, neuromodulatory and anti-inflammatory 

effects [91,92]. 

In the central nervous system, H2S dose-dependently evokes long-term potentiation and this 

response is accompanied with intracellular cAMP production and NMDA-receptors activity in 

hippocampus [92]. Additionally, H2S protects blood-brain barrier integrity [93] and promotes 

angiogenesis after cerebral ischemia [94]. 

In the cardiovascular system H2S inhibits leukocytes adherence to blood vessels walls and induces 

vasodilatation [95]. Both abovementioned effects were abolished by glibenclamide, which suggests 

that H2S physiological actions are connected with ATP-dependent potassium ion channels [96]. 

Interestingly, the hypotensive effect of NO and CO is linked to sGC and cGMP activation what 

differentiates those molecules from H2S [97]. 

Many studies have been conducted to determine the role of H2S in the treatment of inflammatory 

pathologies [98,99]. On the one hand, a pro-inflammatory action of H2S was observed in 

lipopolysaccharide (LPS)-induced endotoxemia [100,101] and therapeutic administration of PAG, 

H2S-synthetizing enzyme inhibitor, has been shown to protect mice against acute pancreatitis 

associated lung injury [102]. On the other hand, many studies reported anti-inflammatory features of 

H2S [99]. The ability of H2S to reduce inflammation has been demonstrated in a variety of animal 

models, including mice burn injury [103], rat model of colitis [104] and carrageenan-induced paw 

edema [105]. H2S can evoke anti-inflammatory and pro-inflammatory effects depending on lower and 

higher concentration, respectively [95,105]. 

In the GI system H2S remains important in the regulation of local homeostasis and may be 

physiological factor with an essential role in gastric mucosal defense mechanisms. 

6. Involvement of H2S in the Mechanism of Gastroprotection and Ulcer Healing 

It has been demonstrated that H2S protects GI tract against gastric damage induced by various  

factors [89]. Wallace et al. [106] showed that COXs inhibitors in combination with H2S donor can 
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attenuate gastric mucosal lesions in stomach induced by NSAID, such as naproxen or ASA. It has been 

shown that H2S releasing derivatives of NSAID have reduced side effects within GI tract comparing 

with native forms of this agents [107]. These results were confirmed by Liu et al. [108] by 

demonstration that the novel H2S-releasing derivative of this anti-inflammatory drug attenuated gastric 

lesions induced by conventional ASA. 

Cipriani et al. [109] demonstrated that protective action of H2S is accompanied with the activity of 

bile acid receptor (GPBAR1) since GPBAR1 agonists protected gastric mucosa against injury induced 

by ASA and other NSAIDs in a COX-independent manner. Administration of PAG reversed these 

effects. It was concluded that GPBAR1 and H2S are essential to maintain GI tract integrity against 

exposure to damaging factors [109]. 

Lou et al. [110] demonstrated that H2S decreases the concentration of the lipid peroxidation 

products in gastric mucosa and average gastric mucosa lesion number in the animal model of the water 

immersion and restraint stress. Our recent study revealed that endogenous PGs and afferent sensory 

nerves are involved in gastroprotective effect of H2S against stress-induced gastric damage [111]. 

Moreover, H2S dose-dependently exerted protective activity within the rat gastric mucosal cells (RGM1) 

against H2O2-induced oxidative damage. Involvement of mitogen-activated kinases (MAP) in H2S 

gastroprotection was observed. After inhibition of c-Jun N-terminal kinases (JNK) activated by oxidative 

stress and involved in apoptosis process, protective effect of NaHS was abolished. JNK-dependent 

intracellular signaling pathway is involved in protective action of H2S released from NaHS, although, a 

relative effect was not observed during inhibition of particular isoforms of p38 proteins which have 

similar function to JNK [112]. Taken together, H2S exerts anti-oxidative activity and plays an important 

role in protection of gastric mucosa epithelial cells against oxidative stress via MAP kinases activation. 

In our own study, we observed that NaHS, the donor of H2S, administered intragastrically in graded 

doses ranging from 0.1 mg/kg up to 5 mg/kg 30 min before application of 75% ethanol significantly 

reduced the area of gastric damage with the highest dose of 5 mg/kg being not more effective than  

1 mg/kg of this donor (Figure 3). Interestingly, Chávez-Piña et al. [3] demonstrated that PAG reduced 

ethanol-induced gastric lesions area comparing to NaHS-treated group and saline treated control 

groups with and without exposure to ethanol. Increased concentration of H2S was measured in gastric 

mucosa of rats exposed to ethanol comparing with saline treated animals. Inhibition of CSE by PAG 

resulted in decrease of gastric lesions area and H2S concentration. It is worth emphasizing that 

indomethacin inhibited the effect of PAG suggesting that PAG-induced gastroprotection could depend 

upon the generation of endogenous PGs [3]. We assume that there is a threshold level of H2S 

concentration in the tissue which determines if this gaseous molecule exerts beneficial or harmful 

effects in gastric mucosa. Further studies are certainly required to prove the role of this endogenous 

gaseous molecule in gastroprotection against necrotizing types of injury induced by ethanol. 

The undisturbed GBF is very important in homeostasis of the GI tract. As mentioned above in this 

review, the dysfunction of GBF may lead to initiation of gastric perturbations including mucosal lesions. 

Kubo et al. [113] observed that exposure to high and low concentrations of NaHS induced vasorelaxation 

and vasoconstriction, respectively, in isolated gastric blood vessels. Moreover, the contractile effect was 

accompanied by the inhibition of NOS and the endothelium-derived hyperpolarizing factor (EDHF). 

The relaxation of the blood vessels was partially inhibited by glibenclamide administration. 

Additionally, intravenous injection of NaHS increased GBF in rats [113]. We can assume that with 
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partial involvement of ATP-activated calcium ion channels H2S takes part in relaxation of blood 

vessels in GI tract [113].  

 

Figure 3. Mean lesions area of rats’ gastric mucosa exposed to 75% ethanol. Thirty minutes 

before intragastric (i.g.) application of 75% ethanol, animals were pretreated with saline or 

NaHS (0.1–5 mg/kg). Results are mean ±S.E.M of 6 rats per each group. Asterisk indicates 

significant (p < 0.05) difference in mean lesions area as compared with vehicle-control group.  

It was shown that L-cysteine and NaHS exert gastroprotection in animal model of ischemia/ 

reperfusion-induced gastric injury [114]. The mechanism was accompanied by the decrease of mRNA 

expression for pro-inflammatory cytokines, such as IL-10 or TGF-β in blood samples observed after 

application of H2S precursor and donor while PAG reversed this effect [114]. NaHS also prevented 

I/R-induced oxidative stress and inflammation by decrease in MDA content, increase in GSH level and 

decrease of NO, IL-6 and TNF-α secretion in gastric mucosa [115]. H2S significantly attenuated p38 

and JNK proteins activity stimulated after exposure of gastric mucosa to ischemia and reperfusion [115]. It 

was shown that H2S exerts antioxidant effect via Keap1 s-sulfhydration induced Keap1/Nrf2 

disassociation and Nrf2 activation [115]. L-cysteine protected gastric mucosa against ischemia-reperfusion 

injury by enhancing the anti-oxidative capacity of the tissue through increasing GSH and SOD levels [116]. 

It has been shown that NaHS and L-cysteine reduced distention-induced gastric acid secretion while 

L-NAME, an inhibitor of NO biosynthesis reduced this effect, which suggests the involvement of NO 

in mediating the antisecretory effect of H2S [117]. However, Takeuchi et al. [118] reported that H2S 

released from NaHS increased HCO3
− secretion in the stomach. This effect was mediated by  

capsaicin-sensitive afferent neurons and dependent on NO and PGs, but not by ATP-sensitive K+ 

channels. Nicolau et al. [119] demonstrated that Lawesson’s reagent, H2S donor protects gastric 

mucosa against alendronate-induced gastric damage by reduced lipid peroxidation as confirmed by a 

decrease in malonyldialdehyde (MDA) formation and MPO activity, increased GSH level, and reduced 

concentration of TNF-α and IL-1β in gastric tissue. Interestingly, in this case, glibenclamide reversed 
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beneficial effect of Lawesson’s reagent suggesting involvement of K+-ATP channels activity in H2S 

gastroprotection against alendronate-induced injury. 

The therapeutic efficacy of H2S was taken into the consideration because H2S-releasing derivatives 

of drugs were developed. It has been shown that H2S-releasing aspirin (ACS14) caused reduced gastric 

damage as compared with standard form of the drug [108]. Wallace et al. [120] demonstrated that  

H2S-releasing derivative of naproxen (ATB-346) exhibits anti-inflammatory properties similar to 

naproxen while gastrointestinal toxicity of this agent is reduced. Moreover, Wallace et al. [90] 

demonstrated that Lawesson’s reagent administration accelerated gastric ulcer healing in experimental 

model. Taken together, gastroprotective activity of H2S combined with NSAIDs could be an attractive 

option in the future as the new alternative anti-inflammatory therapy in human subjects taking native 

NSAIDs with complicated upper and lower GI disorders (Figure 4). 

 

Figure 4. NO and H2S gastroprotection against NSAID-induced gastric damage. 

7. Role of H2S in the Esophageal and Intestinal Protection 

Wallace et al. [121] have suggested that enteric bacteria may be main source of H2S in GI tract. The 

molecule can be alternative for oxygen for mitochondrial respiration. Diffusion of H2S released from 

bacteria into the subepithelial area is controlled by enterocytes and colonocytes. This interaction could 

be important to modulate mucosal function and integrity. H2S was shown to inhibit spontaneous 

contractile activity of smooth muscle cells in rat stomach and jejunum [122]. 

H2S evokes Cl− ion secretion by activating Ca2+ and ATP-sensitive K+ channels, what was demonstrated 

in rat colon [123]. Moreover, it has been shown that NaHS dose-dependently increases HCO3
− ion 

secretion in rat’s small intestine. This ions are important compound of natural protective alkaline 

mucus neutralizing acidic gastric contents which enters the duodenum from the stomach. Ise et al., 

demonstrated that NaHS increased bicarbonate secretion after HCl (10 mmol/L) infusion into rat 

duodenum. Glibenclamide did not inhibited this effect what confirms that the mechanism may not 
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depend on potassium channels activity. PAG decreased secretion of protective bicarbonates as 

compared to control group [124]. 

It has been shown that H2S protected the small intestine against dextran sodium sulfate (DSS)-induced 

colitis in mice [125]. Administration of PAG significantly increased the intestinal damage score observed 

as a bleeding, changes in a stool consistency and a weight loss. This effect was accompanied by the 

neutrophil activation observed as the increased MPO activity while H2S donors reduced this effect [125]. 

H2S exerted cytoprotection against trinitrobenzenesulfonic acid (TNBS)-induced colonic damage via 

excitation of sensory nerves and activation of Ca(v)3.2 T-type Ca2+ channels [126]. Moreover, H2S donors 

such as allyl sulfides from garlic reduced the severity of the colitis in experimental models [127–129]. 

Flannigan et al. [130] demonstrated that hyperhomocysteinemia exacerbated colitis what was 

accompanied by decreased colonic H2S synthesis cross-regulated by IL-10 production in colonic tissue 

suggesting that the IL-10/H2S signaling pathway could be promising target in therapy of inflammatory 

bowel disease. 

We cannot exclude potent therapeutic value of H2S against e.g., gastroesophageal reflux disease 

(GERD) and Barrett’s disease since Zayachkivska et al. [131] have demonstrated that H2S serves as a 

protective factor against non-erosive esophagitis The protective effect of H2S against esophagitis and 

GERD in humans await further experimental and clinical studies. 

8. Experimental Section  

The study was approved by the Institutional Animal Care and Use Committee of Jagiellonian 

University Medical College in Cracow (Country) and run in accordance with the statements of the 

Helsinki Declaration regarding handling of experimental animals. Male Wistar rats with weight 

averaging about 250 g were used in this study. Animals were fasted for 24 h with free access to 

drinking water before the experiment. 30 min before application of 75% ethanol, rats were randomly 

selected into the groups and were pretreated i.g. with: (1) vehicle (saline; 1 mL/rat) and (2) NaHS 

applied in graded doses ranging from 0.1 mg/kg up to 5 mg/kg. One hour after application of 75% 

ethanol, animals were anesthetized with pentobarbital (60 mg/kg i.p.) and sacrificed by cervical 

dislocation, the abdomen was opened and the stomach was removed to determine the area of gastric 

lesions by computerized planimetry (Morphomat, Carl Zeiss, Berlin, Germany) by the person who did 

not know to whom experimental group animals belonged to [7,33]. 

9. Conclusions 

According to the studies cited above, we can conclude that H2S as a gaseous mediator plays an 

important role in many physiological aspects in human body, especially within particular parts of 

digestive system (Figure 5). In this review article, we focused on potent involvement of the molecule 

in gastroprotection and maintenance of gastric mucosal integrity. 

H2S takes part in natural prevention against many disorders of the digestive system but activity of 

this molecule in GI tract depends on the concentration of this gaseous mediator in particular tissues. 

Thus, it is very important to improve methods which help to determine precisely the threshold value of 

H2S in tissues. 
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Figure 5. Role of hydrogen sulfide in organism and in gastrointestinal tract. 

To summarize, recently published data cited in this article, demonstrated that H2S serve as an 

important physiological molecules within GI tract. H2S and NO activity is connected with complex 

mechanisms (Table 1). These molecules maintain the integrity of gastric mucosa and exert 

gastroprotection by reducing lesion area caused by various damaging factors within GI tract. Although 

to clearly determine the protective role of these molecules it is necessary to conduct more studies 

concerning these aspects and corresponding to already present data. 

Table 1. Nitric oxide and hydrogen sulfide biochemistry and physiology.  

 

Nitric oxide 

 

Reference

Hydrogen sulfide 

 

Reference

Physiological concentrations  
serum  1 nM  [132] 30–100 μM  

brain/tissue 100–250 nM [133] 50–160 μM [106] 
toxic 0.5 µM [134] 250 μM  

Biochemical properties 
Half-life Seconds—minutes [135] Seconds [135] 

Physiological 
forms 

NO exists as a free 
radical 

[136] 
20% exist as H2S, 80% as HS−, trace 

amounts of S2− 
[137] 

N
O S

HH
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Table 1. Cont. 

 

Nitric oxide 

 

Reference

Hydrogen sulfide 

 

Reference

Crosstalk interaction on catalyzing enzymes 

     

 

NO donor increases 
the expression and 
activity of CSE in 

cultured aortic smooth 
muscle cells (SMCs) 

[97] 
NaHS inhibits iNOS expression and 
NO production in macrophage cells 

(RAW264.7) 
[138] 

 

NO cooperates with 
H2S via activation of 
guanylyl cyclase and 

increase of cGMP 

[139] 
NaHS treatment reduces eNOS 

activity and expression but not nNOS 
and iNOS in isolated rat aortas 

[140] 

     

 

NO does not increase 
the expression of H2S-

generating enzymes 
and the H2S level in 

endothelial cells. 

[141] 
NaHS/Na2S profoundly increases the 

expression or/and the activity of 
eNOS 

[141–144] 

 

H2S interacts with NO 
synthase to transform 
NO to nitroxyl (HNO)  

↓ NO → ↑HNO 

[145] 

Na2S augmented NO production in 
chronically ischemic tissues, by 

influencing iNOS and nNOS 
expression and stimulating nitrite 

reduction to NO via xanthine oxidase 
(XO) under hypoxic condition 

[146] 

Potent mechanisms of gastroprotection 

I/R injury 
↑ gastric blood flow  
↓ lipid peroxidation  
↓ free radicals 

[147] 
↓ plasma level of IL-1β and  
TNF-α mRNA expression 

[114] 

WRS injury 
↓ lipid peroxidation  
↑ SOD activity  

↑ GSH concentration 
[58] 

↓ acid output, ↑ gastric juice pH and 
mucin concentration, ↑GSH, CAT and 

SOD enzymes activities 
[148] 

↓ lipid peroxidation products [110] 

Ethanol injury 
↓ free radicals 
↑prostaglandins 

production 
[149] 

Involvement of KATP channels,  
capsaicin-sensitive nerve fibers and 

TRPV1 receptors 
[2] 

Gastric ulcers healing 

 

NO inhibits oxidative 
stress leading to 

acceleration of chronic 
gastric ulcers healing 

[150] 

Beneficial effect is not dependent on 
NO synthesis and do not occur 

through activation of ATP-sensitive 
K+ channels 

[90] 

  

N
O S 

HH

NO H2S NOH2S

NOH2S NOH2S
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