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The first epigenome-wide association study of BMI
identified DNA methylation at an HIF3A locus associated
with BMI. We tested the hypothesis that DNA methylation
variants are associated with BMI according to intake of
B vitamins. In two large cohorts, we found significant inter-
actions between the DNA methylation–associated HIF3A
single nucleotide polymorphism (SNP) rs3826795 and in-
take of B vitamins on 10-year changes in BMI. The asso-
ciation between rs3826795 and BMI changes consistently
increased across the tertiles of total vitamin B2 and B12

intake (all P for interaction <0.01). The differences in the
BMI changes per increment of minor allele were 20.10
(SE 0.06), 20.01 (SE 0.06), and 0.12 (SE 0.07) within sub-
groups defined by increasing tertiles of total vitamin B2

intake and 20.10 (SE 0.06), 20.01 (SE 0.06), and 0.10 (SE
0.07) within subgroups defined by increasing tertiles of
total vitamin B12 intake. In two independent cohorts,
a DNA methylation variant in HIF3A was associated with
BMI changes through interactions with total or supple-
mental vitamin B2, vitamin B12, and folate. These findings
suggest a potential causal relation between DNA methyl-
ation and adiposity.

DNA methylation is one of the major epigenetic events
that affect gene expression through a mechanism that is

not induced by changes in the DNA sequence (1). Increasing
evidence indicates that DNA methylation plays a pivotal role
in regulating body adiposity (2–5). In a recent large-scale
epigenome-wide association study, Dick et al. (4) found
that DNA methylation at HIF3A was associated with BMI.
However, genetic variants in this locus were not associated
with BMI, although they were associated with HIF3A meth-
ylation levels in blood and adipose and skin tissues. The
authors suggested that the association between HIF3Ameth-
ylation and BMI might not be operating by the Mendelian
randomization theory (4), but the study did not consider
potential modifying effects of environmental factors on the
genetic associations. Previous evidence supports the impor-
tance of considering interactions between genetic and diet/
lifestyle factors in the development of adiposity (6–10).

It has long been acknowledged that DNA methylation
levels are subject to modulation by environmental factors
such as diet and lifestyle. Methylation of DNA is a bio-
chemical process in which a methyl group is added to
DNA nucleotides. Several B vitamins, including folate,
riboflavin (B2), pyridoxine (B6), and B12, act as key en-
zyme cofactors and play essential roles in methyl group
metabolism and DNA methylation in particular (11,12).
Previous studies have associated B-vitamin intake with ad-
iposity in humans (13,14). Therefore, we hypothesized that
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B vitamins modify the relation between the methylation-
associated genetic variants at HIF3A and BMI. To test this
hypothesis, we examined interactions between intake of
B vitamins and DNA methylation variants at the HIF3A
locus in relation to BMI and 10-year changes in BMI in
two prospective cohorts: the Nurses’ Health Study (NHS)
and the Health Professionals Follow-Up Study (HPFS).

RESEARCH DESIGN AND METHODS

Study Population
The NHS is a prospective cohort study of 121,700 female
registered nurses aged 30–55 years at study inception in
1976 (15). The HPFS is a prospective cohort study of
51,529 U.S. male health professionals aged 40–75 years
at study inception in 1986 (16). The human subjects com-
mittees at the Harvard School of Public Health and Brigham
and Women’s Hospital approved these studies. Informed
consent was obtained from all participants. In both cohorts,
information about medical history, lifestyle, and health con-
ditions has been collected by self-administered question-
naires every 2 years since inception. The current analysis
baseline was set in 1980 for the NHS and 1986 for the
HPFS when the first data on intake of B vitamins were
collected. We included 8,109 women and 6,761 men of
European ancestry. Both case and control participants
with genotyping data available based on previous genome-
wide association studies were included (17–22).

Assessment of Dietary Factors and Covariates
Questionnaires were sent every 2 years to update in-
formation on medical history and lifestyle factors. The
cohorts had follow-up rates of .85%. Dietary intake of
various nutrients at baseline, including folate and vita-
mins B2, B6, and B12, as well as daily consumption of
alcohol, sugar-sweetened beverages, fried food, and total
meat were assessed by validated semiquantitative food
frequency questionnaires every 4 years (23,24). All con-
tributions, including those from food and supplements,
were summed to derive the total intake of specific
nutrients (23). The validity and reliability of the food
frequency questionnaire has been established previously
(23,24). Physical activity was expressed as metabolic
equivalents per week by incorporating the reported time
spent on various activities and the intensity level of each
activity. The validity of the self-reported physical activity
data has been described previously (25). The Alternate
Healthy Eating Index was calculated previously in the
NHS and HPFS (26).

Assessment of Adiposity and 10-Year Changes in BMI
Height and body weight were assessed by questionnaire at
baseline, and weight was requested on each follow-up
questionnaire. Body weight at a young age (18 years old in
the NHS and 21 years old in the HPFS) was also collected
by questionnaire. Self-reported weights were highly
correlated with directly measured values (r = 0.97 in
men and women) in a validation study (27). BMI was
calculated as body weight (kg)/height (m2). Participants

with a BMI $30 kg/m2 were defined as obese, and those
with a BMI $25 kg/m2 were defined as overweight. The
epidemic of obesity occurred during a relatively short pe-
riod of time in the U.S. between ;1980 and 2000 (28,29),
paralleling a dramatic transition from traditional to obe-
sogenic diet/lifestyle patterns (9,10,30). Obesity traits
measured at a single time point cannot capture the vari-
ance in gradual changes, whereas changes in BMI/body
weight during the period of the obesity epidemic more
likely reflect the long-term, dynamic response to gene-
environment interactions. Furthermore, considerable in-
terindividual variations of weight change in response to
diet interventions have long been noted (10); therefore,
the present study mainly focused on 10-year changes in
BMI. We defined the 10-year period for changes in BMI as
1980–1990 in the NHS cohort and 1986–1996 in the
HPFS cohort.

Single Nucleotide Polymorphism Selection and
Genotyping
The HIF3A variants rs3826795 and rs8102595 were se-
lected because they had independent associations with
methylation at a specific CpG site (cg22891070) within
intron 1 of HIF3A in adipose tissue and skin DNA asso-
ciated with BMI (4). The single nucleotide polymorphisms
(SNPs) were genotyped and had a high imputation quality
score (r2 $ 0.8) as assessed with the use of MACH version
1.0.16 software (Center for Statistical Genetics, Univer-
sity of Michigan). DNA extraction methods, quality con-
trol measures, SNP genotyping, and imputations are
described in detail elsewhere (17–22,31). The minor allele
frequencies (MAFs) of rs3826795 and rs8102595 are 0.09
and 0.18, respectively.

Statistical Analyses
We examined the association of genetic variants with
adiposity measures, baseline B-vitamin intake, and 10-
year changes in BMI or body weight using general linear
models. Interactions between the genetic variants and
intake of baseline nutrients (e.g., intake of total B vitamins,
intake of B vitamins from supplements or food
sources) on body weight, BMI, and 10-year changes in
body weight or BMI were tested by including a multi-
plicative interaction term in the models. Potential
confounders considered in multivariable models were age
(years, continuous), baseline physical activity (MET-h/week,
continuous), baseline television watching (0–1, 2–5, 6–20,
21–40, .40 h/week), baseline smoking (never, past, cur-
rent), baseline alcohol intake (0, 0.1–4.9, 5.0–9.9, 10–
14.9,$15 g/day), baseline Alternate Healthy Eating Index
(in quintiles), and baseline total energy intake (in quin-
tiles). Sugar-sweetened beverage, fried food, and total
meat consumption were further adjusted in sensitivity
analyses. The Bonferroni correction was conducted for
multiple comparisons (0.05/8).

In secondary analyses of incident obesity assessed in
1990 (NHS) and 1996 (HPFS), we used logistic regression
models to estimate odds ratios. Results across cohorts
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were pooled with inverse variance–weighted meta-analyses
by fixed-effects models (if P $ 0.05 for heterogeneity be-
tween studies) or random-effects models (if P , 0.05 for
heterogeneity between studies). All reported P values are
nominal and two-sided. Statistical analyses were performed
with SAS 9.3 software (SAS Institute, Cary, NC).

RESULTS

Baseline Characteristics
The current study included 8,109 women from the NHS
cohort and 6,761 men from the HPFS cohort. Table 1
shows the baseline characteristics for the NHS cohort
(year 1980) and HPFS cohort (year 1986). At baseline,
mean 6 SD age was 45.8 6 14.6 years in the NHS and
54.6 6 8.7 years in the HPFS. The MAFs of HIF3A SNP

rs3826795 were 0.17 in the NHS and 0.18 in the HPFS.
The MAFs of HIF3A SNP rs8102595 were 0.10 in the NHS
and 0.09 in the HPFS. The SNP rs3826795 showed only
weak linkage disequilibrium with the SNP rs8102595 (r2 =
0.006; D9 = 0.555 in the HapMap CEU [Centre d’Étude du
Polymorphisme Humain from Utah] database [http://
hapmap.ncbi.nlm.nih.gov]).

Main Genetic Associations of HIF3A Variants With
Adiposity Measures
In both cohorts, we did not observe significant associa-
tions of HIF3A rs3826795 with adiposity measures, in-
cluding body weight at a young age (18 years old in the
NHS and 21 years old in the HPFS), baseline body weight,
baseline BMI, and 10-year changes in body weight and
BMI (Table 2). HIF3A rs3826795 was not associated

Table 1—Baseline characteristics of participants in the NHS (1980) and HPFS (1986)

NHS (Women) HPFS (Men)

Participants (n) 8,109 6,761

Age (years) 45.8 6 14.6 54.6 6 8.7

Body weight (kg) 67.1 6 13.4 82.2 6 12.0

Height (cm) 163.9 6 6.2 178.5 6 6.6

BMI (kg/m2) 25.0 6 4.7 25.7 6 3.2

Alcohol intake (g/day) 6.5 6 10.5 12.4 6 16.2

Current smoker 2,108 (23.9) 576 (8.8)

Physical activity (MET-h/week) 14.0 6 19.7 19.9 6 26.3

Alternate Healthy Eating Index 29.1 6 8.7 44.6 6 10.9

Fried food consumption (servings/day) 0.1 6 0.1 0.2 6 0.2

Sugar-sweetened beverage consumption (servings/day) 0.3 6 0.5 0.2 6 0.4

Television watching (h/week) 13.5 6 12.0 11.7 6 10.9

Total energy intake (kcal/day) 1,578 6 492 2,026 6 612

Total vitamin B2 (mg/day) 3.4 6 6.5 5.2 6 10.3

Total folate (mg/day) 368 6 246 473 6 260

Total vitamin B6 (mg/day) 3.0 6 8.0 8.5 6 24.0

Total vitamin B12 (mg/day) 8.91 6 13.66 12.63 6 14.55

Supplemental vitamins
Vitamin B2 (mg/day) 2.1 6 7.8 4.5 6 12.1
Folate (mg/day) 175 6 285 189 6 262
Vitamin B6 (mg/day) 1.7 6 9.5 8.7 6 28.1
Vitamin B12 (mg/day) 4.36 6 17.13 5.31 6 15.87

Food-sourced vitamins
Vitamin B2 (mg/day) 1.7 6 0.5 1.9 6 0.5
Folate (mg/day) 263 6 108 351 6 112
Vitamin B6 (mg/day) 1.6 6 0.5 2.2 6 0.8
Vitamin B12 (mg/day) 5.97 6 3.09 8.88 6 5.12

rs3826795
GG 5,928 (62.5) 4,554 (66.6)
GA 2,172 (33.4) 2,051 (30.0)
AA 389 (4.1) 229 (3.4)

rs8102595
AA 7,720 (81.3) 5,641 (82.5)
AG 1,675 (17.7) 1,132 (16.6)
GG 94 (1.0) 59 (0.9)

Data are mean 6 SD or n (%) unless otherwise indicated.
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with risk of obesity or overweight (Supplementary Table
1). The null associations were consistently observed in
analyses stratified by age or lifestyle factors in the NHS
and HPFS cohorts (Supplementary Table 2).

Association of Total B-Vitamin Intake With 10-Year
Changes in BMI and DNA Methylation Variants
We found positive associations of baseline total vitamin
B12 intake from food and supplemental sources with
10-year BMI change in the NHS and HPFS cohorts (both
P for trend ,0.01) after adjustment for age, source of
genotyping data, smoking, alcohol intake, physical activity,
total energy intake, television watching, and Alternate
Healthy Eating Index (Supplementary Table 3). Across ter-
tiles of total vitamin B12 intake (T1, T2, and T3), the
changes in BMI were 0.74 (SD 0.68), 0.83 (SD 0.76), and
0.88 (SD 0.82) kg/m2 in the pooled cohort. The association
of vitamin B6 with BMI changes over a 10-year period was
significant in NHS (P = 0.03) but borderline significant in
HPFS (P = 0.07). Vitamin B2 was significantly associated
with 10-year BMI changes in HPFS but not in NHS. How-
ever, folate intake was not related to BMI changes. Further
analyses indicated that food sources of vitamins B12 and B6
but not supplemental B vitamins were associated with BMI
changes. In addition, we did not observe significant asso-
ciations of total, supplemental, and food sources of B vita-
mins with the DNA methylation variants.

Genetic Association With 10-Year Changes in BMI
According to B-Vitamin Intake From Supplemental or
Food Sources
We examined whether B vitamins from supplemental or
food sources modified the genetic association with 10-year
changes in BMI differently. We observed significant inter-
actions for vitamins B2 and B12 intakes from supplements.

The genetic association with 10-year changes in BMI consis-
tently increased across the three categories of vitamins B2
and B12 intakes from supplemental use in the NHS and
HPFS (all P for interaction ,0.01). Differences in 10-year
changes of BMI (kg/m2) were 20.19 (SE 0.07), 20.08 (SE
0.06), and 0.09 (SE 0.07) across the tertiles of vitamin B12
supplement intake and 20.08 (SE 0.07), 20.06 (SE 0.07),
and 0.11 (SE 0.06) across the tertiles of vitamin B2 supple-
ment intake in the pooled cohorts. We also found that
supplemental folate intake modified the genetic association
with 10-year changes in BMI in the NHS, HPFS, and pooled
results (P for interaction = 0.08, 0.01, and 0.007, respec-
tively) (Fig. 1). Across tertiles of supplemental folate intake,
differences in 10-year changes in BMI were20.06 (SE 0.07),
20.06 (SE 0.07), and 0.08 (SE 0.07) in the pooled cohort.
No significant heterogeneity in the interaction effects was
observed between the two cohorts (both P for heterogeneity
.0.15). Among the four nutrients, vitamin B2 (P for inter-
action = 0.002), vitamin B12 (P for interaction = 0.0004),
and folate (P for interaction = 0.007) remained significant in
the pooled data at P , 0.01 (0.05/4) after correction for
multiple testing. We did not observe a significant interaction
between HIF3A variants and B vitamins from food sources
on BMI changes (Supplementary Table 4).

Genetic Association With 10-Year Changes in BMI
According to Total B-Vitamin Intake
We further tested whether total B-vitamin intake modi-
fied the genetic association with BMI changes. We found
significant interactions of HIF3A rs3826795 with total
vitamins B2 and B12 intakes in relation to 10-year BMI
changes in the NHS and HPFS after adjustment for age,
source of genotyping data, smoking, alcohol intake, phys-
ical activity, total energy intake, Alternate Healthy Eating

Table 2—Association of HIF3A SNP rs3826795 with measures of adiposity in the NHS and HPFS

NHS HPFS

b 6 SE P value b 6 SE P value

Weight at young age* (kg) 0.00 6 0.19 0.86 20.36 6 0.29 0.21

Height (cm) 20.21 6 0.13 0.12 20.10 6 0.08 0.21

Weight at baseline (kg) 20.09 6 0.24 0.69 0.13 6 0.33 0.69

BMI at baseline (kg/m2) 0.03 6 0.08 0.71 0.03 6 0.09 0.76

Weight at end point (kg) 0.06 6 0.27 0.83 20.01 6 0.35 0.98

BMI at end point (kg/m2) 0.12 6 0.11 0.18 20.01 6 0.10 0.93

BMI change (kg/m2) 0.04 6 0.04 0.31 20.05 6 0.05 0.33

Weight change (kg) 0.07 6 0.13 0.78 20.13 6 0.16 0.42

Waist circumference (cm)$ 0.11 6 0.11 0.32 0.01 6 0.11 0.90

The linear regression model was used to test the association of DNA methylation variants with measures of adiposity after adjustment of
age, source of genotyping data, smoking, alcohol intake, physical activity, total energy intake, television watching, and Alternate
Healthy Eating Index. BMI change, changes in BMI from 1980 to 1990 in NHS and from 1986 to 1996 in HPFS; weight change, changes
in body weight from 1980 to 1990 in NHS and from 1986 to 1996 in HPFS. *Young age was defined as 18 years old in NHS and 21 years
old in HPFS. Data were adjusted only for age and source of genotyping data. $Waist circumference was assessed in 1986 in NHS and
1987 in HPFS.
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Index, television watching, baseline BMI, and other
B vitamins (Table 3). Across the tertiles of total vitamin
B2 intake, the differences in BMI changes per increment
of minor allele were 20.10 (SE 0.09), 0.07 (SE 0.09), and
0.22 (SE 0.12) kg/m2 in the NHS; 20.10 (SE 0.09), 20.08
(SE 0.08), and 0.06 (SE 0.09) kg/m2 in the HPFS; and
20.10 (SE 0.06), 20.01 (SE 0.06), and 0.12 (SE 0.07)
kg/m2 in the pooled cohort. We observed similar interac-
tion patterns for 10-year changes in body weight. For the
tertiles of total B12 intake, the differences in BMI changes
per increment of minor allele were 0.00 (SE 0.09), 20.10
(SE 0.11), and 0.20 (SE 0.10) kg/m2 in the NHS;20.20 (SE
0.09), 20.06 (SE 0.08), and 0.01 (SE 0.09) kg/m2 in the
HPFS; and 20.10 (SE 0.06),20.01 (SE 0.06), and 0.10 (SE
0.07) kg/m2 in the pooled cohort. The results show that
0.9–1.2% of the 10-y change in BMI was explained by an
interaction between HIF3A variant and vitamin B2, and
0.7–1.6% of the 10-year change in BMI was explained by
an interaction between HIF3A variant and vitamin B12 in
the two cohorts. The amount of baseline vitamin B intake
in corresponding tertiles in NHS and HPFS cohorts is
shown in Supplementary Table 5. Further adjustment for
sugar-sweetened beverages, fried food, and total meat con-
sumption did not materially change the results. No signif-
icant heterogeneity in the interaction effects was observed
between the two cohorts (both P for heterogeneity.0.05).

In addition, total folate intake showed a significant
gene-diet interaction on 10-year changes in BMI in the
pooled analyses (P for interaction = 0.02). Among the four

nutrients, interactions with vitamins B2 (P for interac-
tion = 0.004) and B12 (P for interaction = 0.002) in the
pooled data remained significant at P , 0.006 (0.05/8)
after correction for multiple testing. We did not observe
a significant interaction between HIF3A rs8102595 and
total B-vitamin intake on BMI or BMI change.

DISCUSSION

In two large prospective cohorts of U.S. women and men,
we found significant interactions of DNA methylation
variant HIF3A rs3826795 with total or supplemental vita-
min B2, vitamin B12, and folate intake on 10-year changes in
BMI. A genetic association with a smaller increase in BMI
was observed in the subgroup with lower intake of vitamin
B2, vitamin B12, and folate, whereas the association with
a greater increase in BMI was observed in the subgroup
with higher intake of vitamin B2, vitamin B12, and folate.
The findings support the hypothesis that DNA methylation
may causally affect body adiposity. However, we did not
measure DNA methylation at the HIF3A locus; with such
data, we would have performed Mendelian randomization
analysis to provide stronger evidence to support or dispute
causality, although results from genetic associations could
also provide evidence for a potential causal relation between
the genetic variants–associated exposure and outcomes, as
suggested in previous studies (32).

Growing evidence indicates that epigenetic factors
contribute to the development of obesity (2–5). DNA
methylation, the major epigenetic regulator in mammalian

Figure 1—Differences in 10-year changes in BMI per minor allele of rs3826795 according to baseline intake of B vitamins from supple-
mental use among participants in the NHS (1980–1990) and HPFS (1986–1996). Data are b-coefficients 6 SE. Data on baseline intake of B
vitamins from supplemental use were assessed in 1980 (NHS) and 1986 (HPFS). Data on BMI were assessed in 1980 and 1990 in NHS and
1986 and 1996 in HPFS. The general linear model was used to test the genetic association of baseline intake of B vitamins from
supplemental use with 10-year changes in BMI after adjustment for age, source of genotyping data, smoking, alcohol intake, physical
activity, total energy intake, Alternate Healthy Eating Index, television watching, baseline BMI, and other B vitamins (mutually adjusted).
Results for the two cohorts were pooled by means of inverse variance–weighted fixed-effects meta-analyses.
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cells, has been associated with BMI or other indices of
obesity (33–35). A recent large-scale epigenome-wide study
demonstrated that increased DNA methylation at the
HIF3A locus in blood cells and adipose tissue was associ-
ated with increased BMI in adults of European origin (4).
Nevertheless, genetic variants in the HIF3A locus, which
has been associated with DNA methylation, were not re-
lated to BMI in the whole study population (4). These
findings are consistent with the current results that DNA
methylation variants were not associated with measures of
adiposity in the NHS and HPFS. Taken together, these data
appear to support the previous postulation that the asso-
ciation between HIF3A methylation and BMI may be not
causal (4). However, our further subgroup analyses ac-
counting for B-vitamin intake refute such a conclusion.

In the current study, we found that DNA methylation
variant HIF3A rs3826795 was significantly associated
with BMI changes among participants with either high
or low intakes of vitamin B2, vitamin B12, and folate.
Although we did not conduct a Mendelian randomization
analysis owing to lack of DNA methylation data, the
results at least partly support a potential causal relation
between HIF3A methylation and adiposity according to
Mendelian randomization theory (36). According to the
theory, the associations between the genetic variants,
which act as a proxy of DNA methylation levels (4),
and adiposity are free of risk for reverse causation
and less likely to be affected by confounding, therefore
providing evidence for causality (37,38). The current find-
ings provide consistent evidence from two cohorts

showing robust associations between the DNA methyla-
tion variants and BMI changes. Of note, the methylation
variant exhibited opposite effects on weight change in re-
sponse to low and high B-vitamin intakes. These findings
are in line with the hypothesis of differential susceptibility
(39,40), which suggests that vulnerability genes may func-
tion like plasticity genes; thus, genetic risk is either atten-
uated by a favorable environment or amplified by an
adverse environment (39,40). The current results highlight
the importance in considering effect modifications by envi-
ronmental factors when assessing genetic associations.

The mechanism for the observed interactions between
B vitamins and DNA methylation variant in relation to
BMI changes remains unknown. However, the present
findings are biologically plausible because B vitamins play
an important role in DNA methylation. Vitamin B2, vita-
min B12, and folate are well established as the major
determinants of one-carbon metabolism in which a methyl
group donor is formed (41). In the DNA methylation pro-
cess, a methyl group is added to the cytosine or adenine
DNA nucleotide that typically occurs in a CpG dinucleo-
tide context. Animal studies have shown that maternal
methyl supplements (e.g., folic acid, vitamin B12) increase
offspring DNA methylation (42,43). A randomized trial
demonstrated that folic acid supplementation increases
DNA methylation in leukocytes and colonic mucosa
(44). In addition, previous studies have shown that the
interaction of dietary folate and vitamin B12 with a genetic
variant might modulate gene expression through DNA
methylation (45). DNA methylation changes caused by

Table 3—Differences in 10-year changes in BMI per minor allele of rs3826795 according to baseline total intake of B vitamins
among participants in NHS (1980–1990) and HPFS (1986–1996)

Tertiles of total intake of B vitamins

Cohort$ T1 T2 T3 P value for interaction

Vitamin B2 (mg)
NHS 20.10 6 0.09 0.07 6 0.09 0.22 6 0.12 0.02
HPFS 20.10 6 0.09 20.08 6 0.08 0.06 6 0.09 0.02
Pooled# 20.10 6 0.06 20.01 6 0.06 0.12 6 0.07 0.004

Vitamin B6 (mg)
NHS 20.01 6 0.10 20.01 6 0.09 0.16 6 0.11 0.14
HPFS 20.08 6 0.09 20.09 6 0.08 0.05 6 0.09 0.18
Pooled 20.05 6 0.07 20.06 6 0.06 0.09 6 0.07 0.18

Folate (mg)
NHS 0.11 6 0.09 20.08 6 0.10 0.07 6 0.10 0.11
HPFS 20.10 6 0.09 20.12 6 0.08 0.09 6 0.09 0.03
Pooled 0.01 6 0.06 20.10 6 0.06 0.08 6 0.07 0.02

Vitamin B12 (mg)
NHS 0.00 6 0.09 20.10 6 0.11 0.20 6 0.10 0.003
HPFS 20.20 6 0.09 0.06 6 0.08 0.01 6 0.09 0.07
Pooled 20.10 6 0.06 0.01 6 0.06 0.10 6 0.07 0.002

Data are b-coefficients 6 SE. Data on baseline total intake of B vitamins were assessed in 1980 (NHS) and 1986 (HPFS). Data on BMI
were assessed in 1980 and 1990 in NHS and 1986 and 1996 in HPFS. $The general linear model was used to test the genetic
association of baseline total intake of B vitamins with 10-year changes in BMI after adjustment for age, source of genotyping data,
smoking, alcohol intake, physical activity, total energy intake, Alternate Healthy Eating Index, television watching, baseline BMI, and
other B vitamins (mutually adjusted). #Results for the two cohorts were pooled by means of inverse variance–weighted fixed-effects
meta-analyses.
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folate and vitamin B12 can have downstream effects by
changing gene expression (46) and can modulate disease
risk associated with genetic variants (47). The current
findings underscore the need to assess the effect of DNA
methylation on HIF3A function in experimental studies
and the effect of diet on epigenetic changes in the HIF3A
genomic region through in vivo studies.

In the current study, we separately analyzed B-vitamin
intake from supplemental and food sources and observed
stronger interactions on BMI changes for B vitamins
from supplements. The differences in these findings for B
vitamins from food sources compared with supplemental
sources could be explained by differences in the bioavail-
ability of these vitamins (48). This may be most pertinent
for folate and vitamin B12, which are more bioavailable in
supplemental forms (43). A substantial body of evidence
shows that the bioavailability of folic acid (both from sup-
plements and from fortified foods), which is in large part
governed by the extent of intestinal absorption, is almost
always substantially higher than the net bioavailability of
naturally occurring dietary folate from food sources (49). In
addition, vitamin B12 deficiency is common among people
with a low intake of animal food sources and among elderly
people owing to malabsorption of B12 from food (50). Vi-
tamin B12 or folate supplement users have higher plasma
values of these nutrients (51). Therefore, it is not surprising
that stronger interactions for B vitamins from supple-
ments were observed in the current study. In further
analyses, we did not find a significant interaction between
B-vitamin–rich foods (e.g., fish, poultry, meat, vegeta-
bles, dairy, legumes, whole grains) and methylation var-
iants; the possible reason is that the associations/
interactions are likely to be contaminated by many other
components in the foods.

The major strengths of the current study include
consistent findings from two well-established prospective
cohorts, detailed assessments of nutrient and food intakes
and measures of adiposity, and minimal population
stratification. Use of longitudinal data minimized a random
measurement error and enhanced the robustness of the
findings. However, several limitations need to be acknowl-
edged. First, dietary B vitamins and adiposity measures
were self-reported, and errors in these measurement are
inevitable; however, the food frequency questionnaires
(23,24) and adiposity measurement data (27) have been
well validated. Second, confounding by other unmeasured
or unknown factors might exist, although we carefully ad-
justed for multiple dietary and lifestyle factors. Third, sim-
ilar to other genetic studies, the current analyses to detect
gene-diet interaction might have suffered from a multiple
testing burden that could have hampered detection and in-
terpretation (52). However, the interactions observed in the
current study for vitamins B2 and B12 remained significant
at P , 0.006 (0.05/8) after Bonferroni correction for mul-
tiple testing. Indeed, Bonferroni correction is usually too
conservative, and overadjustment for multiple comparisons
may increase the risk for type II error and reduce power to

detect significant differences (53). Fourth, whether the ge-
netic markers are functional variants or simply correlated
markers is unclear. The two methylation variants may tag
for a functional epigenetic marker; therefore, it is not sur-
prising that the two SNPs showed distinct interactions,
which do not imply interaction at the causal variant (54).
Fifth, the participants were middle-aged and older adults of
European ancestry recruited in the U.S., and it remains to be
examined whether the results could be generalized to other
demographic or ethnic groups. Finally, we examined two
HIF3A variants independently associated with methylation
at a specific CpG site within intron 1 of HIF3A, but we did
not find any interaction for rs8102595. Our previous study
may provide a possible reason (8). Not all SNPs are sensitive
to environmental modifications, and the current study of
32 BMI variants showed diverse interactions with fried
food consumption in relation to adiposity. Further studies
are required to investigate the differential interactions of
these variants on the association of DNA methylation
with adiposity.

In conclusion, the data provide consistent evidence from
two cohorts that a DNA methylation variant interacts with
total or supplemental B vitamins in relation to 10-year BMI
changes. These results, which need to be replicated, support
a potential causal relation between DNA methylation and
adiposity. In addition, these findings emphasize the impor-
tance of considering gene-environment interactions in
assessing genetic associations.
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