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Gait deficits in cerebral palsy (CP) are often treated with a single-event multi-level

surgery (SEMLS). Selecting the treatment options (combination of bony and soft tissue

corrections) for a specific patient is a complex endeavor and very often treatment

outcome is not satisfying. A deterioration in 22.8% of the parameters describing gait

performance has been reported and there is need for additional surgery in 11% of

the patients. Computational simulations based on musculoskeletal models that allow

clinicians to test the effects of different treatment options before surgery have the

potential to drastically improve treatment outcome. However, to date, no such simulation

and modeling method is available. Two important challenges are the development of

methods to include patient-specific neuromechanical impairments into the models and

to simulate the effect of different surgical procedures on post-operative gait performance.

Therefore, we developed the SimCP framework that allows the evaluation of the effect

of different simulated surgeries on gait performance of a specific patient and includes a

graphical user interface (GUI) that enables performing virtual surgery on the models. We

demonstrated the potential of our framework for two case studies. Models reflecting the

patient-specific musculoskeletal geometry and muscle properties are generated based

solely on data collected before the treatment. The patient’s motor control is described

based on muscle synergies derived from pre-operative EMG. The GUI is then used to

modify the musculoskeletal properties according to the surgical plan. Since SEMLS does

not affect motor control, the samemotor control model is used to define gait performance

pre- and post-operative. We use the capability gap (CG), i.e., the difference between the

joint moments needed to perform healthy walking and the joint moments the personalized

model can generate, to quantify gait performance. In both cases, the CG was smaller

post- then pre-operative and this was in accordance with the measured change in gait

kinematics after treatment.

Keywords: cerebral palsy, muscle synergies, single event multilevel surgery, orthopedic interventions, capability

gap, subject specific model
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INTRODUCTION

Cerebral Palsy (CP) is the most common cause of motor
deficiency in young children with a prevalence of 2–3 cases per
1,000 live births (Fairhurst, 2012; Colver et al., 2014; Graham
et al., 2016). Due to lesions in the developing brain, children with
CP display motor disabilities that vary greatly in presentation
and severity. While CP is not a progressive disease, with time,
secondary symptoms might arise, such as bony deformities and
muscle contractures. Alongside increasing pain and fatigue, these
symptoms can pose severe limitations to the quality of life
and independence of the patients (Hanna et al., 2009; Opheim
et al., 2009). Nowadays, several orthopedic treatments, often in
combination with physical therapy and orthoses, are available
and aim at improving the functionality and therefore quality of
life of these patients (Fairhurst, 2012; Narayanan, 2012; Fitoussi
and Bachy, 2015; Strobl et al., 2015; Nieuwenhuys et al., 2016).

For ambulatory patients, orthopedic treatments usually aim
at improving walking speed and stability, at reducing the need
of walking aids and at mitigating or preventing fatigue and
pain (Narayanan, 2012). The selection of the most appropriate
surgical treatment is a complex endeavor that nowadays is mainly
based on the clinical assessment of the patient, integrated 3D
gait analysis and medical imaging (Molenaers et al., 2001; Strobl
et al., 2015). The outcome, however, is not always as desired and
studies reported a deterioration in 22.8% of the parameters used
to describe gait performance after surgery (Filho et al., 2008). In
11% of the cases, additional surgeries are needed to improve the
functional outcome, although, this can be as high as 32% when
no gait analysis is used to support the decision-making process
(Wren et al., 2009).

It is therefore of the utmost importance to identify the
parameters that determine the success of an orthopedic
intervention (Hersh et al., 2002; Arnold et al., 2006a; Niiler
et al., 2007; Fox et al., 2009; Reinbolt et al., 2009; Hicks
et al., 2011; Schwartz et al., 2013, 2016; Mansouri et al., 2016;
Galarraga et al., 2017). This would allow making pre-operative
predictions in order to guide the decision-making process
toward the most effective treatments in terms of functional
outcome. Several studies applying statistical approaches and
more recently machine learning methods to explore these
relationships (Hersh et al., 2002; Reinbolt et al., 2009; Hicks et al.,
2011; Schwartz et al., 2013, 2016) have been quite successful
in predicting the improvement or non-improvement of a few
selected outcome indicators when dealing with selected surgeries.
However, existing methods do not produce a comprehensive
outcome prediction and do not account for combinations of
different surgeries. Notably, Galarraga et al. (2017) developed
a method based on dimension reduction and multiple linear
regression to predict lower limb kinematics for a large number
of surgical procedures. All these methods, however, have the
drawback that they are black box methods and therefore do
not allow investigating the mechanisms relating outcomes in
motor function to the specific interventions (Halilaj et al., 2018).
On the other hand, methods relying on musculoskeletal models
and computational simulations are often suggested to have

the potential to identify the causal relation between individual
impairments, their interactions and the treatment outcome
(Morrison et al., 2018).

To introduce simulation-based decision-supporting tools into
clinical practice, a few obstacles have yet to be overcome. One of
the major obstacles in this respect is the need for a representative
translation of the neuromusculoskeletal dysfunctions of
the patients (i.e., the altered musculoskeletal geometry,
musculoskeletal parameters, and altered neural control) into
the musculoskeletal models. The need to account for the
musculoskeletal deformities of the individual CP patient and the
bony deformities in particular, dictates the use of subject-specific
musculoskeletal models when generating dynamic simulations of
CP gait. In this respect, the added value of magnetic resonance
imaging (MRI) based models has been extensively demonstrated
(Scheys et al., 2011a,b; Bosmans et al., 2016).

The altered muscle parameters (i.e., muscle contracture
and weakness) in patients with CP compared to a healthy
population (Theis et al., 2016; Kruse et al., 2017; Kalkman
et al., 2018) invalidates the use of scaled generic parameters.
Appropriate parameter tuning capturing the patient-specific
muscle properties is therefore needed. Several methods have
been proposed for tuning and scalingmusculoskeletal parameters
(Van Campen et al., 2014; Modenese et al., 2016; Falisse et al.,
2017). Nevertheless, most of these methods require an extensive
amount of data collected based on a specific method (e.g.,
instrumented dynamometry) that is typically not available in the
common clinical practice and might be difficult to apply in the
case of neuromotor deficits.

The altered motor control of patients with CP is reflected in
the use of aberrant coordination patterns of the muscles during
gait compared to a healthy population (Steele et al., 2015). The
concept of muscle synergies is an elegant way to summarize these
coordination patterns and by comparing them between CP and
typically developing (TD) children, altered motor control aspects
have already been identified in terms of number of independent
components and stride-by-stride variability (Steele et al., 2015;
Kim et al., 2018). In addition, muscle synergies have already been
used in the control of musculoskeletal models during dynamic
simulations (Allen and Neptune, 2012; Sartori et al., 2013; Meyer
et al., 2016). In healthy subjects, themuscle activations generating
the observed muscle synergies are very similar to those generated
when muscles are recruited independently according to an
optimality criterion (De Groote et al., 2014). However, patients
with CP exhibit different sets of muscle synergies with respect to
a healthy population (Steele et al., 2015), thus highlighting the
importance of including a subject-specific motor control model
into the framework (Meyer et al., 2016; Sartori et al., 2017).

Literature results (Patikas et al., 2007) and a pilot study
from our research group (Pitto et al., 2018), suggest that the
same motor control model can be used to describe both the
pre- and post-operative patient’s condition. Therefore, the pre-
operative synergies may also be used for the simulations of the
post-operative condition, as their composition remains mostly
unchanged after a specific orthopedic treatment. The advantage
of this approach is that it relies entirely on pre-operative
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data, thus making it suitable for the pre-operative decision-
making process.

Apart from describing the patient-specific features in the
modeling framework, also the specific therapeutic interventions
(and multi-level surgeries in particular) need to be accounted
for into the musculoskeletal model. Whereas the effect of
muscle-tendon lengthening and muscle transfer on the moment-
generating capacity, lengths and velocities of the muscles have
been described (Delp and Zajac, 1992; Arnold et al., 2006b), only
few studies attempted a forward simulation aiming to predict
the post-intervention outcome. For instance, two studies using
musculoskeletal modeling and forward dynamics simulations
(Fox et al., 2009; Mansouri et al., 2016) investigated the effect of a
rectus femoris transfer surgery on the recovery of balance after a
perturbation and on knee flexion in stiff knee gait in children with
CP.While these studies represent a step forward in this direction,
their scope remains quite restricted, accounting for only one kind
of intervention and analyzing the effect on a single parameter.

Clinical use of simulation-based decision-supporting tools
requires the definition of comprehensive parameters that relate
to the functional improvement of the patient and therefore
can be used as outcome measures to evaluate the effect of
different interventions. In the field of assistive exoskeletons
(Afschrift et al., 2014), the concept of the capability gap (CG) was
introduced to represent the amount of support the exoskeleton
had to provide in order to allow the patient to perform a given
task. This concept can be translated to the estimation of the
motor performance of the patient, before and after the simulated
interventions, as a measure of “difficulty” in performing a desired
motion, i.e., gait pattern of a TD child. By integrating the patient-
specific impaired motor control, abnormal muscle properties,
and/or altered musculoskeletal geometry, the changes in the CG
after a simulated orthopedic treatment inform the clinician on
how a specific intervention improves the ability of the child to
adopt a TD gait pattern.

Within the SimCP project, a comprehensive simulation-
based framework was developed to evaluate the functional
effect of a therapeutic/surgical intervention in a specific
patient with CP, thereby assisting the most appropriate
treatment selection (Figure 1). This framework relies on the
creation of a personalized neuro-musculoskeletal model of
the patient. In this model, the musculoskeletal geometry is
obtained from imaging data. The framework then provides
the tools to personalize the muscle parameters according
to information collected during gait analysis and clinical
examination. Furthermore, the motor control is personalized
using EMG data collected during the treatment-planning
phase. Thereafter, a Graphical User Interface (GUI) allows
clinicians to simulate combinations of different multi-level
surgical procedures. Finally, the functional performance (i.e.,
walking ability) of the patient can be quantified for different
simulated post-operative conditions by evaluating the change
in the predicted capability gap with respect to the pre-
operative condition. These operations rely only on experimental
data collected pre-operative. In this manner, it is feasible to
compare the effectiveness of a set of candidate treatments in
improving the gait performance of the patient, thus supporting

the clinical decision-making process and optimizing individual
treatment outcome.

Throughout this article, the different building blocks
composing the framework are described and two representative
cases studies are introduced to assess the methods and elucidate
the several steps.

METHODS

The goal of the SimCP framework is to predict gait performance
following different candidate orthopedic treatments solely based
on data collected before the treatment and the surgical plan.
Pre-operative data includes gait analysis, clinical examination
(e.g., documenting joint range of motion) and medical images.
To this aim, the framework contains several building blocks
(Figure 1). First, a personalized musculoskeletal model capturing
the patient’s musculoskeletal geometry (section Musculoskeletal
Geometry) and muscle properties (section Muscle Parameters)
is generated. Then, a description of the patient’s motor control
is added to this model (section Motor Control). Next, the
orthopedic surgeries are simulated (section Surgery Simulation).
Finally, the simulated post-operative gait performance is
computed (section Capability Gap and Muscle Report).
The framework also offers the possibility to investigate the
contributions of the different impairments to gait performance
(section Alternative Analyses). We illustrate the salient features
of the SimCP framework using data from two representative
patients (section Case Studies).

Data Collection
In order to provide the information needed for the complete
personalization of the models, inputs from several sources
are required. First, imaging data, such as CT scans and
MRI-images, allow defining the musculoskeletal geometry.
Second, three-dimensional gait analysis data, including marker
trajectories and ground reaction forces as well as EMG
signals from the most important muscles in the lower limb,
are needed for the personalization of the muscle parameters
and definition of the motor control model. Third, clinical
examination reporting the passive range of motion of the patient
contains useful information to refine the personalization of the
muscle parameters.

Musculoskeletal Geometry
The musculoskeletal models are based on a generic SIMM
(Motion Analysis Corp., Santa Rosa, CA) model and are
composed of 14 bodies and 21 degrees of freedom that are
actuated by 86 muscles. The musculoskeletal geometry of this
generic model is adapted to reflect the patient’s musculoskeletal
geometry. The model is then further personalized by tuning
the muscle-tendon parameters (section Muscle Parameters) and
by adding a model of the patient’s motor control (section
Motor Control).

Musculoskeletal geometry is derived from MRI-images. The
workflow to create the MRI-based models has been published
previously (Scheys et al., 2008, 2011b). In short, bones of the
lower limbs and pelvis are segmented using Mimics (Materialize,
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FIGURE 1 | Framework description. Data collected on the patient in the pre-operative phase are used as input to generate a pre-operative model with personalized

musculoskeletal geometry and muscle parameters. Next, the motor control of the patient is modeled, using synergy decomposition analysis, based on pre-operative

EMG and gait analysis data. Performing virtual surgeries on the pre-operative model generates a post-operative model. This takes into account the changes in the

musculoskeletal parameters induced by the performed surgery. The motor control, on the other hand, is not affected by the surgery and the same motor control

model computed in the pre-operative condition is used also for the post-operative condition. The gait performance of the patient can be computed in both the pre-

and simulated post-operative conditions. In both cases, a synergy constrained optimization tries to match the joint moments relative to a desired motion while taking

into account the constraints imposed by the model and by the motor control. The differences between the moments generated by the model and the desired

moments are the capability gap, defining the gait performance.

Leuven, Belgium). Afterwards, anatomical reference frames, joint
axes and muscle origin and insertion points are defined and
a patient-specific musculoskeletal OpenSim model is created
using MuscleSegmenter (Leuven, Belgium) and customized
Matlab (The Mathworks, Natick, MA) scripts. The models with
personalized musculoskeletal geometry are then imported into
the SimCP framework.

Performing virtual surgery alters the musculoskeletal
geometry and hence generates a new model, which is linked to
the pre-operative model and appears in the post-operative model
list. In this manner, each pre-operative model can be linked to
multiple post-operative models, allowing for the exploration of
different treatment options (see also section Surgery Simulation).

Muscle Parameters
Using preoperative data, we tune the two parameters of the
Hill-type muscle model that have the largest influence on the
simulated muscle force: muscle optimal fiber length and tendon
slack length (lmoand lts) (De Groote et al., 2010). Maximum
isometric muscle forces are scaled based on the patient’s body
weight (Van Der Krogt et al., 2016; Kainz et al., 2018). Pennation

angles are taken from the gait2392 model in OpenSim as they
have a limited effect on simulated forces (Zajac, 1989).

Parameters are tuned using only the information from the
pre-operative walking trials (marker trajectories, ground reaction
forces and EMG) and, optionally, the clinical examination of
the passive joint range of motion (Table 1). The underlying
assumption of the procedure is that during gait the muscles
generate the inverse dynamic moments with activations that are
consistent with the measured EMGs and operate around their
optimal fiber length. In other words, given the joint excursions
during gait, muscles are not extremely short, as this would
limit their force production given the muscle’s force length
relationship, nor too stretched, as this would induce excessive
passive forces. In addition, it is assumed that at least part of
the resistance encountered during the clinical examination at
the extremes of the range of motion, is attributable to muscle
passive force, i.e., muscles being at a length well above their
optimal length.

To perform this tuning, we extended a static optimization
problem since this allows us to optimize the fit between the
computed activations and joint moments, and, respectively, the
EMGs and inverse dynamic joint moments. Static optimization
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TABLE 1 | Subjects demographics and data from clinical examination.

Patient 1 Patient 2 TD (15 subjects)

Age 12–16 years 12–16 years 9.86 (SD 2.98) years

Weight 33.1 kg 49.1 kg 34.61 (SD 13.33) Kg

Height 143 cm 171 cm 139 (SD 166) cm

Time between observation 407 days 304 days

Left Right Left Right Reference values

(Moon et al., 2017)

Passive range of motion

(degrees)

Hip flexion 145 ∼ / 140 ∼ / 105 ∼ / 110 ∼ / 126.8 (SD 7.6)

Hip extension −10 ∼ / −10 ∼ / / ∼ / / ∼ /

Hip abduction (Knee 0◦) 25 ∼ 40 25 ∼ 40 20 ∼ 15 10 ∼ 20 47.6 (SD 6.2)

Hip abduction (Knee 90◦) 45 ∼ 35 45 ∼ 35 35 ∼ 25 30 ∼ 30 55.6 (SD)

Hip adduction 0 ∼ / 0 ∼ / 0 ∼ / 0 ∼ /

Hip int rotation (prone) 60 ∼ 40 70 ∼ 60 45 ∼ 25 65 ∼ 25 40.1 (SD 11.1)

Hip ext rotation (prone) 25 ∼ 20 25 ∼ 20 20 ∼ 5 20 ∼ 5 40.1 (SD 8.5)

Hip int rotation (supine) 25 ∼ 25 30 ∼ 40 30 ∼ 20 45 ∼ 25

Hip ext rotation (supine) 55 ∼ 50 50 ∼ 40 45 ∼ 20 30 ∼ 10

Knee flexion 120 ∼ 110 120 ∼ 105 120 ∼ / 120 ∼ / 136.5 (SD 5.5)

Knee extension −20 ∼ 0 −15 ∼ 10 10 ∼ 5 −25 ∼ 0 1.0 (SD 1.8)

Knee spontaneous position −30 ∼ 5 −25 ∼ 5 / ∼ −10 / ∼ –10

Popliteal angle unilateral −70 ∼ 135 −65 ∼ 142 −75 ∼ −70 −85 ∼ −70 33.8 (SD 10.3)

Popliteal angle bilateral −65 ∼ 135 −60 ∼ 142 −70 ∼ −70 −75 ∼ −70 24.3 (SD 9.1)

Ankle dorsiflexion (Knee 90◦) 20 ∼ 30 25 ∼ 30 20 ∼ 30 −10 ∼ 10 19.6 (SD 4.5)

Ankle dorsiflexion (Knee 0◦) 15 ∼ 20 15 ∼ 20 10 ∼ 15 −20 ∼ 0 11.3 (SD 4.7)

Ankle plantarflexion 35 ∼ discr 35 ∼ discr 10 ∼ norm 20 ∼ norm 49.4 (SD 9.2)

Ankle inversion 40 ∼ norm 45 ∼ norm 50 ∼ norm 60 ∼ norm

Ankle eversion 10 ∼ norm 10 ∼ norm 10 ∼ norm 10 ∼ norm

Spasticity Hip flexion Mas 2 ∼ 0 2 ∼ 0 1.5 ∼ 1 2 ∼ 1

Hip adduction (Knee 0◦) mas 1.5 ∼ 0 1.5 ∼ 0 1.5 ∼ 1 2 ∼ 1

Hip adduction (Knee 90◦) mas 0 ∼ 0 0 ∼ 0 1.5 ∼ 1 2 ∼ 1

Hamstrings mas 1.5 ∼ 0 1 ∼ 0 2 ∼ 2 1.5 ∼ 1.5

Hamstrings tard −70 ∼ / / ∼ / −85 ∼ −90 −90 ∼ −75

DuncanElly mas 1.5 ∼ 0 1.5 ∼ 0 1.5 ∼ 1.5 2 ∼ 1.5

DuncanElly tard 2 ∼ 0 2 ∼ 0 2 ∼ 2 2 ∼ 2

Soleus mas 0 ∼ / 0 ∼ / 1.5 ∼ 1.5 1.5 ∼ 2

Soleus tard / ∼ / / ∼ / 10 ∼ 10 −15 ∼ 0

Gastrocnemius mas 1.5 ∼ / 1.5 ∼ / 3 ∼ 1.5 3 ∼ 2

Gastrocnemius tard 0 ∼ / 5 ∼ / −20 ∼ −10 −25 ∼ −10

Tibialis post mas 0 ∼ 0 0 ∼ 0 0 ∼ 0 2 ∼ 1.5

Clonus 0 ∼ / 0 ∼ / 2 ∼ 2 3 ∼ 2

Plantarflexors (Knee 90◦) mas / ∼ 1 / ∼ 1 / ∼ / / ∼ /

Plantarflexors (Knee 90◦) tar / ∼ 10 / ∼ 10 / ∼ / / ∼ /

Plantarflexors (Knee 0◦) mas / ∼ 0 / ∼ 0 / ∼ / / ∼ /

Selectivity Hip flexion 2 ∼ 2 2 ∼ 2 2 ∼ 2 2 ∼ 2

Hip extension 1.5 ∼ 1 1.5 ∼ 1 2 ∼ 2 1.5 ∼ 2

Hip abduction 1.5 ∼ 2 1.5 ∼ 1.5 2 ∼ 2 2 ∼ 1.5

Hip adduction 2 ∼ 2 2 ∼ 2 2 ∼ 2 2 ∼ 2

Knee flexion 1.5 ∼ 2 1.5 ∼ 2 1.5 ∼ 1.5 1.5 ∼ 1.5

Knee extension 1 ∼ 2 1.5 ∼ 2 1.5 ∼ 1.5 1.5 ∼ 1.5

Ankle dorsiflexion (Knee 90◦) 1.5 ∼ 1.5 1.5 ∼ 1.5 2 ∼ 1.5 1.5 ∼ 1.5

Ankle dorsiflexion (Knee 0◦) 1.5 ∼ 2 1.5 ∼ 2 1.5 ∼ 1.5 1.5 ∼ 1.5

(Continued)

Frontiers in Neurorobotics | www.frontiersin.org 5 July 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Pitto et al. SimCP: Simulation Platform for CP

TABLE 1 | Continued

Left Right Left Right Reference values

(Moon et al., 2017)

Ankle plantarflexion 1.5 ∼ 2 1.5 ∼ 2 1.5 ∼ 2 1.5 ∼ 1.5

Ankle inversion 1.5 ∼ 1.5 1.5 ∼ 2 2 ∼ 2 1.5 ∼ 1.5

Ankle eversion 2 ∼ 1.5 1.5 ∼ 1.5 2 ∼ 2 1.5 ∼ 1

Strength Hip flexion 4 ∼ 4 4 ∼ 4 5 ∼ 4 5 ∼ 4

Hip extension 3 ∼ 3+ 3 ∼ 3+ 3 ∼ 4 4 ∼ 4

Hip abduction 3 ∼ 3+ 3 ∼ 2 4 ∼ 4 3 ∼ 3

Hip adduction 4 ∼ 4 4 ∼ 4 5 ∼ 5 4 ∼ 5

Knee flexion 4 ∼ 4 3 ∼ 4 4 ∼ 4 4 ∼ 4

Knee extension 3 ∼ 4 3 ∼ 4 4∼ 4 4 ∼ 4

Ankle dorsiflexion (Knee 90◦) 4 ∼ 4 4 ∼ 4 4 ∼ 4 3 ∼ 4

Ankle dorsiflexion (Knee 0◦) 4 ∼ 4 4 ∼ 4 4 ∼ 4 3 ∼ 4

Ankle plantarflexion 4 ∼ 4 3 ∼ 4 3 ∼ 4 3 ∼ 3

Ankle inversion 4 ∼ 3+ 4 ∼ 4 5 ∼ 4 3 ∼ 4

Ankle eversion 4 ∼ 3+ 4 ∼ 3+ 4 ∼ 4 3 ∼ 3

Information about the subjects included in the study. Data are collected from the pre- and post-operative clinical reports. For each entry, the first value is relative to the pre-operative

condition, the second, in bold, is relative to the post-operative condition. “Mas” stands for manual Ashworth test (a score of 0 indicates no spasticity, a score of 4 maximal spasticity),

“Tard” for Tardieu test (measured in degrees, defines the position where the spasticity limits the movement). In “Selectivity” a score of 2 indicates the maximum motor control selectivity.

In “Strength” the maximum value is represented by a score of 5. “norm” stands for normal, defining full range of motion; “discr” stands for discrete, defining limited range of motion; “/”

replaces values not present in the report. Reference values for TD subjects are obtained from Moon et al. (2017).

computes muscle activations that produce the inverse dynamic
joint moments underlying a measured movement while
optimizing a performance criterion (e.g., minimizing sum of
activations squared). Here, we allow optimal fiber lengths and
tendon slack lengths to change during the optimization while
imposing constraints on the allowable muscle lengths that
represent the tuning criteria described above. In contrast to the
typical static optimization approach that is solved for each time
frame separately, here all time frames are coupled to obtain a
single set of muscle-tendon parameters. It is important to note
that static optimization neglects muscle dynamics by assuming
that tendons are rigid but allows accounting for the muscle
force-length-velocity relationship (De Groote et al., 2016). A
static optimization approach was preferred over a dynamic
approach that accounts for muscle dynamics (De Groote et al.,
2016) to limit computation times. The problem was then solved
using the fmincon function in Matlab.

To cope with the scarcity of input data (i.e., data from a
limited number of movements and a limited number of EMG
signals), we decided to tune the parameters only in a set of
major muscles (M) (Table 2). In addition, we used a different
level of detail when describing the force generated by these
major and other muscles. For the major muscles, the force-
length relationship, derived from (De Groote et al., 2016), was
taken into account (but not the force-velocity relationship).
Hence, the generated force has an active component (f L),

depending on normalized muscle fiber length (l̃) and muscle
activation (a), and a passive component, (f P) depending only on
fiber length:

mFi =
mf◦

[

mai
mf Li

(

m l̃i

)

+m f Pi

(

m l̃i

)]

, ∀m ∈ M, (1)

Where f is the maximum isometric force the muscle can exert
and the subscript i defines the instant in time. For the remaining
muscles (N), the generated force is proportional to activation:

mfi =
m f◦

mai , ∀m ∈ N. (2)

Hence, the resulting estimation problem has the following
structure. Optimization variables consist of muscle activations
and reserve moments (for each joint j) during the gait cycle

(mai,
jτ

R
i ), as well as the muscle parameters (mlmo, mlts). Reserve

moments are generated by ideal actuators and are added to
the muscle moments to guarantee that the inverse dynamic
joint moments can be matched even when the muscles are not
sufficiently strong. Since they are not physiological, their use is
heavily penalized in the cost function to keep their contribution
to a minimum:

CSO =
∑

i





∑

m

w1

(

mai
)2

+
∑

j

w2

(

jτ
R
i

)2



 , (3)

Where w1−2 are weighting coefficients that produced a
proportional balance between muscle and residual activations
(Hicks et al., 2015) in simple static optimization problems.

An additional penalty term is included in the cost function to
ensure that the computed activations of the subset of muscles (ε)
for which EMG was collected (see Table 2) reflect the pattern of
the measured data:

Cǫ =
∑

i

∑

m∈ǫ

w3

(

mσ mai −
mεi

)2
, (4)

Where ε represents the experimental EMG envelope. The scaling
factor σ was introduced as an optimization variable to impose
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TABLE 2 | List of muscle subsets.

Tuned muscles EMG muscles Passive range of motion

EMG channel Muscle name Measurement Muscles measured

Rectus Fems Rectus Fem Hip

Glut Max 1

Glut Max 2

Glut Max 3 Vast Lat Vast La Flexion Glut Max1, Glut Max2, Glut Max3,

Glut Med 1 Bic Fem Bic Fem lh Glut Med1, Glut Med2, Glut Med3

Glut Med 2 Hamstring Med Semimembr, Semitend Extension Iliacus, Psoas

Glut Med 3 Tibialis anterior Tibialis Ant Abduction 0◦ Add Mag 2, Add Mag 3, Add Long

Add Long Gastrocnemius Gastroc Med, Gastroc Lat Int Rot Sup Glut Med1, Glut Med2, Glut Med3

Add Mag 2 Soleus Soleus Int Rot Pro

Add Mag 3 Gluteus Glut Med 2 Ext Rot Sup

Tensor FL Ext Rot Pro

Gracilis Knee

Semimembr Flexion Rectus Fem, Vast Int, Vast Med, Vast Lat

Semitend Rectus Fem

Bic Fem lh Extension Semimembr, Semitend, Gracilis, Bic Fem lh, Bic Fem sh

Bic Fem sh Popl Ang Uni

Sartorius Popl Ang Bi

Rectus Fem Ankle

Vast Med Dorsiflex Kn 0◦ Soleus, Gastroc Lat, Gastroc Med

Vast Int Dorsiflex Kn 90◦

Vast Lat

Gastroc Med

Gastroc Lat

Soleus

Iliacus

Psoas

“Tuned muscles” reports the set of muscles whose parameters have been tuned; “EMG muscles” reports which muscles of the model were assigned to which EMG channels; “Passive

Range of motion” reports the clinical examination measures included into the framework and which muscles were measured in each position.

similarity between activations and EMG patterns irrespective of
signal amplitude since, in the absence of maximum voluntary
contraction tests, the relation between signal amplitude and
muscle activation cannot be accurately derived.

The cost function was minimized subject to the following
constraints. A first set of constraints describes that the muscles
should produce the inverse dynamic joint moments:

∑

m∈M

jmri
mFi +

∑

m∈N

jmri
mfi +

jτ
R
i − jτ

ID
i = 0, (5)

Where jτ
ID
i are the desired joint moments from inverse dynamics

and jmri is the moment arm of musclem with respect to joint j at
time i.

A second set of constraints imposes bounds on the muscle
fiber lengths during gait and the clinical exam of the range
of motion. To ensure that normalized muscle fiber lengths
during gait are within 0.4 and 1.5, we constrain the minimal
and maximal fiber lengths. In addition, to ensure that muscles
operate around their optimal length during gait, we constrain the
maximal fiber length to be above and the minimal fiber length to
be below optimal fiber length:

1 < max
i

(m l̃i) ≤ 1.5, (6)

0.4 ≤ min
i

(

m l̃i

)

< 1 , ∀m ∈ M, (7)

Maximal normalized fiber lengths during the clinical exam (l̃R)
should be in the range where passive force is generated:

1 < m l̃
R
≤ 1.5 , ∀m ∈ R, (8)

Where R defines the subset of muscles for which the length is
computed using information from the clinical passive range of
motion examination (Table 2).

To impose that muscles were stretched to a level where they
generated considerable passive force during the clinical exam, we
added a penalty term to the cost function:

CR =
∑

m∈R

w4

(

m l̃
R
− 1.5

)2
, (9)

Within our formulation, the passive force exerted by a muscle
stretched at 1.5 lmo is around 0.5 F. While a significant variation
in passive force is present between muscles (Prado et al., 2005)
and further variations are induced by CP (Kalkman et al., 2018),
we made this simplifying assumption to allow for the selection of
different sets of muscles without increasing the complexity of the
tuning procedure.
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Combining, (Equations 3, 4, and 9) and, the final cost
function becomes

CSO + Cǫ + CR , (10)

Input data jτ
ID
i , jmri, and muscle-tendon lengths mlmt

i are
computed based on the personalized musculoskeletal models
using OpenSim’s analysis tools, specifically Inverse Kinematics,
Inverse Dynamics and Muscle Analysis using the gait data
as input. Therefore, muscle moment arms are defined using
the generalized force method (Sherman et al., 2014). Muscle

fiber lengths (l) and normalized fiber length (l̃) during gait
were computed according to a Hill-type model assuming a
rigid tendon:

mli =
(

mlmt
i − mlts

)

/ cos (α), (11)

m l̃i =
mli/

mlmo , ∀m ∈ M, (12)

Where α is the pennation angle. Joint positions during the
clinical exam to test the passive range of motion are derived from
the description of the test and are used to compute the maximum
musculotendon lengths, muscle fiber lengths and normalized
fiber lengths reached during the test for the subset of muscles R

(lmtR, lR and l̃R, respectively).
The estimated parameters lmoand lts are incorporated into the

subject’s model and will define the force-length relationships of
the muscles included in the setM during the following analyses.

Motor Control
In cerebral palsy, the ability to selectively recruit muscles is
reduced. Therefore, we describe impaired motor control by
imposing the pathological muscle activation patterns when
computing gait performance. Muscle activation patterns are
derived from pre-operative EMG data collected during walking
using synergy analysis. For the motor control model to be useful
in our simulations, it has to account for the activations of all
the muscles. However, EMG data are collected from only a
small subset of muscles (typically<10) while the musculoskeletal
model contains many more muscles (typically more than 40). A
multi-step procedure is proposed to derive muscle coordination
for all muscles in the model based on EMG data from a limited
number of muscles (cfr. Meyer et al., 2016).

First, muscle synergies are derived from the pre-operative
EMG data acquired during three gait cycles to define the
complexity of the patient’s motor control by the number of
synergies (Ns) using non-negative matrix factorization (NNMF)
(Lee and Seung, 1999). The input matrix of EMG signals has
dimensions Nǫ × Ni where Nǫ is the number of muscles
and Ni is the number of time instants. The output of the
synergy analysis consists of two matrices: a Ns × Ni matrix
H containing the activation timing profiles of each synergy
and a Nǫ × Ns matrix W containing the weight vectors
specifying how much an individual muscle is activated by each
synergy. The matrices W and H are computed such that the
product WH best approximates the original input matrix for a
predefined number of synergies Ns. We quantified Ns using a

bootstrapping procedure such that the percentage of the original
signal explained by the synergies is above a predefined threshold
(Cheung et al., 2009). Both the EMG signal and the H matrix
were consistently resampled 500 times with replacements, using
Matlab function datasample. The resampled matrices have the
same dimension of the original ones and the same time instants of
the original matrices can appear more than once in the resampled
one. The variability accounted for (VAF) of these resampled
signals by the synergies extracted from the original signal is
computed. Ns is the lowest number of synergies for which VAF
is higher than 90% for at least 95% of the resampled signals. The
number of synergies Ns is used in the subsequent steps.

Next, an EMG-informed static optimization analysis is
performed on the patient’s pre-operative gait data, where the

optimization variables are mai,
jτ

R
i , and

mσ . The cost function
is obtained by combining (Equations 3 and 4):

CSO + Cǫ , (13)

The Cǫ term enables us to account for the pathological
characteristics of muscle activations, such as antagonistic muscle
co-contractions, which are very common in children with CP.
This cost is minimized subject to constraints describing the
equilibrium between inverse dynamic and muscle moments
(Equation 5).

Finally, muscle synergies are extracted by performing a
new NNMF on the muscle activations computed with static
optimization. The number of synergies for this analysis is Ns+ 1.
The extra synergy is included to take into account muscles for
which no surface EMG was collected. For instance, Allen and
Neptune (2012) found that a synergy including predominant
contributions from the iliacus and psoas muscles is needed to
control a 3Dmodel during walking, and EMG from thesemuscles
is typically not acquired. The result is a set of muscle synergies
(WpreandHpre) that define themotor controlmodel of the patient
and describe the activations of all themuscles. This motor control
model is later used in the computation of the gait performance of
the patient (section Capability Gap and Muscle Report).

Surgery Simulation
We developed a set of virtual surgeries and a GUI that allow
to directly manipulate the musculoskeletal models by leveraging
the Matlab-OpenSim application programming interfaces. The
surgeries implemented in the current version of the GUI are
Extension and Derotation Osteotomy, Derotation Osteotomy,
Muscle Transfer, Patella Advancement and Botulinum Toxin
Injection. Only the Muscle Transfer and Botulinum Toxin
Injections influence the muscle parameters.

In an Extension and Derotation Osteotomy (Figure 2B), two
cutting planes define the bone wedge for removal (Lenhart
et al., 2017). In the GUI, the pose of the cutting planes on the
desired bone can be defined. The wedge is removed and the
remaining bone segments are then reconnected by joining the
cutting planes. The intra-segment rotation perpendicular to the
cutting planes and the translation along the cutting plane can
be specified by the user. Based on bony landmarks, important
morphometric information, such as anteversion angle and neck
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FIGURE 2 | Framework components. (A) Muscle transfer surgery. Used to change the path of a muscle. The lines of action of other muscles are visualized as guide to

help during the transfer. (B) Extension and Derotation osteotomy surgery. Two sets of scrollbars define the pose of the two cutting planes (red and blue in the left side

figures) that define the wedge of bone to be removed. After wedge removal, the two segments are brought in contact and it is possible to rotate and translate the

distal part to correct for abnormal anteversion angles. (C) Patella advancement surgery. It is possible to define the new length of the patella ligament and/or move its

insertion on the tibia, during the operation the ligament in the new configuration is shown as a red cylinder.
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shaft angle of the simulated post-operative bone configuration are
visualized in real-time to guide the user in performing the virtual
surgery. The Derotation Osteotomy surgery is implemented in
a manner similar to the Extension and Derotation Osteotomy
but involves only a single cutting plane on the desired bone.
After cutting the bone, the distal part of the bone can be
rotated and translated with respect to the proximal part of
the bone to correct for bony deformities. Within the Muscle
Transfer tool (Figure 2A), we provide several options to modify
the muscle geometry. These options include adding, removing,
translating and changing the muscle attachment, insertion and
via points. The resulting change in musculotendon length is
translated into a change in tendon slack length. The underlying
assumption is that muscle transfer surgeries do not directly
affect the muscle fiber architecture, but change the length of the
tendon either by removing part of the tendon, lengthening the
tendon, or by transferring it to the tendon of another muscle.
Patella Advancement (Figure 2C) can be performed by either
changing the length of the patella ligament, or by transferring
the attachment of the ligament on the tibia to a new position.
Patella movement is defined as a function of knee flexion
angle. After changing the ligament attachment or length, the
new path of the patella is determined through an optimization
procedure. This optimization procedure defines the rotation and
the translations needed to represent the patella movement on
the plane perpendicular to the knee joint axis. This optimization
finds the patella movement that results in the most constant
distance between two points on the patella, one proximal and
one distal, and the femur surface throughout the motion while
maintaining the patella ligament length constant. Botulinum
Toxin Injections are modeled by a decrease in the injected
muscle’s maximum isometric force. This is a highly simplified
representation of what botulinum toxin injections do to the
muscle and further research is needed to refine this procedure
in our model.

Any change applied to a given model results in a new post-
operative model, which can be saved for future use.

Capability Gap and Muscle Report
As previously introduced, the main outcome of the present
framework is the capability gap. The capability gap is the
difference between the joint moments needed for performing
a “desired” motion, i.e., TD walking, and the joint moments
the personalized model of the patient (this can be either
a pre- or post-operative model) can generate. We use a
synergy-based static optimization approach to compute the
capability gap. Here, the reserve moments appearing in the
moment equilibrium function (Equation 5) represent the
torque deficit and hence the capability gap. Subject-specific
musculoskeletal geometry and muscle parameters are described
in themusculoskeletal model. Impairedmotor control is imposed
through additional constraints on the activations based on the
patient’s muscle synergies.

The desired motion used for the computation is derived by
scaling average TD walking data to the patient’s dimensions
(Table 1). First, TD kinematics are imposed to a generic model
that was scaled to the patient and corresponding 3D marker

trajectories are extracted. The magnitude of the ground reaction
forces is scaled based on mass and their point of application,
expressed in the foot reference frame, is scaled based on body
height. Successively, using the marker trajectories and ground
reaction forces, the joint moments required for the personalized
model to perform the desired motion are computed by an
inverse kinematics and inverse dynamics analysis. In addition,
correspondingmuscle moment arms andmusculotendon lengths
are computed. By tracking marker trajectories consistent with
TD walking instead of imposing TD joint kinematics directly to
the musculoskeletal model, we avoid that the presence of bony
deformities leads to unrealistic gait patterns. As an example, if the
femoral neck anteversion is 30◦ higher than normal, imposing
TD kinematics to the personalized model would result in a gait
pattern with the knee and foot pointing outwards by about 30◦,
whereas if we track the marker trajectories the knee and foot will
point forwards.

Afterwards, the synergy constrained static optimization is
performed. The cost function to be minimized is CSO as defined
by Equation (3). The moment equilibrium (Equation 5) has to be

satisfied. Inputs to Equation (5), jτ
ID
i , jmri, and

m l̃i, are computed
based on the patientmodel and a TDwalking pattern as described
above. Instead of solving for independent muscle activation
patterns, we now solve for synergy activation patterns Hopt . The

optimization variables are hence H
opt
i , jτ

R
i and mW, which is a

deviation from the pre-operative synergy weights (see below).
Individual muscle activation patterns (including both subsets N
and M) are then computed from the synergy activation patterns
using the synergy weight vectors that describe the patient’s motor
controlWpre (see section Motor Control):

mai = (Wpre + 1mW) × H
opt
i , (14)

The same muscle co-contraction patterns (Wpre) are used to
compute the pre- and post-operative CG, since we hypothesize
that the orthopedic intervention does not alter muscle co-
contraction patterns. Hence, we assume that the neural system
will respond to the alteredmusculoskeletal geometry by changing
the timing andmagnitude of the pre-operative activation patterns
H. A small deviation (W) from the original weights is allowed
because the synergy matrices computed using NNMF typically
do not capture 100% of the signal variability. In our formulation,
W is normalized so that themaximum value in each vector equals
one andW ≤ 0.05.

Because of the altered musculoskeletal geometry, muscle
parameters and synergy-based constraints on muscle activations,
it is likely that the muscles cannot generate the TD joint
moments. The non-selective motor control imposed by the
synergy weights might impose antagonistic co-contractions,
hindering the moment generating capacity of a muscle.
Alternatively, muscles could be excessively stretched when
imposing TD gait kinematics and generate high passive forces. A
considerable contribution from the residual actuators might thus
be required to satisfy the moment equilibrium. The magnitude of
the residuals moments required to match the desired moments
defines the capability gap.
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The CG is represented graphically as a function of the gait
cycle for the different degrees of freedom (Figure 3A) and is
quantified for each degree of freedom:

jCG =
∑

i

∣

∣

∣

jτ
R
i

∣

∣

∣
/
∑

i

∣

∣

∣

jτ
ID
i

∣

∣

∣
, (15)

Furthermore, we provide a muscle report (Figure 3B)
summarizing the intervals during which muscles operate
with excessively short or long fiber lengths. Excessively stretched
muscles are those whose passive force is >0.5 times their

maximum isometric force (corresponding to l̃ larger than
1.5 lmo). Muscles active at short lengths are those whose
activations are >0.25 when operating at normalized fiber lengths
smaller than 0.6, meaning that they are producing relatively
little force.

Alternative Analyses
This framework is originally intended to work with the
personalized neuro-musculoskeletal models as described above
but it is also possible to exclude one or more of the
personalization blocks. In fact, this procedure can be of
value when assessing the importance of the different factors
contributing to the impairment, as highlighted in section Case
Studies. It is for instance possible to import a scaled, generic
model, and perform the same analyses and surgeries, as envisaged
for the personalized models, in order to evaluate the importance
of the bony deformities in defining the impairment of the
patient. Alternatively, it is possible to investigate alternative
causes of the functional impairment by excluding the muscle
force/length relationships or the constraints imposed by the
motor control on themuscle activations when computing the gait
performance (CG).

Case Studies
We analyzed two representative patients with the proposed
framework (Table 1). Both were diagnosed with diplegic CP
and underwent SEMLS. For both patients, MRI images were
acquired prior to the intervention (for details on the protocol,
see Bosmans et al., 2014). A standardized clinical examination
protocol (Desloovere et al., 2006) was conducted to evaluate
the level of spasticity, strength, selectivity and range of motion.
Three-dimensional gait analysis was performed before and after
the intervention. Each participant was equipped with a set of
reflective markers using the Vicon Plug-in-Gait marker set for
lower limbs. Using a 10–15 cameramotion capture system (Vicon
Motion Systems, Oxford, UK) and two force plates (AMTI,
Watertown, MA, USA), marker trajectories and ground reaction
forces were collected during one static trial and at least three
walking trials at self-selected walking speed. EMG signals were
collected (Zerowire, Cometa, Italy) from eight major muscles per
leg (rectus femoris, vastus lateralis, biceps femoris long, medial
hamstrings, tibialis anterior, gastrocnemius, soleus, and gluteus
medius). The local ethical committee approved all procedures,
and written informed consent was obtained from the parents of
the children prior to participation.

We created pre-operative personalized models using
the experimental data (MRI, 3D gait analysis and clinical

examination report) and post-operative personalized model by
performing virtual surgeries according to the surgical plan of the
actual intervention. For Patient 1 the following interventions
were modeled: bilateral rectus femoris transfer, distal femur
extension, and derotation osteotomy, patella advancement.
Patient 1 also received a derotation of the tibia, but this was
not modeled due to the fact that the MRI from which the
musculoskeletal model was built did not include images of the
feet and distal tibiae. For Patient 2 the following interventions
were modeled: bilateral rectus femoris transfer, left distal
femur derotation, right distal femur extension, and derotation
osteotomy, patella advancement, right gastrocnemius and
psoas release.

To simulate the Extension and Derotation Osteotomy
intervention, the angle between the two cutting planes in the
femur was modeled based on the knee extension deficit observed
when testing the passive range of motion. For the femur
Derotation Osteotomy, the anteversion angle was corrected to be
equal to 0◦ in the simulated post-operative model in agreement
with information provided by the orthopedic surgeons. Patella
advancement was modeled by shortening the patella ligament by
2 cm, as reported in the surgical plan. Rectus Femoris Transfer
was modeled in two steps. First, a via point in the femur reference
frame was introduced in the middle of the muscle-tendon unit.
Second, the insertion site was transferred to the semitendinosus
tendon, while keeping the original length of the musculotendon
unit unchanged. Our approach replicates the surgical procedure
in which the rectus femoris is detached and reattached distally
but left attached proximally, thus maintaining its function
as a hip flexor. Muscle Release interventions were modeled by
completely removing themuscle contribution from the generated
moment, i.e., by setting the maximum isometric muscle force to
zero. Although both patients additionally received botulinum-
toxin injections, these were not included in the postoperative
model given that their effect can be considered small given the
time between the pre- and post-operative observations (10 and
13.5 months).

We compared the predicted motor performances of the
patients in terms of the capability gap for the pre-and post-
operative conditions (Figure 3). We tested the effect of different
treatment options on the capability gap of the right leg of Patient
2 (Figure 4). This was done by creating different models with
different angles of the cutting planes defining the extension
osteotomy (20◦ and 25◦) as well as two different shapes
of the wedge of bone (triangular and trapezoidal). We also
investigated the effect of including/excluding the altered muscle
parameters and motor control on the predicted gait performance
(Figure 5) in the pre-operative condition. When excluding
altered motor control from the analysis, muscle activations could
vary independently for all muscles. Finally, we tested the ability
of our framework to predict post-operative performance by
comparing the predicted gait performance (CG) with the gait
performance quantified based on the 3D gait analysis performed
before and after the intervention (Figure 6). We analyzed the
root mean square errors between patient and TD kinematics,
corresponding to the Gait Variable Scores and Gait Profile Scores
(Baker et al., 2009).
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FIGURE 3 | Capability gap and report on muscle operating lengths. (A) Capability gap computed for the two representative patients, before and after the virtual

surgery. The continuous black lines represent the joint moments required for the model to reach the desired kinematics [i.e., typically developed (TD) gait cycle].

Dotted black lines represent the moment exerted by the model. The light gray patches represent the capability gap. (B) Information about the operating conditions of

the muscles. Blue dots represent the time instants in which muscles are active at short lengths (activation >0.25 and normalized fiber length smaller than 0.6), red

dots the intervals in which muscles are stretched, and exert an excessive passive force (>0.5 times the maximum isometric force).
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FIGURE 4 | Effect of treatment options on the capability gap. Data reported are relative to the simulated post-operative condition of the right leg of Patient 2.

Capability gap is computed after rectus femoris transfer, femur extension and derotation osteotomy, and patella advancement interventions but before performing any

muscle release intervention. The continuous black lines represent the joint moments required for the model to reach the desired kinematics [i.e., typically developed

(TD) gait cycle].

RESULTS

Patient 1
The patient had near normal range of motion at the hip and
ankle, but a bilateral knee extension deficit in both limbs,

bilateral spasticity in most muscles, including rectus femoris,

good strength in most muscles bilaterally but slightly lower
strength in hip and knee extensors, as well as hip abductors, with

overall good selectivity (Table 1). The pre-operative gait analysis

(Figure 6A) indicates bilateral excessive knee flexion and ankle
dorsiflexion, with incomplete hip extension at the end of stance.

The right side hip presents excessive hip adduction.
Synergy analysis revealed that three synergies were sufficient

to describe the pre-operative EMG signals in both legs. For
comparison, previous work of the group found that, during

walking, 57% of TD children use four synergies, whereas the
remainder of the subjects uses three. Therefore, to take into

accountmuscles for which no EMGwere collected, four synergies
were used for the CG computation.

An important CG was found bilaterally at the level of the

knees and to a lesser extent hip adduction (Figures 3A, 6B).
The simulated interventions were able to reduce the calculated

CG, especially at the knees, but also when averaged across all

the joints. However, the effect on the CG at the level of the
other joints was more variable. In particular, the left hip flexion
and ankle dorsiflexion CG showed an increase after the surgery.
The post-operative gait analysis shows that knee extension was
restored successfully, whereas bilateral hip flexion increased after
surgery. Ankle dorsiflexion was restored bilaterally, however,
right ankle plantarflexion was still lacking.

The tuning of the muscle parameters was a necessary step
to perform the aforementioned analyses. After applying the
bony deformities to the model, most of the muscles would

have operated at excessive values of l̃ (Figure 7). Therefore, this
model would have been unable to generate the required joint
moments due to excessive passive forces generation, introducing
excessive muscle activations to compensate these and resulting
in high residual torques. For Patient 1, residual torques were
as high as 45Nm for the knee joint. Nevertheless, parameter
tuning was able to bring the residual torque values below 1Nm
and to produce muscle activations closer to the measured EMG
signals (Figure 7).

Within the framework, it is possible to evaluate the isolated
effect of motor control deficit, by in- or excluding the motor
control model when computing the post-operative CG. In
Figure 5, the CG computed in both conditions is presented.
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FIGURE 5 | Effect of motor control on capability gap. Capability gap computed relative to the pre-operative condition for the right legs of both patients (on the left side

is Patient 1, on the right is Patient 2). The continuous black lines represent the joint moments required for the model to reach the desired kinematics [i.e., typically

developed (TD) gait cycle]. When synergies are taken into account the muscle activations are computed from the pre-operative weight vectors, which define the

muscle coordination specific to the impairment; when synergies are not taken into account muscles are activated selectively, thus simulating an unimpaired motor

control.

For this patient, the CG gap is almost zero when the synergy
constraints on muscle activations are not considered. The
impaired motor control has thus a major contribution to the CG
for this patient.

Patient 2
The patient’s right side was more involved in terms of passive
ROM, spasticity and muscle weakness (Table 1). More specific,
hip adduction was slightly decreased whereas knee extension
and dorsiflexion were more severely restricted in the right
limb. Spasticity was present overall, although more pronounced
in the distal compared to the proximal muscles. Overall, the
patient had good muscle strength, with slightly lower values
for the right proximal muscles and hip abductors and for the
left hip extensors and plantarflexor muscles. The pre-operative
gait analysis revealed bilateral increased knee flexion and hip
adduction. Ankle dorsiflexion was increased on the left side,
whereas on the right side a reversed second rocker was present.
A reversed second rocker is defined by dorsiflexion during
loading response and the first half of mid-stance followed
by plantarflexion, whereas during normal gait, second rocker
is characterized by plantarflexion followed by dorsiflexion.

Insufficient hip extension in terminal stance was present at the
left hip.

Synergy analysis revealed that four and three synergies
could explain the pre-operative EMG signals for the left and
right leg, respectively, thus leading to the use of five and
four synergies in the CG computations. The CG in the pre-
operative condition reflected the reduced range of motion of
the right leg. CG was higher for the right then for the left
leg with muscles gastrocnemii, hamstrings, iliacus and psoas
being excessively stretched (Figure 3B), leading to a large
contribution of their passive forces to the CG. In addition, the
comparison of the CG computed with and without the inclusion
of the motor control (Figure 5) supports the interpretation
that the vast majority of the CG is due to the aberrant
musculoskeletal geometry and muscle properties, and not
motor control.

The simulated treatment had a very different impact on the
CG for the two legs. For the right leg, surgery massively reduced
the CG. The simulated extension and derotation osteotomy
in isolation reduced the CG generated by the hamstrings
at the hip and knee at the beginning and end of the gait
cycle. The use of a trapezoidal wedge, most commonly used
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FIGURE 6 | Predicted and measured changes in patient performance. Data on the left belong to Patient 1, on the right to Patient 2. (A) Kinematics of the two

representative cases measured in both pre- and post-operative conditions (mean and standard deviation). Black dotted line is the average data from typically

developed (TD) children used as reference for the computation of the capability gap (CG). (B) Changes in the predicted capability gap, and in the root mean square

differences (computed with respect to the TD kinematics) between the pre- and post-operative condition.

to correct large extension deficits, reduced the CG most by
reducing excessive stretch in the muscles (Figure 4). The effect
of the extension osteotomy was significant, but even after this
treatment a large CG was present. This CG was most elevated
in the stance phase for the ankle and knee joint and around
toe-off for the hip joint. The muscle report indicated that
the gastrocnemii, iliacus and psoas were markedly stretched
during these intervals (Figure 3B). These muscles were targeted
by the release procedure. The inclusion of these procedures
within the framework further reduced the predicted CG as
shown in Figure 3A. On the other hand, the pre-operative CG
of the left leg was smaller and our framework predicted a
slight increase in the CG after the intervention (Figures 3A,
6B).The post-operative gait analysis confirms the positive
outcome, with a bilateral marked improvement in the observed
kinematics (Figure 6).

DISCUSSION

We introduced a novel and promising musculoskeletal modeling
and simulation-based framework to assist clinicians in the
treatment selection process to improve gait function in patients
with CP. The salient feature of this framework is a comprehensive
personalization of the models comprising subject-specific
musculoskeletal geometry and muscle parameters as well as

motor control. Furthermore, we introduced a GUI to simulate
different orthopedic interventions and interactively modify
the musculoskeletal models. As a result, the effect of several
candidate orthopedic interventions on the gait performance,
evaluated in terms of the patient’s capability gap, can be
evaluated. In comparison with a number of other studies that
aimed to predict the outcome of orthopedic treatments (Hicks
et al., 2011; Schwartz et al., 2016; Galarraga et al., 2017), our
method differs by the fact that the predictions within our
framework are not based on statistical methods. This allows the
user to select different treatments or combinations thereof and to
evaluate their combined or isolated effects.

In comparison with studies applying forward predictive
simulations (Fox et al., 2009; Mansouri et al., 2016), our
framework offers the possibility to include a variety of
interventions and to fine-tune their parameters: it is for instance
possible to combine a muscle transfer or patella advancement
surgery with a femoral extension derotation osteotomy and to
specify the amount of bony correction. A recently published
paper (Lee et al., 2019) proposes a similar framework in which
it is possible to predict the post-operative gait after an orthopedic
surgery. However, several differences with respect to our work
are worth noticing. The model of the motor control used by Lee
et al. is obtained via a trajectory mimicking policy, which does
not take into account the patient’s coordination strategy, whereas
we include this feature using EMG based muscle synergies.
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FIGURE 7 | Effect of tuning of muscle parameters. On the top row are plotted the values of the normalized muscle fiber lengths of all the tuned muscles throughout

the gait cycle. The two horizontal dotted lines represent the constraints imposed during the optimization process. On the bottom row are plotted the activations of two

representative muscles (semitendinosus and gastrocnemius medialis), before and after the optimization, as well as the experimental EMG signal.

While in Lee’s work subject-specific muscle-tendon parameters
are not included, we proposed a tuning based on detailed
pre-operative information. In addition, there are differences in
the proposed sets of interventions. Both studies implemented
derotational osteotomies and muscle transfers, but Lee et al.
included muscle-tendon lengthening while we included patella
advancement and femoral extension osteotomy surgeries based
on the interventions that are commonly used in CP treatment.

We demonstrated the potential of our framework based on
two case studies. Indeed, we found a good agreement between
the evolution of the predicted motor performance measured with
the CG and the actual evolution of the patient kinematics. Using
our framework, we were able to highlight the importance of
taking into account the specific neurological and musculoskeletal
impairments of the patients with CP when assessing gait
dysfunction during the planning of an orthopedic intervention.

In Patient 1, virtual simulations of procedures correcting
the bony deformities were able to reduce the CG. This agrees
with the general trend of improved gait kinematics measured
during the post-operative gait analysis. The CG computed
without the inclusion of the motor control was almost negligible.
Therefore, a hypothetical patient with the same musculoskeletal
geometry and properties, but able to activate his/her muscles
selectively, could be able to achieve a normal gait pattern. For
this patient, the impaired motor control plays thus a major role
in determining the altered gait pattern. It is interesting to note
that, despite being mainly due to the impaired motor control,

the CG of the patient is sensitive to the orthopedic intervention,
suggesting an interaction between the motor control and
musculoskeletal condition of the patient. In other words, motor
control impairmentsmight limit the compensation strategies that
are available to patients with CP to counteract musculoskeletal
deformities. In contrast, excluding the muscle synergies from the
calculation of the CG for Patient 2 had little effect. This indicates
that the abnormal muscle parameters, specifically the shortness
of several muscles, are the main contributors to the altered gait
pattern. This is evident in the muscle report, which indicates that
many muscles, including gastrocnemius and psoas, operating
at excessive lengths when the CG is high (Figure 3B). These
findings support the need for additional muscular interventions
on the right side, more specific the gastrocnemius and psoas
release. The insights in the two case studies provided by our
SimCP framework suggest that the underlying causes for the
gait deviations might be very different in different patients, even
when they present with similar gait patterns. The constraints
imposed by the motor control and the musculoskeletal system
should hence be taken into account during the clinical
decision process.

Furthermore, we demonstrated that the implementation of
a specific orthopedic intervention, more specific the choice of
cutting planes and derotation magnitudes, might have a big
influence on post-operative gait performance. By creating several
models corresponding to different feasible variations in the
surgical technique, it is possible to evaluate which variation
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has the highest potential to reduce the functional impairment
of the patient. For example, increasing the angle of the bone
wedge reduced the CG in Patient 2, whereas a trapezoid
wedge reduced the CG even more. In the future, we plan
to develop an optimization based procedure to automatically
identify the combination of surgical parameters that minimizes
the predicted CG.

The presented framework has still several limitations that will
be addressed in future studies. First, there is a need for validation
of the model prediction. Although we showed the potential of the
framework here, manymore cases are needed to demonstrate that
the CG is a validmeasure of gait performance. To this aim, wewill
compare the computed change in CG with the measured change
in gait kinematics induced by the treatment in a large population
of CP children. In addition, the different subcomponents of
the framework need further validation. For example, we plan
to use MRI-images collected post-operative to validate our
implementation of the surgical interventions. Second, all analyses
are based on static optimization with musculotendon units
having rigid tendons. This approach was chosen to reduce
computational time and for ease of implementation. We are
currently developing a dynamic optimization implementation
that takes into account muscle dynamics enabling the inclusion
of a model of muscle spasticity (Falisse et al., 2018). These
developments might further improve prediction accuracy. Third,
the CG does not predict how the patient will walk in terms of
the kinematics. The CG does not describe how a patient will
move after treatment but how difficult it would be for him/her
to achieve a normal gait pattern. In other words, the CG does
not provide any insight in possible kinematic compensation
strategies. However, the CG has the advantage of being fast and
easy to compute, requiring only a few seconds per trial, and
thus enabling the comparison of multiple treatment options. In
the near future, we plan to include predictive simulations of
gait kinematics in our framework building on the workflow for
personalized modeling that we presented here.

A beta version of the developed GUI is freely available (https://
simtk.org/projects/simcp), which will enable the biomechanical
community to create post-operative models in an easy way
and therefore foster future research related to orthopedic
interventions and pathological gait. Furthermore, the GUI as well
as the concept of the CG can be applied to different populations
(e.g., stroke) and research questions (e.g., strength training).

To summarize, we conceptualized and developed a
simulation-based framework that relies on highly personalized
patient-specific models, including a description of the
musculoskeletal geometry, the muscle parameters and the
motor control. This framework is designed to assist clinicians in
selecting the most promising treatment option for an individual
patient solely based on pre-operative data. It is our aspiration
that this in silico-informed clinical decision making framework
will increase the number of positive treatment outcomes in
ambulatory children with CP.
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