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Comprehensive Analysis of the 
Expression and Prognosis for GBPs 
in Head and neck squamous cell 
carcinoma
Zeng-Hong Wu1,2,4, Fucheng Cai3,4 & Yi Zhong   1*

Guanylate binding proteins (GBPs) belongs to the interferons (IFNs) induced guanylate-binding 
protein family (Guanosine triphosphatases, GTPases) consisting of seven homologous members, 
termed GBP1 to GBP7. We used multidimensional survey ways to explore GBPs expression, regulation, 
mutations, immune infiltration and functional networks in head and neck squamous cell carcinoma 
(HNSCC) patient data based on various open databases. The study provides staggered evidence for the 
significance of GBPs in HNSCC and its potential role as a novel biomarker. Our results showed that over 
expressions of 7 GBPs members and multivariate analysis suggested that N-stage, high expressions of 
GBP1 and low expression of GBP6/7 were linked to shorter OS in HNSCC patients. In addition, B cells 
of immune infiltrates stimulant the prognosis and might have a medical prognostic significance linked 
to GBPs in HNSCC. We assume that GBPs play a synergistic role in the viral related HNSCC. Our results 
show that data mining efficiently reveals information about GBPs expression in HNSCC and more 
importance lays a foundation for further research on the role of GBPs in cancers.

Head and Neck Squamous Cell Carcinoma (HNSCC) is a common head and neck malignancy that originates 
from lips, mouth, paranasal sinuses, oropharynx, larynx, nasopharynx, and other pharyngeal cancers1. As the 
sixth most common type of malignant tumors, with more than 655,000 new cases and 90,000 deaths every year2. 
Currently, smoking, drinking, and human papillomavirus (HPV) infection are considered risk factors for HNSCC 
occurrence and prognosis3. Unfortunately, the 5-year survival rate is still below 50% due to the usual lack of early 
symptoms when HNSCC is detected early, while the survival rate is reduced to 35% due to local recurrence and 
metastasis4.

Once in advanced stages, treatment can notably effect organ function and harm the structures involved 
in speaking and swallowing, causing devastating results in patient’s quality of life5,6. Studies reported that 
lots of HNSCC not only has experienced epithelial-to-mesenchymal transition (EMT) but also presents a 
mesenchymal-like (ML) phenotype and thus effect the drug resistance, tumor migration or tumor growth7. The 
incidence and development of HNSCC is a complex process involving multiple molecules. Guan et al. found long 
non-coding RNA H19 and its mature miR-675 were significantly high level in two HNSCC cell lines as well as 
a cohort of 65 primary tumor samples8. Wu et al. reported that SUZ12 protein was particularly overexpression 
in primary HNSCC samples and is up-regulated significantly associated with cervical node metastasis, overall 
survival and disease-free survival9. Reed et al. believed that inactivation of the p16 tumor suppressor gene is a 
common event in HNSCC10. In spite of advances in combine chemotherapy, radiation, and surgery during the 
past decades have fundamentally improved survival rate of the HNSCC patients, many patients increase second-
ary tumors, recurrences or metastasis after treatment and thus becomes a challenging problem and leading to 
therapeutic failure11.

Guanylate binding proteins (GBPs) belongs to the interferons (IFNs) induced guanylate-binding protein fam-
ily (Guanosine triphosphatases, GTPases) consisting of seven homologous members, termed GBP1 to GBP712. 
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Until now, seven different GBPs and six in mouth have been identified and human GBPs show a high level of 
homology. GTPases are involved in process of signal transduction, cell proliferation, differentiation and intracel-
lular protein transportation13,14. Inside host cells, GBPs quickly assemble into big antimicrobial defense complexes 
that fight various bacterial pathogens15. Studies found the immune roles of human GBPs in regulating not only 
pyroptosis, but also apoptosis16. Most previous studies the function of GBPs in bacterial pathogens, but more and 
more studies explore the role of GBPs in tumor mechanism. Study found that GBP1 acts specifically as a tumor 
suppressor in colorectal carcinoma and the reduction of GBP1 expression might imply cancer evasion from the 
IFN-γ-dominated Th1 immune response17. Nevertheless, the mechanism by which GBPs are depressed or acti-
vated still remained unclear in the development and progression of HNSCC. Until now, a comprehensive bioin-
formatics analysis has not yet to analysis the potential role of GBPs in HNSCC. we explored the mutations and 
expressions of various GBPs based on thousands of variations in copy numbers or gene expressions in patients 
whom with HNSCC in detail to provide new insights into the potential functions, expression patterns, molecular 
mechanisms and distinct prognostic underlying GBPs regulation.

Results
Over-expression of different GBPs family members in HNSCC.  In order to explore the potential 
therapeutic value and distinct prognostic of different GBPs members in HNSCC patients, the expression GBPs 
were explored by ONCOMINE database, TCGA database and HPA database. We first contrast the transcriptional 
levels of GBPs in cancers and normal samples and significantly higher mRNA expressions of GBP1/4/5 were 
found in HNSCC tissues in multiple datasets (Fig. 1). In Peng Head-Neck statistics18, GBP1 over-expression 
was found in oral cavity squamous cell carcinoma tissues compared with normal tissues with a fold change of 
7.854 (P = 4.15E-24), while Talbot19 observed 2.962-fold increase in GBP1 mRNA expression in tongue samples 
(P = 3.10E-12), Ginos20 found 5.397- fold increase in GBP1 mRNA expression in HNSCC tissues (P = 2.70E-13), 
Estilo21 found 4.286- fold increase in GBP1 mRNA expression in tongue tissues (P = 3.51E-9) and Ye22 found 
4.450- fold increase in GBP1 mRNA expression in tongue tissues (P = 5.39E-5, Table 1). Significant up-regu-
lation of GBP4 was also found in HNSCC tissues compared to normal tissues. In Peng Head-Neck statistics18, 
GBP4 over-expression was found in oral cavity squamous cell carcinoma tissues compared with normal tissues 
with a fold change of 3.256 (P = 2.06E-12). Similarly, In Peng Head-Neck statistics18, GBP5 over-expression was 
found in oral cavity squamous cell carcinoma tissues compared with normal tissues with a fold change of 14.065 

Figure 1.  The transcriptional levels of GBPs in cancers and normal samples and significantly higher mRNA 
expressions of GBP1/4/5 were found in HNSCC tissues in multiple datasets. Redder means higher expression 
and bluer means lower expression, the analysis which can give us an understanding of the expression of GBPs 
family in different cancer types. (ONCOMINE Database).
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(P = 3.61E-26), while Ye22 observed 3.376-fold increase in GBP5 mRNA expression in tongue samples (P = 1.53E-
4). We then tried to analysis the protein expression patterns of GBPs in HNSCC by the HPA database. As the 
result shown GBP1/4/5 proteins were not expressed in normal head and neck tissues, whereas high and medium 
expressions of them were observed in HNSCC tissues. In addition, low protein expressions of GBP3/7 were 
expressed in normal tissues, while medium and high protein expressions of them were observed in tumor tissues. 
Moreover, medium protein expression of GBP2 was observed in normal tissues and high expression in HNSCC 
tissues (Fig. 2). However, no expression and low protein expression of GBP6 was observed in normal and tumor 
tissues. In total, our results suggested that transcriptional and proteinic expressions of GBPs were over-expressed 
in patients with HNSCC.

Association of mRNA expression of different GBPs family members with clinicopathological 
parameters of HNSCC patients.  Using the GEPIA dataset, we first contrast the mRNA expression differ-
ence of GBPs between cancer and normal tissues. The results demonstrated that the expression of GBP1 and GBP5 
were higher in HNSCC tissues, while the expression level of GBP6 was lower in cancer tissues (Fig. 3). Moreover, 
we also explored the expression of GBPs with cancer stage for HNSCC and we found GBP1/5/6 groups signifi-
cantly varied, but GBP2/3/4/7 groups did not significantly differ (Fig. 4).

Prognostic value of mRNA expression of GBPs in HNSCC.  We next used Kaplan-Meier plotter to 
explored the prognostic survival values of the mRNA expression of GBPs in HNSCC patients by using publicly 
free online datasets. The Kaplan-Meier curve and log rank test analyses were shown in Fig. 5, higher mRNA 
expression of GBP2 (HR = 2.08, 95% CI: 0.99–4.37, P = 0.048) and GBP3 (HR = 2.09, 95% CI: 0.99–4.42, 
P = 0.049) were significantly associated with shorter relapse free survival (RFS) of HNSCC patients. Interestingly, 
higher mRNA expression of GBP2 (HR = 0.76, 95% CI: 0.58–1, P = 0.047), GBP4 (HR = 0.66, 95% CI: 0.48–
0.91, P = 0.0099), GBP6 (HR = 0.68, 95% CI: 0.52–0.9, P = 0.0056) and GBP7 (HR = 0.69, 95% CI: 0.53–0.91, 
P = 0.0081) were significantly associated with longer overall survival (OS) of HNSCC patients. These results sug-
gested that mRNA level of GBP2/3/4/6/7 plays an important role in cancer patients’ prognosis and they may be 
exploited as novel useful biomarkers for prediction of HNSCC patients’ survival. We then tried to evaluate the 
independent prognostic value of expression of GBPs involve in OS in HNSCC patients from TCGA database. 
Significant high expression of GBP1/3/4/5/6/7 in HNSCC tissues compared to normal tissues (Supplementary 
Fig.). In univariate analysis, we found that tumor stage (HR = 1.80, 95% CI: 1.23–2.66, P < 0.05), T-stage 
(HR = 1.36, 95% CI: 1.05–1.76, P < 0.05), N-stage (HR = 1.36, 95% CI: 1.10–1.68, P < 0.05), high expressions of 
GBP1/6/7 were linked to shorter OS of HNSCC patients. Multivariate analysis suggested that N-stage (HR = 1.33, 
95% CI: 1.03–1.72, P < 0.05), high expressions of GBP1 and low expression of GBP6/7 were linked to shorter OS 
of cancer patients (Supplementary Table 1). These results showed that transcriptional expressions of GBP6/7 were 
independent prognostic factors for patients with HNSCC.

Predicted Functions and Pathways of GBPs in HNSCC.  We next explored the GBPs alterations and 
networks via the cBioPortal online tool and we further analyzed 50 neighbor genes which were significantly 
related to GBPs mutations. In the 528 sequenced HNSCC patients, genetic alteration was found in 115 patients 
and the mutation rate was 22%, GBP5 ranked the highest genes with genetic alterations with the mutation rates 
were 7% and we also shown the network for GBPs and the 50 most frequently altered neighbor genes (Fig. 6). 
The top 10 type and frequency of GBPs neighbor gene alterations in HNSCC including ADAR, IRF6, IRF9, IRF2, 
CD44, STAT1, FCGR1A, NFATC2, ICAM1 and STAT2 (Table 2). In addition, functions and pathways of GBPs 
and their 50 frequently altered neighbor genes were analyzed by GO and KEGG in DAVID online database 
(Supplementary Table 3). GO analysis results showed that changes in biological processes (BP) were significantly 

GBPs Type of Breast Cancer versus Normal Breast Tissue
Fold 
Change P Value t Test Source and/or Reference

GBP1

Oral Cavity Squamous Cell Carcinoma 7.854 4.15E-24 16.990 Peng Head-Neck statistics18

Tongue Squamous Cell Carcinoma 2.962 3.10E-12 9.029 Talbot Lung statistics19

Head and Neck Squamous Cell Carcinoma 5.397 2.70E-13 10.813 Ginos Head-Neck statistics20

Tongue Squamous Cell Carcinoma 4.286 3.51E-9 7.071 Estilo Head-Neck statistics21

Tongue Squamous Cell Carcinoma 4.450 5.39E-5 3.433 Ye Head-Neck statistics22

GBP2
Oral Cavity Squamous Cell Carcinoma 1.636 3.53E-8 6.125 Peng Head-Neck statistics18

Oral Cavity Squamous Cell Carcinoma 1.692 0.035 2.151 Toruner Head-Neck Statistics

GBP3 Oral Cavity Squamous Cell Carcinoma 1.792 4.54E-9 6.542 Peng Head-Neck statistics18

GBP4 Oral Cavity Squamous Cell Carcinoma 3.265 2.06E-12 8.363 Peng Head-Neck statistics18

GBP5
Oral Cavity Squamous Cell Carcinoma 14.065 3.61E-26 16.300 Peng Head-Neck statistics18

Tongue Squamous Cell Carcinoma 3.376 1.53E-4 3.997 Ye Head-Neck statistics22

GBP6 NA NA NA NA NA

GBP7 Oral Cavity Squamous Cell Carcinoma 1.636 3.53E-8 6.125 Peng Head-Neck statistics18

Table 1.  The Significant Changes of GBPs Expression in Transcription Level between Different Types of 
HNSCC and Normal Tissues (Oncomine database). NA, not available; HNSCC: head and neck squamous cell 
carcinoma.
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enriched in cellular response to type I interferon, regulation of immune response, multi-organism process, 
response to virus and cytokine production et al. Changes in molecular function (MF) were mainly enriched in 
oligoadenylate synthetase activity, protein binding, regulatory region DNA binding and nucleic acid binding. 
Changes in cell component (CC) were mainly enriched in intracellular membrane-bounded organelle, cytoplas-
mic part, membrane-bounded organelle and MHC class I protein complex et al.

KEGG were mainly enriched in antigen processing and presentation and viral infection.

Immune infiltrates in correlation with GBPs in HNSCC.  Correlation between GBPs in HNSCC 
expression and abundance of immune infiltrates was statistically significant (P < 0.05, Supplementary Table. 2). 
Cumulative survive showed that B cells of immune infiltrates statistically significant (P < 0.05) of GBPs in HNSCC 
and it is worth further research and exploration (Supplementary Table 4).

Discussion
Although certain GBPs members have been shown to play a key role in cancer, the different roles of GBP family 
members in HNSCC remain to be elucidated. So, we first explored the mutations and expressions of various GBPs 
based on thousands of variations in copy numbers or gene expressions in patients whom with HNSCC. Our study 
showed that high expressions of mRNA in all the GBPs family members, and mRNA expression of GBPs was 
significantly related to patients’ individual cancer stages in HNSCC patients. Multivariate analysis suggested that 
N-stage (HR = 1.33, 95% CI: 1.03–1.72, P < 0.05), high expressions of GBP1 and low expression of GBP6/7 were 
linked to shorter OS of cancer patients.

Figure 2.  Representative immunohistochemistry images of distinct GBPs family members in HNSCC tissues 
and normal tissues (Human Protein Atlas Database).
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The occurrence of HPV-related HNSCC has steadily rised over the past two decades and now indicate a major-
ity of HNSCC cases23. Epstein–Barr virus (EBV) infection is found in 90% to 100% of nasopharyngeal carcinoma 
(NPC) cases in endemic regions24. GBPs belongs to the IFNs induced guanylate-binding protein family, while 
IFNs are the main antiviral factors released during the process of infecting host cells by viruses or other patho-
gens, and have cell surface receptors that bind to responsive cells, regulating host antiviral status, anti-malignant 
cell proliferation and immune response15. Functions and pathways of GBPs and their 50 frequently altered neigh-
bor genes were analyzed by GO and KEGG demonstrated that changes in BP of DEGs were significantly enriched 
in regulation of immune response and virus and cytokine production, MF were mainly enriched in protein/
region DNA/nucleic acid binding and CC were mainly enriched in intracellular membrane-bounded organelle 
and MHC class I protein complex et al. KEGG were mainly enriched in antigen processing and presentation and 
viral infection. So, we presume that GBPs play a synergistic role in the HPV-HNSCC or other viral related cancers.

GBP1 expression is excited not only by type I and type II interferons (IFN), including IFN-γ, and also by 
interleukin-1α, IL- 1β, and tumor necrosis factor-α25–28. In vivo, GBP1 is related to the existence of inflammation 
and has been adhere to in inflammatory bowel diseases (IBD), autoimmune diseases and cancers. GBP1 regu-
lates the suppression of endothelial cells invasion and proliferation in reaction to inflammatory cytokines and 
exhibit antiviral activity27. Yu et al. reported that GBP1 positively regulating the invasion and migration of oral 
cavity squamous cell carcinoma cells29. A recent study showed that GBP1 may promote lung adenocarcinoma 
invasiveness by stimulate cell motility and via manage of GBP1 expression may development of new therapeu-
tic ways for tumor30. GBP1 also found as a fetal T lymphocyte-induced protein that cause breast cancer cells 
to cross the blood-brain barrier31. Our results showed that higher mRNA expressions of GBP1 were found in 
HNSCC tissues, and that mRNA expression of GBP1 was significantly related with patients’ cancer stages and 
abundance of immune infiltrates. Moreover, previous studies focus on the role of T immune cell in cancers, while 
our cumulative survive showed that B cells significantly stimulant the prognosis and might have a medical prog-
nostic significance linked to GBPs in HNSCC. GBP2 is strongly induced by IFN-γ. GBP2 is obviously higher in 
esophageal squamous cell carcinomas than in adjacent normal epithelium cells and is consistently increased in 
a p53-dependent manner and also followed by an rise in protein levels of IRF-132. Zhang et al.33 first found that 
GBP2 inhibits cell metastasis and mitochondrial fission in breast cancer cells not only in vitro but in vivo and 
another study found an interesting result that GBP2 related to a recently generally T cell signature, suggesting 
tumor infiltration with T cells in breast cancer34. Other study found GPB2/5 shown wide antiviral activity by 
suppressing the activation of the virus-dependency factor furin35. GBP2 was similarly relocalized in cells in which 
autophagy was impaired36. Our study results shown that higher mRNA expression of GBP2 were significantly 
related to longer OS and RFS of HNSCC patients. So, we guess GBP2 may play a critical role in cancer autophagy 
and needs more study to convince.

Xu et al.37 first found that GBP3 lead to the proliferation of glioma cells via SQSTM1-ERK1/2 pathway. 
GBP3 also has been reported to contributed to anti-influenza activity via suppressing viral transcription 

Figure 3.  The box plot Expression of GBPs in HNSCC. The box color of red indicates tumor and blue indicates 
normal. The method for differential analysis is one-way ANOVA, using disease state as variable for calculating 
differential expression and asterisk means statistically significant, with each dot representing a distinct tumor or 
normal sample. (GEPIA Database; TPM: Transcripts Per Million; T: Tumor; N: Normal).

Figure 4.  The expression of GBPs with cancer stage (Stage I~Stage IV) for HNSCC and we found GBP1/5/6 
groups significantly varied, but GBP2/3/4/7 groups did not significantly differ. The method for differential 
gene expression analysis is one-way ANOVA, using pathological stage as variable for calculating differential 
expression. The larger F, the better the study fit and P-Value < 0.05 as statistically significant. (GEPIA 
Database).
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Figure 5.  The Prognostic Value of mRNA Level of GBP Factors in HNSCC Patients. The patient samples are 
split into two groups according to various quantile expressions of the proposed biomarker and gene expression 
data and relapse free survival (RFS) and overall survival (OS) information are downloaded from GEO, EGA and 
TCGA. (Kaplan-Meier Plotter Database).

Figure 6.  GBPs Gene Expression and Mutation Analysis in HNSCC (cBioPortal Database). (A) GBPs gene 
expression and mutation analysis; (B) The protein- protein interaction network for GBPs and the 50 most 
frequently altered neighbor genes.
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and replication38. GBP1 and GBP3 exhibit highest homology between the seven members (88% amino acid 
sequence)12 so GBP3 may be a novel proto-oncogene. Similarly, our results showed that higher mRNA expres-
sions of GBP3 and related to shorter OS in HNSCC tissues. Study reported that GBP4 is a negative regulator of 
virus-induced IFN-I production resulting in impaired TRAF6-mediated IRF7 ubiquitination and it is deemed as a 
novel protein targeting IRF7 and suppressing its function39. Therefore, GBP4 may affect ubiquitination-mediated 
pathways, thereby inhibiting viral infection. IRF regulation of tumors is mainly through regulation of the cell 
cycle, apoptosis or tumor suppressor gene p53, but also regulation of anti-tumor immunity, or regulation of 
interferon signaling Pathway (eg IRF9)40,41. Our results found the 50 most frequently altered GBPs neighbor gene 
alterations in HNSCC including interferon regulatory factors 6 (IRF6), IRF9 and IRF2, indicated that IRFs and 
GBPs coordinate the development of tumors and requires more study. GBP5 have splice variants (GBP5a, GBP5b, 
GBP5ta) before 199242. Krapp et al.43 reported that GBP5 has a broad spectrum of antiretroviral capabilities. 
Wehner et al.44 reported that only the a/b splice variant is rise in healthy cells, but the truncated splice variant has 
been discovered in each melanoma and lots of lymphoma cell lines detected. Study also found GBP5 act as an only 
rheostat for NLRP3 inflammasome activation and thus alert the immune system to the exist of infection or tissue 
damage45. Our results showed that higher mRNA expressions of GBP5 in HNSCC tissues and may related with 
patients’ tumor immune microenvironment. Until now, about the function of GBP6/7 is rare. HuGBP-6 lacks a 
GAS or NF-κB site and therefore, would not be expected to be induced by IFNs46. In GEPIA database analysis we 
found high GBP6 expression in normal tissue and related with patients’ cancer stages, while in TCGA database 
analysis we found high expression in cancer tissue, in addition, in HPA databased we found no expression and 
low protein expression of GBP6 was observed in normal and tumor tissues. Both GBP6/7 significantly related 
to longer OS of HNSCC patients. GBP7 can triggered an IFIT5-IRF1/3-RSAD5 pathway in the DF-1 cells which 
potentially limited the viral replication cycle in the initial infection stage47. Thus, more researches should conduct 
to provide new ideas for the development of anti-tumor drugs and the treatment of human diseases.

There were some limitations in our study, one is that all the data analyzed in our study was retrieved from the 
online databases and cannot provides precise clinical data, larger sample sizes are needed to validate our findings, 
another is that we did not evaluate the potential diagnostic and therapeutic roles of GBPs and tumor markers can 
vary widely due to the histological type of HNSCC and multiple anatomical sites, so future related researches are 
required. Finally, due to insufficient data, we were unable to compare differences in function of GBPs between 
HPV-positive and HPV-negative HNSCC patients and we will do a lot of work in the future. In conclusion, our 
results showed that over expressions of 7 GBPs members and multivariate analysis suggested that N-stage, high 
expressions of GBP1 and low expression of GBP6/7 were linked to shorter OS in HNSCC patients. In addition, 
B-cell infiltration of immune cells affects prognosis and may be related to GBPs in HNSCC. We hypothesized that 
the GBPs plays a synergistic role in virus-associated HNSCC. This research uses online tools that rely on the most 
popular bioinformatics theories to perform target gene analysis of tumor data information from open databases, 
and authorizes large-scale HNSCC genomics research and follow-up functional exploration.

Materials and Methods
Ethics statement.  As the work is a bioinformatics analysis article, so the ethical approval was not necessary 
and all the data were retrieved from the free online databases.

ONCOMINE database.  The DNA copy number and mRNA expression of GBPs in HNSCC were inves-
tigated inside the Oncomine 4.5 database. Oncomine (www.oncomine.org) contains 715 gene expression data 
sets and 86,733 samples, is also the biggest oncogene chip database and incorporated data mining platform 
worldwide48. This analysis drew on a series of HNSCC studies and GBPs expression was involved in evaluated in 
HNSCC tissue in respect to its expression in normal tissue, and P < 0.05 as the cutoff criterion considered statis-
tically significant.

Human protein atlas.  The Human Protein Atlas (https://www.proteinatlas.org/about/licence) is a website 
that involve immunohistochemistry-based expression data for distribution and expression of 20 tumor tissues, 
47 cell lines, 48 human normal tissues and 12 blood cells, the results are represented by at least 576 immunohisto-
chemical staining maps, which have been read and indexed by professionals. These tissues were from 144 different 

Gene 
Symbol Amplification Up-regulation

Down-
regulation Mutation

Total 
Alteration

ADAR 1.3 6.2 0.4 1.5 9.1

IRF6 0.9 6.6 0.4 0.9 8.7

IRF9 0.6 6.0 1.5 0.4 8.7

IRF2 0.4 2.1 2.8 1.5 8.4

CD44 3.4 6.6 0.4 0.6 8.5

STAT1 2.8 4.9 0 2.8 8.5

FCGR1A 2.1 4.2 0 0.2 7.9

NFATC2 0.2 4.3 0 2.8 7.5

ICAM1 0.9 4.0 0 1.1 7.0

STAT2 0.4 5.1 0 0.9 6.4

Table 2.  The top 10 type and frequency of GBPs neighbor gene alterations in HNSCC (cBioPortal).
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individuals and 216 tumor tissues, which ensured that the staining results were fully representative49. In our study, 
direct contrast of protein expression of different GBPs family members between normal and HNSCC tissues was 
used by immunohistochemistry image.

GEPIA dataset.  GEPIA50 is a newly created online interactive web server which enables users to exploring 
the RNA sequencing expression information of tumors/normal tissues or samples from the Genotype Tissue 
Expression (GTEx) projects and The Cancer Genome Atlas (TCGA), based on a criterion processing pipeline. 
GEPIA offer customizable functions such as profiling regarding to pathological stages, cancer types, differential 
expression analysis, survival analysis, correlation analysis and similar gene detection.

Kaplan-meier plotter.  The prognostic significance of mRNA expression of different GBPs in HNSCC was 
evaluated by using Kaplan-Meier plotter (http://kmplot.com/analysis/)51, in which data about gene expression 
with survival of patients in 21 cancer types. The system includes gene chip and RNA-seq information - sources 
for the databases include TCGA, GEO and EGA. By parameter setting, we can analyze the prognosis of patients 
in different subgroups, different pathological parameters, different treatment modes, and different data sets. In 
Kaplan-Meier plotter, cancer patient samples were split into low and high expression group according to median 
values of mRNA expression and assessed by K-M survival plot.

TCGA database.  TCGA uses large-scale genome sequencing to map out the genomic variation maps of all 
human cancers, and conduct systematic analysis to understand the mechanism of cancer cell occurrence and 
development, and on this basis, to obtain new diagnostic and therapeutic methods52. In our analysis, clinico-
pathological parameters of 512 HNSCC patients and mRNA expression of GBPs of 529 HNSCC patients were 
downloaded from the TCGA. The listwise deletion technique was utilized to deal with missing data, which 
excluded the entire sample from the investigation if any single value was absent. Cox analysis was utilized to 
evaluate the impact of GBPs expression on survival alongside other clinical attributes (such as age, gender, stage, 
distant metastasis).

cBioPortal.  The cBioPortal (http://cbioportal.org)53 is an open-access asset gives visualization, analysis and 
download of substantial scale cancer genomics data sets. We utilized c-BioPortal to analyze GBPs alterations in 
the TCGA HNSCC samples and shows an overview of genetic alterations per test in GBPs. A tab biological inter-
action network of the GBPs and their co-expression genes was analyzed and neighboring genes with alteration 
frequencies were included. Functions of GBPs mutations and 50 genes significantly related to GBPs mutations 
were performed by GO and KEGG in the Database for Annotation, Visualization, and Integrated Discovery 
(DAVID) online tool. P-Value<0.05 as statistically significant.

TIMER analysis.  TIMER (https://cistrome.shinyapps.io/timer/)54 is a comprehensive asset for systematical 
investigation of immune infiltrates over various malignancy types. The abundances of six immune infiltrates 
(CD8+ T cells, B cells, CD4+ T cells, Macrophages, Neutrphils and Dendritic cells) are assessed by our statistical 
method, which is approved using pathological estimations. Using Gene module to explore correlation between 
GBPs expression and abundance of immune infiltrates in HNSCC; Survival module to draw Kaplan-Meier plots 
for immune infiltrates and GBPs to picture the survival differences. P-Value < 0.05 as statistically significant.
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