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1 Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America, 2 Department of Medicine, Brigham and Women’s Hospital,

Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

Background: Multi-photon fluorescence microscopy techniques allow for non-invasive interrogation of live samples in their
native environment. These methods are particularly appealing for identifying pre-cancers because they are sensitive to the
early changes that occur on the microscopic scale and can provide additional information not available using conventional
screening techniques.

Methodology/Principal Findings: In this study, we developed novel automated approaches, which can be employed for
the real-time analysis of two-photon fluorescence images, to non-invasively discriminate between normal and pre-
cancerous/HPV-immortalized engineered tissues by concurrently assessing metabolic activity, morphology, organization,
and keratin localization. Specifically, we found that the metabolic activity was significantly enhanced and more uniform
throughout the depths of the HPV-immortalized epithelia, based on our extraction of the NADH and FAD fluorescence
contributions. Furthermore, we were able to separate the keratin contribution from metabolic enzymes to improve the
redox estimates and to use the keratin localization as a means to discriminate between tissue types. To assess morphology
and organization, Fourier-based, power spectral density (PSD) approaches were employed. The nuclear size distribution
throughout the epithelial depths was quantified by evaluating the variance of the corresponding spatial frequencies, which
was found to be greater in the normal tissue compared to the HPV-immortalized tissues. The PSD was also used to calculate
the Hurst parameter to identify the level of organization in the tissues, assuming a fractal model for the fluorescence
intensity fluctuations within a field. We found the range of organization was greater in the normal tissue and closely related
to the level of differentiation.

Conclusions/Significance: A wealth of complementary morphological, biochemical and organizational tissue parameters
can be extracted from high resolution images that are acquired based entirely on endogenous sources of contrast. They are
promising diagnostic parameters for the non-invasive identification of early cancerous changes and could improve
significantly diagnosis and treatment for numerous patients.
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Introduction

Cervical cancer is the second most common cancer in women,

leading to over 309,000 deaths worldwide annually [1]. Accurate

and early screening is essential, since when detected early, the

survival rate of cervical cancer patients is almost 100% [2].

Typically, cervical cancer screening is performed using the

Papanicolaou (Pap) test, during which cells are scraped from the

cervix, fixed, stained and observed under magnification. If

morphological abnormalities are detected, the cervix is further

investigated using colposcopy, and biopsies are extracted from

suspicious regions. These methods are time consuming, expensive,

and have variable performance depending on the screener’s level of

expertise, which disproportionally affects developing nations. The

microscopic scale at which these early changes occur point to the

need for a higher resolution approach than standard colposcopy,

such as optical, depth-resolved, high-resolution microscopy.

Specifically, two-photon excited fluorescence (TPEF) microsco-

py can be used to assess at least some of the standard histological

hallmarks of pre-cancers, while observing cells in their native

environment, where additional diagnostically useful parameters

can be measured. For example, since cellular autofluorescence is

predominantly confined to the cytoplasm, the nuclei are well

defined by the absence of fluorescence and features such as nuclear

size can be assessed to discriminate between normal and pre-

cancerous tissue [3]. While researchers have used spatial domain

segmentation approaches to quantify morphology, we have

developed methods based on Fourier-domain analysis that can
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be implemented automatically to characterize all cells imaged

within a field. Using these techniques we are also able to assess the

sub-cellular organization [4,5], which is largely overlooked during

standard histopathological evaluation, but could provide highly

sensitive indicators of early cancer [6]. Since the endogenous

TPEF signals we examine predominantly emanate from NADH

and FAD, our method is specifically sensitive to the level of

mitochondrial organization. Endogenous fluorescence from these

two key oxidative phosphorylation enzymes has been used as a

sensitive marker of oxygen consumption and metabolism [7].

Studies have reported an increase in metabolic activity associated

with cancer progression by assessment of ATP via enzymatic

analysis [8] and of the redox ratio (the ratio of FAD to NADH) via

optical techniques [9,10]. It is worth noting that NADPH, a

molecule not involved in energy production, has identical

excitation and emission spectra to NADH. However, the

fluorescence quantum yield of NADPH is substantially lower than

that of NADH, and hence it has little effect on quantitative

calculations [11,12]. The spectrally inseparable signals of NADH

and NADPH will be referred to as NAD(P)H from here on.

The goal of this study was to develop a quantitative method to

discriminate between normal and pre-cancerous tissue based on

the combination of biochemical and morphological parameters

obtained through non-invasive, optical, endogenous TPEF

measurements on model tissues. Specifically, we show how

metabolism, morphology, and sub-cellular organization can be

assessed to identify changes associated with human papillomavirus

(HPV) oncogene expression. HPV is the cause of over 90% of

cervical cancers and of a significant percentage of cancers in the

oral cavity and anogenital tract [1,13]. However, we anticipate

that the optical biomarkers we discovered and describe here are

more broadly applicable to early cancer detection, as the

molecular pathways dysregulated by HPV oncogene expression,

i.e. the p53 and retinoblastoma (pRB) tumor suppressor pathways,

are commonly dysfunctional in a broad range of epithelial cancers.

Furthermore, the methods we present are automated and based on

non-computationally-intensive calculations, which can be imple-

mented in real time and are suitable for ultimate implementation

in a clinical setting.

Materials and Methods

Engineered Tissues
As a model for high-grade HPV-associated precancerous

lesions, we used the HKc/DR cell line. This clonal cell line was

established by immortalization of human foreskin keratinocytes

derived from a single donor by expression of a head-to-tail dimer

of the full-length HPV16 genome followed by selection for TGF-b
and differentiation resistance[14,15]. These cells are a model for

high-grade premalignant lesions in that they are non-tumorigenic

and mRNA expression analyses have shown that they are similar

to cervical carcinoma cells [16]. As a control, we used primary

human foreskin keratinocytes isolated from neonates and grown in

serum free medium as described elsewhere [17] Isolation of

human cells was approved by the Partners Human Research

committee at the Brigham and Woman’s Hospital, IRB # 2006-P-

000466/1. The IRB waived the need for consent as this procedure

did not meet the definition of human subject’s research, and,

therefore, didn’t require informed consent because we used

unidentified foreskins that would be otherwise discarded and we

didn’t intervene or interact with a living person in order to acquire

them. Organotypic tissues were constructed from the two cell types

using established protocols [18]. In brief, a dermal equivalent of J2

3T3 fibroblasts and rat tail collagen (4 mg/ml) was allowed to gel

for 12 hours before normal or HPV-immortalized cells were

seeded on top. Once the cells reached confluence the tissue

structures were raised to the air-liquid interface and the cells were

allowed to differentiate over 10 days before harvesting.

Two-Photon Imaging
We acquired TPEF and second harmonic generation (SHG)

images using a Leica TCS-SP2 microscope equipped with a Mai

Tai, Ti:Saphire laser (Spectra Physics). Samples were excited

through a 636, 1.2NA water immersion objective at 755, 800, and

860 nm with average powers of 15–20 mW. For spectral

acquisition, we acquired 30 images corresponding to 20 nm

bandwidths over the range of 400–700 nm. Spectra were

interpolated to 1 nm resolution and smoothed using a 30 point

moving average window. Depth stacks were acquired at 1 mm

depth increments and light was collected using two non-descanned

PMTs through a 700 nm short pass filter and either a 455635 nm

(HQ455 72m2p, Chroma) or a 525625 nm bandpass filter

(HQ525 50m, Chroma). Six frames were averaged at each depth

to reduce noise. SHG from collagen was excited using 800 nm

light and detected in the backwards direction through a

400610 nm filter. To compare images taken using different

PMT settings and excitation powers, we measured a range of

fluorescein concentrations at each setting to relate the pixel

intensity to a relative fluorophore concentration [19]. Images were

processed using MATLAB (Mathworks) and Leica Confocal

Software (Leica).

Power Spectral Density Analysis
To characterize the spatial composition of the images, we

calculated the power spectral density (PSD) as described previously

[4]. We fit the PSD slopes over frequencies greater than 10 mm21

to eliminate the artifacts that are due to the strong nuclear

contribution at the lower frequencies. The range of organization in

a given sample was calculated by subtracting the minimum from

the maximum Hurst value throughout the epithelium. The

variance of the PSD was calculated at each frequency across the

transverse direction of the tissues to identify the relative

contribution of specifically sized objects throughout the epithelial

depth. To account for the decrease in power at greater depths, we

report the variance parameter normalized to the variance at the

highest frequency, which corresponds to the noise floor.

Spectral Analysis
To assess the relative contributions from the different

fluorophores in the tissues, we decomposed the emission spectra

using an alternating least-squares (ALS) method with non-

negativity constraints (PLS Toolbox for MATLAB, Eigenvector).

To analyze the TPEF emission spectra, we assumed that major

contributions originated from NAD(P)H, FAD, and keratin at

excitation wavelengths of 755, 800, and 860. The keratin emission

components, obtained from spectral measurements of human skin

extracted from the hand, foot, and arm, were found to be

consistent with literature values and varied with excitation

wavelength [20]. These excitation-dependent component spectra

were used in the subsequent analysis of 81 emission spectra,

obtained at various depths, from both tissue types to extract the

emission profiles of two additional components needed to describe

the composition of the spectra (unmodeled variance ,0.10) using

the ALS algorithm. The spectra of the two extracted components

were consistent with NAD(P)H and FAD emission and indepen-

dent excitation wavelength, consistent with our measurements of

pure FAD and bound NADH prepared according to an

established protocol [21]. Once we identified the spectral
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components of keratin, NAD(P)H, and FAD, we fixed them (Fig.

S1) and used the PLS toolbox to find the relative contribution of

the three fluorophores to a given emission spectrum.

Image Calibration and Processing
The detected pixel intensities were converted to an equivalent

fluorescein concentration to be able to compare images obtained

at different acquisition settings. Then, a simple thresholding

procedure was implemented to identify keratin(+) and keratin (2)

regions.

Since the pixel intensity within an image is influenced by a

number of systematic factors and not necessarily linearly related to

fluence rate, we converted the intensity values to a corresponding

fluorescein concentration. At each acquisition setting we measured

a range of fluorescence concentrations to create a standard curve.

The standard curve was used to convert the pixel intensities

corresponding to NAD(P)H, FAD, and keratin fluorescence into a

normalized concentration estimate so that we could accurately

compare images that were obtained at different acquisition settings

and better assess metabolic activity.

Redox Calculation for Metabolic Assessment
The redox values were calculated by taking the ratio of the

concentration estimate in the 525 nm channel at 860 nm (FAD)

contribution to the concentration estimate in the 455 nm channel at

755 nm (NAD(P)H) contribution after removing effects from keratin

via thresholding. The mean redox ratios were calculated over the

entire depths of the tissues. To evaluate the consistency of the redox

ratio throughout depths, we calculated the redox variability, which

is the mean change in redox ratio per 1 mm depth increment

throughout the tissues. We also assessed the keratin localization,

which was defined as the percent of the epithelial tissue volume from

the tissue surface where 90% of the total keratin resided, as

computed from the thresholded images. Therefore, high levels of

keratin localization correspond to lower percentage values.

Keratin separation from NAD(P)H and FAD via
thresholding

Keratin is not involved in metabolic processes and therefore we

removed the contribution by use of binary masks, which were

generated by applying a threshold to a matrix that represented the

sum of the concentration estimates from the 455 nm and 525 nm

channels at 755 and 860 nm excitation, respectively. Since the

emission from keratin is much stronger than NAD(P)H and FAD,

we found two distinct intensity populations within the sum matrix

which allowed for a manual choice of a threshold value which

remained fixed throughout this study.

Statistical Analysis
All statistical analyses of single parameters were performed

using a two-tailed, T-test. The diagnostic power of the combined

parameters was assessed via multivariate linear regression with

Statistical Analysis Software (SAS Institute). We evaluated the

different combinations of parameters by assessing the R2 value,

which corresponded to the ability of the variables to predict the

tissue type. To determine which variables held the greatest

diagnostic value we evaluated the type III error.

Results

Histological Validation of Optical Biopsy
TPEF imaging of epithelial tissues, relying entirely on endoge-

nous signals, yields images of high morphological detail, comparable

to that of microscopic images acquired from excised tissues. Shown

in Figure 1 are images acquired from engineered tissues containing

primary human keratinocytes (left column) and HPV16-immortal-

ized keratinocytes (right column) via histological staining (A and B)

and optical depth-sectioning achieved with TPEF and second

harmonic generation (SHG) imaging (C–F). Hematoxylin and eosin

absorption provide optical contrast for the histology sections, while

the source of contrast in the TPEF and SHG images (C–F) is

fluorescence from NADH, FAD, and keratin (755 nm excitation),

and scattering from collagen (800 nm excitation), respectively. In

the normal tissue, we note a high level of differentiation, and

variation in nuclear and cell size from the basal layer to the cornified

layer, where a high level of keratin fluorescence is observed (Fig. 1A).

In the tissue equivalents generated with HPV-immortalized cells, we

detect a low level of cellular differentiation and consistent nuclear

sizes throughout the various depths, as well as the absence of a

keratinized uppermost layer (Fig. 1B).

The morphological trends observed in the histological sections

are also evident in the 3-D reconstructions of the tissues (Fig. 1C–

D), generated from high-resolution optical depth sections (Fig. 1E–

F). From these reconstructions, the collagen border, epithelial

thickness, and degree of stratification can be easily observed as in

the histological images. Differences in keratin expression between

the two tissue types are much more obvious in the intrinsic optical

images than in the H&E stained sections, since keratin is highly

autofluorescent.

Morphological and Organizational Quantification
To assess the morphology and organization of the depth-

resolved fluorescence images, we rely on Fourier domain-based

analysis. We specifically use the power spectral density (PSD), i.e.

the squared amplitude of the two-dimensional Fourier transform

of TPEF images dominated by mitochondrial NAD(P)H. This

analysis was performed on five independent samples from each

tissue type. To quantify the degree of spatial feature homogeneity

in the samples, we calculate the variance of the PSD at each spatial

frequency through the depth of the tissues (Fig. 2A). We observe

that the PSD variance is most sensitive to changes in nuclear size

as its highest value corresponds to spatial frequencies around

0.1 mm21 (features on the order of 10 mm). Since there is a clear

gradient of nuclear size in the normal tissue in contrast to the

uniform distribution of nuclear sizes in the HPV tissues, we can

use the spatial frequency variance at 0.1 mm21 as a means to

morphologically discriminate between tissue types. We find this

parameter to differ (p,0.10) between the normal and HPV tissues

with mean values of 2.0260.828 and 0.93160.0375, respectively.

To assess the level of mitochondrial organization in the tissues,

we calculate from the PSDs the Hurst parameter as a function of

epithelial tissue depth [4] (Fig. 2B). The Hurst parameter describes

the fractional Brownian spatial features and consequently the level

of self-correlation in an image [22]. As the NAD(P)H fluorescence

we detect emanates primarily from mitochondria, the Hurst

parameter is related to the manner in which mitochondria

organize. Since individual mitochondria have characteristic sizes

on the order of hundreds of nanometers, and are therefore smaller

than the resolution of the images we acquire, the Hurst parameter

is sensitive to mitochondrial networks and their degree of self-

correlation (see Fig. 1 E&F insets). We find that the level of

mitochondrial organization in the normal tissue decreases with the

loss of cellular differentiation, since the Hurst parameter values for

the basal/suprabasal layers approach 0.5, the value corresponding

to Brownian behavior. In contrast to the normal tissue, the HPV

immortalized tissues exhibit organization similar to that detected

at the basal/suprabasal layers of the normal tissue with very little
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variation as a function of depth, thus reaffirming the correlation

between differentiation status and mitochondrial organization [4].

The range of Hurst parameters encountered across the epithelial

depth is one metric of this phenomenon, and, as expected, we find

statistically different (p,0.05) Hurst ranges for the normal and

HPV immortalized tissue groups with mean values of

0.54360.183 and 0.19060.0462, respectively.

Spectral Analysis for Metabolic Assessment
One of the main advantages of endogenous TPEF imaging is

the capability to extract quantitative biochemical information

about the samples under investigation. Spectral decomposition

approaches offer a sensitive way of achieving this goal, especially in

initial studies, when the number and spectral excitation/emission

profiles of the relevant components may not be known. Peak-

normalized fluorescence emission spectra from normal and HPV-

immortalized tissues are shown in Figures 3 and 4, respectively,

acquired at 755 nm (A), 800 nm (B) and 860 nm (C) excitation,

corresponding to fields within the cornified D(i), suprabasal D(ii),

and basal D(iii) layers. Spectral decomposition was achieved using

an alternating least squares (ALS) minimization routine. Specif-

ically, ALS decomposes a matrix M as C*S such that M = C*S+E,

where E is the error minimized in a least squares approach, M is

the measured spectra, C is a scalar component corresponding to

the weight of a given spectral contribution, and S is a component

spectrum. Spectral decomposition analysis reveals that three

spectral components, corresponding to TPEF emission from

keratin, NAD(P)H and FAD, are sufficient to describe well

(unmodeled variance ,0.10) the variations observed in the

spectra. From the spectral decomposition, it is clear the NAD(P)H

and FAD contributions could be well separated using different

excitation wavelengths in combination with spectral emission

filtering; however, keratin shows strong spectral overlap with FAD

and particularly NAD(P)H at shorter excitation wavelengths.

Therefore, we find it necessary to segment the fields into regions of

high(+), and low(2) keratin fluorescence, to allow for accurate

extraction of the contributions from NAD(P)H, FAD, and keratin,

especially when the analysis is based on multi-wavelength but not

full spectral images as discussed later. This is achieved simply by

applying an intensity-based threshold, incorporating both the 450

and 525 nm detection channels. The relative contributions of

NAD(P)H (blue), FAD (green), and keratin (red) to the overall

fluorescence emission of the keratin(2) and keratin(+) regions are

extracted by spectral decomposition (E–F). Notably, the spectral

decomposition confirms the ability of the thresholding technique

to remove the keratin contribution, from the superficial and basal

layers, with a minimal effect on the relative contribution of

Figure 1. Histology and fluorescence based images of tissue. Normal (left column) and HPV- immortalized tissues (right column). Histological
hematoxylin and eosin staining (a–b). False-color, depth-resolved TPEF and SHG images (c–f) from tissue excited at 755 nm and 800 nm. Green is
fluorescence in the 455 nm channel (from NADH and keratin), while red is signal from the 525 nm channel (from FAD and keratin), acquired at
755 nm excitation. Blue represents 400 nm SHG detected at 800 nm excitation. Three-dimensional reconstructions were created from the
fluorescence images (c–d). Corresponding depth images are shown in (e–f) with increasing depth from i to iv with zoomed insets to highlight the cell
sizes. The scale bar represents 47.5 mm in the images and 10 mm in the zoomed insets. The transverse views of the normal and HPV-immortalized
tissues (zx & zy) are shown with scale bars of 100 mm and 82 mm, respectively.
doi:10.1371/journal.pone.0024765.g001

Identifying Pre-Cancers from Endogenous Images

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e24765



NAD(P)H to FAD. This can also be visually observed in the

keratin(2) images (iv–vi), where there is a strong reduction of

intense yellow pixels corresponding to high intensity in both the

450 and 525 nm detection channels. Since the same threshold is

used to analyze all images, in the superficial, highly keratinized

layers of the normal tissue equivalents, some keratin fluorescence is

present even in the keratin (2) –designated areas. However, since

the fluorescence efficiency of keratin is very high, its relative

contribution to the overall fluorescence is still high compared to

that of NADH and FAD. Nevertheless, this simple procedure

works quite well in eliminating keratin fluorescence throughout the

depth of the HPV epithelia and most of the layers of the normal

ones, so as to allow a simple and fairly robust of NADH and FAD

assessment based on the two excitation, two emission wavelength

range acquisition. It should be noted that the uppermost, cornified

layer in the normal tissue is comprised almost entirely of keratin.

The small contributions of NADH and FAD are therefore

influenced more by the bleedthrough, ie keratin contribution in

the keratin(2) region (Fig. 3E). At 800 nm, keratin is less efficiently

excited than at 755 nm and, therefore, the emission spectra

predominantly represent NAD(P)H and FAD contributions, even

though some keratin fluorescence is still present.

Consistent with the histological and fluorescence images, there

is a large spectral contribution from keratin in the cornified layer

of the normal tissue as seen by the broadened emission at 755 nm

excitation (Fig. 3A), and the increase in the keratin contribution

from the spectral decomposition (Fig. 3E–F). At 800 nm, keratin is

less efficiently excited than at 755 nm and, therefore, the emission

spectra predominately represent NAD(P)H and FAD contribu-

tions. In the normal tissue, the fluorescence emission spectral

profile at 800 nm excitation shifts throughout the tissue depths

indicating changes in the relative contributions of NAD(P)H and

FAD (Fig. 3B), and, thus, an enhanced metabolic activity at the

basal and suprabasal layers, which is confirmed by relatively lower

FAD to NAD(P)H fluorescence ratios extracted from spectral

decomposition (Fig. 3E). In contrast, the consistent fluorescence

emission profiles from the HPV immortalized tissues indicate that

the metabolic activity is relatively constant throughout the depth of

the epithelium (Fig. 4B), which is also consistent with the full

spectral decomposition analysis (Fig. 4E). As expected, both the

normal and HPV-immortalized tissue emission profiles at 860 nm

excitation remain constant as a function of depth, since FAD is the

dominant fluorophore excited at this wavelength [20,23].

Image Analysis for Metabolic Assessment
While spectral analysis is instrumental in identifying the main

biochemical contributors to the detected TPEF signals, acquisition

of complete spectral images is time consuming and, ultimately,

impractical for in vivo studies. Thus, based on the spectral analysis

results, we developed a simpler approach to extract the keratin,

NAD(P)H and FAD contributions based on analysis of images

acquired using 755 and 860 nm excitation at two spectral bands,

namely at 455635 nm and at 525625 nm. Three independent

samples from each tissue type were used for this analysis. The

NAD(P)H and FAD intensities from thresholded, keratin(2) areas

are shown for single, representative normal and HPV immortalized

tissues (Fig. 5A). Representative data are shown from a single

specimen, since variations in tissue thickness between and within

samples prevent the meaningful assessment of the mean value of this

parameter for a specific given depth for all samples; however, depth

independent parameters are extracted for multivariate linear

regression, as discussed later. Consistent with the spectral

decomposition analysis, we find that the metabolic activity, which

is inversely correlated with to the redox ratio R = [FAD]/

([NAD(P)H]+[FAD]), of the normal tissue increases as we move

from the superficial cornified to the deeper tissue layers, and slightly

decreases at the lowest layers with a mean redox ratio value of

R = 0.48160.0618 (b). We also find the mean redox ratio variation

as a function of depth to be DR = 0.0053660.000350 mm21. In

contrast to the normal tissue, the HPV immortalized tissues exhibit

lower NAD(P)H and FAD intensities, corresponding to a significant

increase (p,0.05) in metabolic rate as indicated by the mean redox

ratio (R = 0.37960.0119). The HPV immortalized tissues also

exhibit a significantly more consistent (p,0.05) metabolic depth

profile as indicated by the mean redox variability (DR =

0.0029460.00146 mm21).

In conjunction with the redox analysis, we quantify the keratin

contribution as a function of tissue depth by assessing the number

of pixels in the corresponding keratin(+) areas of the thresholded

images (Fig. 5C). While the keratin signal is confined to the

uppermost layers of the normal tissue, it is dispersed throughout

the HPV-immortalized tissue. Specifically, in the normal tissues

90% of the keratin is confined to the uppermost 26.469.0%

layers, while the localization of 90% of the keratin in the HPV

tissues is confined to the uppermost 8067.7% layers (p,0.05).

Multivariate Linear Regression for Improved Diagnostic
Power

To assess the diagnostic power of our multi-parametric approach,

we can simultaneously evaluate the organizational, morphological,

metabolic, and biochemical parameters as predictors of tissue type.

For example, we consider all possible three-parameter combinations

for the values of the Hurst parameter range, spatial frequency

variance, mean redox ratio, and keratin localization (Fig. 6). Six

Figure 2. Morphological and organizational assessment. The (a) variation of the PSD as a function of frequency and the (b) Hurst parameter,
as a function of normalized depth for the two tissue types, from the basal (value of 0) to the upper most tissue layer (value of 1).
doi:10.1371/journal.pone.0024765.g002
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unique engineered tissues samples (three from each group) were

evaluated and characterized using multivariate linear regression.

We find that the most diagnostically useful parameter to predict the

tissue type is the redox ratio, followed by the Hurst range, spatial

frequency variance, and keratin localization, as determined by the

type III error. The best model incorporates all four parameters with

an R2 value of 0.992; however, similar prediction accuracy is

obtained using only the redox ratio, Hurst range, and spatial

frequency variation due to the notable covariance between the

keratin localization and the other parameters.

Discussion

In conventional screening methods, pathologists typically

identify early cancer by assessing morphological markers, such

as variation in nuclear size and shape, staining intensity,

chromatin pattern, and the appearance of nucleoli or vacuoles

and mitotic figures. These methods are highly time-consuming

and subjective; furthermore, accuracy is heavily dependent on the

expertise of the pathologist [24]. In this study, we present a novel

approach for automated detection of early cancer in tissue based

on simultaneous quantification of mitochondrial organization,

cellular morphology, metabolic activity, and keratin localization

from non-invasively acquired TPEF images. This method is

capable of assessing morphological changes that are typically

evaluated by pathologists, but also allows for quantification of

mitochondrial organization and metabolic activity of tissue,

which are both potentially valuable diagnostic indicators of

disease not available to pathologists using traditional screening

methods.

Figure 3. Spectra analysis from normal tissue. Fluorescence emission from 755 nm (A), 800 nm (B), and 860 nm (C) excitation at the cornified
(blue), suprabasal (red), and basal (green) layers and the corresponding fields (D) before (i–iii) and after (iv–vi) thresholding to identify the keratin(+)
regions (scale bar – 47.5 mm). Spectral decomposition was performed on the keratin(2) (E) and keratin(+) (F) areas to extract the relative contributions
of NAD(P)H, FAD and keratin.
doi:10.1371/journal.pone.0024765.g003
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To develop and assess the validity of the analysis methods

described in this study, we exploited tissue engineering approaches

that allowed us to develop organotypic epithelial tissue cultures

that mimic in many respects the biochemistry, architecture and

organization of normal and pre-cancerous squamous epithelia

[25]. We used the HKc/DR cell line as a model for HPV-

associated high-grade premalignant lesions. This clonal line of

HPV16 immortalized human foreskin keratinocytes was selected

for resistance to differentiation and failure to growth arrest in

response to TGF-ß [14,15]. HKc/DR cells are non-tumorigenic

but show patterns of gene expression changes that are similar to

cervical carcinoma cells [16]. Consistent with earlier studies that

showed that HPV immortalized keratinocytes exhibit histological

abnormalities similar to high-grade premalignant lesions [26],

organotypic cultures of HKc/DR cells grew in a disorganized

fashion and exhibited a low level of differentiation throughout the

various depths similar to what was observed in the histological

images (Fig. 1B). In contrast, organotypic cultures of primary

HFKs exhibited layers of distinct morphology and a keratinized

uppermost layer, similar to what is typically seen in healthy tissues.

Since the sample is optically sectioned, the tissue remains intact

after optical biopsy, and therefore many areas can be interrogated

in vivo without inducing pain. The 3-D optical biopsies can be

easily viewed from any angle/position in space and quantitatively

analyzed using PSD approaches to assess the morphology and

mitochondrial organization and multi-wavelength image analysis

to assess metabolic activity and keratin localization.

Morphological assessment using PSD analysis is faster and

includes more cells than conventional segmentation techniques

that have been developed for analysis of stained histological

Figure 4. Spectral analysis from HPV immortalized tissues. Fluorescence emission from 755 nm (A), 800 nm (B), and 860 nm (C) excitation at
the cornified (blue), suprabasal (red), and basal (green) layers and the corresponding fields (D) before (i–iii) and after (iv–vi) thresholding to identify
the keratin(+) regions (scale bar – 47.5 mm). Spectral decomposition was performed on the keratin(2) (E) and keratin(+) (F) intensity areas to extract
the relative contributions of NAD(P)H, FAD and keratin.
doi:10.1371/journal.pone.0024765.g004
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sections [27,28], and, more recently, for images acquired using

non-invasive techniques, such as confocal microscopy [29–31].

The goal of many of these studies was to develop methods to

rapidly process images and obtain quantitative cellular measures,

such as cell border irregularity and nuclear to cytoplasmic ratio, as

a means to discriminate between normal and diseased tissue.

Although several of these algorithms proved sufficient to identify

cells grown in culture, there remains a significant challenge to

accurately identify the often ill-defined cell borders in tissue. The

result of poor border definition is often the exclusion of many cells

from the analysis. To overcome the challenges associated with

accurate segmentation, we adopted a Fourier-based approach to

assess morphology over many length scales. These methods are

sensitive to the spatial TPEF intensity variation patterns from the

sub-cellular to the multi-cellular level. Since we are not thresh-

olding or segmenting the images, all cells are included in the

analysis.

Our analysis reveals that the lack of variation in nuclear size as a

function of depth, which is one of the histopathological hallmarks

of intraepithelial neoplasia, is a parameter that can be extracted by

examining the variance of the PSD at spatial frequencies that

correspond to nuclear sizes. Based on size estimations of the dark

appearing areas within the cytoplasm, which should correspond to

the non-mitochondria containing nuclei, we have found that the

nuclei in the tissues we examine are approximately 8–10 mm in

diameter (Fig. 1 E&F insets) and, therefore correspond to the

spatial frequencies around 0.1 mm21. As shown in Figure 2, this is

a spatial frequency regime of high variance for the normal tissue

equivalents, but not for the HPV tissues. In addition, the PSD can

be used to assess more subtle and largely unexploited tissue

features, such as the level of mitochondrial organization [4].

Assuming self-affine fractal organization, we can extract the Hurst

parameter as a quantitative measure of mitochondrial organiza-

tion to differentiate between normal and precancerous tissue

(p,0.05).

There have been a number of studies that use fractal-based

characterization for pathological assessment of tissue from the

cervix [32], stomach [33], mammary glands [34], breasts

[5,35,36], and oral cavity [37,38], while other diagnostic

applications of fractal analysis have been reviewed elsewhere

Figure 5. Redox ratio and keratin localization from a representative sample. NAD(P)H (blue) and FAD (red) contribution after being
converted to a relative concentration value as a function of depth for normal and HPV-immortalized tissues (a) and the corresponding concentration
based redox ratio (b). The keratin contribution is reported by the number of pixels that were removed at each depth increment for the normal and
HPV tissue (c).
doi:10.1371/journal.pone.0024765.g005
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[39,40]. In our work, we calculate the 2-dimensional PSD from

label-free images that are not binarized. This is particularly

adventageous when alnalyzing tissue images, where the source of

contrast is inherently dim endogenous signals, and difficulties

arrise when trying to spatially segment (binarize) images based on

intensity. In many other studies that use fractal based analyses,

excised tissue is stained to enhance the contrast before imaging

[32,34,35,37,38,41]. With the high contrast agent the images are

easily binarized to enhance the cell borders, thus creating a 1-D,

self-similar fractal pattern from which the fractal dimension is

computed, typically using box counting methods. The 1-D fractal

dimension gives insight into the irregularity of cell borders and it

has been used to exploit differences between nuclear borders of

normal and cervical intraepithelial neoplastic cells [32]. There

have also been studies that assess the fractal dimension in

conjunction with conventional morphological measurements and

report an increased sensitivity over morphological assessment

alone [35,41].

The values of the Hurst parameter used in our analysis can vary

between 0 and 1, corresponding to the highest levels of anti-

correlation and correlation, respectively, with a Hurst value of 0.5

corresponding to Brownian fractal behavior. The Hurst parameter

values that represent the mitochondrial organization of the

epithelial cells we examine are consistently lower than 0.5, with

the lowest values corresponding to more highly differentiated cells

(Fig. 2B). Using similar 2-D, self-affine fractal analysis, Schmitt

and Kumar also report anti-correlated fractal patterns from phase

contrast images of liver tissue [42]. Also consistent with our

findings, Einstein et. al. observe increased levels of anti-correlation

of the fractal patterns of chromatin density in breast cell nuclei

associated with cancer [5].

In addition to the rich morphological and organization

information that can be extracted from analysis of the intrinsic

NAD(P)H fluorescence intensity fluctuations, TPEF images

acquired at a combination of excitation and emission wavelength

bands can be analyzed to acquire quantitative information about

metabolic activity and keratin content and localization. To

establish the number of components and corresponding spectral

emission profiles of the dominant contributors to the detected

TPEF images from our tissues, we initially analyzed a series of

spectrally resolved images acquired from 400 to 700 nm at 755,

800 and 860 nm excitation. This analysis revealed significant

contributions from three chromophores, whose emission spectra

were consistent with NAD(P)H, FAD and keratin fluorescence

[43–45]. Unfortunately, depending on the excitation and emission

wavelengths where TPEF is detected, there can be significant

spectral overlap between the chromophores, which complicates

the extraction of quantitative biochemical information. Guided by

analysis of the full spectral emission profiles, we determined that it

was important to segment the TPEF images in keratin-positive and

keratin-negative regions. Since the fluorescence intensity from

keratin is on the order of 3 to 6 times greater than NAD(P)H and

FAD [46], we achieved this by a simple thresholding procedure

based on the sum of the blue and green detection channel

intensities at 755 nm and 860 nm excitation, respectively. We

then focused on the keratin(2) pixels and found that in the

suprabasal and basal layers we could isolate the contributions of

NAD(P)H and FAD from analysis of the images detected by the

455 nm channel at 755 nm excitation and the 525 nm channel at

860 nm excitation with 85–90% confidence, as assessed by

comparison with the full spectral decomposition results.

Reliable extraction of the NAD(P)H and FAD fluorescence was

important for characterizing the metabolic profile of the normal

and dysplastic tissues. In particular, we used the redox ratio, whose

value has been shown to be inversely proportional to metabolic

activity [7]. An advantage of the redox ratio assessment of tissue

compared to individual estimates of NADH or FAD is that

artifacts potentially introduced by absorption of chromophores,

Figure 6. Multi-parametric analysis. Possible combinations of three parameters to discriminate between normal (green circles) and HPV-
immortalized (blue triangles) tissues.
doi:10.1371/journal.pone.0024765.g006
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such as keratin, are minimized, since they similarly affect NADH

and FAD. We find that the redox ratio decreases as we move from

the superficial/cornified to the suprabasal cell layers of the normal

epithelial tissues and then it increases slightly as we reach the basal

layer. In comparison, we observed significantly less change in the

redox ratio depth profile of the HPV-immortalized tissues

(p,0.05), consistent with the apparent loss of differentiation.

Such differences in the depth-dependent variation of metabolic

activity between normal and pre-cancerous tissues have been

reported by other investigators [10,45,47–51]. Furthermore, we

report that the overall metabolic activity is higher in the pre-

cancerous tissues than in normal tissues (p,0.05), consistent with

previous studies [46,48,52–55]. More recently, researchers

observed that the redox ratio variations are also correlated with

the degree of metastatic potential and location within the tumor

[56].

While elimination of the fluorescence contribution from keratin

was necessary to accurately assess metabolic activity, we also used

the keratin localization as a means to discriminate between tissue

types (p,0.05). In the normal tissues, we found that keratin, likely

type 10 and 13 from terminally differentiated cells [45,49], was

restricted to the upper layers and consistently expressed through-

out the depths of the HPV tissues. Indeed, keratin expression has

been correlated with cervical cancer progression [57–62], with

keratin 17 prominently expressed at various tissue depths of

dysplastic tissue [57,61]. Due to the high quantum yield of keratin

[20], it could serve as an additional diagnostic biomarker than can

be much more easily extracted from analysis of intrinsic TPEF

compared to conventional histological images, where identifying

keratin amongst cells is not trivial [57].

The biochemical, morphological and organizational informa-

tion extracted from analysis of the intrinsic TPEF images is

complementary and can be used in combination to ultimately

develop highly sensitive and specific algorithms for the detection of

pre-cancerous lesions. Using multivariate linear regression, we

found that such a combination provided a better means to identify

precancerous changes in tissue when analyzed simultaneously. We

specifically evaluated and considered the Hurst range (p,0.05),

redox ratio (p,0.05), keratin localization (p,0.05), and variance

of the PSD (p,0.10). Addition of the keratin localization did not

improve significantly the diagnostic potential over the combined

use of the other three parameters in the small sample size of this

study. It is important to note, however, that these studies are to be

regarded as a proof of principle, where we harnessed organotypic

tissue culture of a clonal HPV16 immortalized cell line that was

previously established as a model system for HPV-associated high-

grade premalignant anogenital tract lesions. To establish the true

diagnostic potential of the parameters that we derived from this

study, it will be important to validate these on human tissue

samples, where a much more heterogeneous cell population will be

expected. Most premalignant lesions contain areas with different

levels of cellular abnormalities. Low-grade lesions, in particular,

often retain at least some ability to undergo differentiation.

Improvements in diagnostic accuracy using a combination of

morphological and biochemical information extracted typically

through the use of multiple optical modalities has been observed

previously, consistent with our findings [9,10,52,63,64]. A unique

aspect of the approach presented in this study is that all the

information is extracted from analysis of a single type of imaging

with approaches that can be implemented in real time. In

addition, the procedures include all cells in a given field and

require no human input, unlike commonly used segmentation

approaches. Since the methods are based on non-invasive

measurements, the algorithms could be useful in a screening/

diagnostic device that can assess appreciable tissue areas and

detect the early microscopic changes associated with pre-cancer

development relying on information that clinicians do not

currently have access to.

Supporting Information

Figure S1 Normalized component spectra used in ALS
algorithm. FAD (green) and NAD(P)H (blue) emission spectra

which were found to be similar irrespective of excitation

wavelength. Keratin (red) emission spectra from 755 nm (dashed),

800 nm (dotted), 860 nm (dot/dash) excitation wavelengths.

(TIF)

Acknowledgments

The authors are grateful to Lucia Pirisi and Kim Creek for sharing the

HKc/DR cell line, Catherine Mercaldi for her guidance with the statistical

analysis, and Martin Hunter for helpful discussions about fractal analysis.

Author Contributions

Conceived and designed the experiments: JML MM-D KM IG. Performed

the experiments: JML MM-D. Analyzed the data: JML IG. Contributed

reagents/materials/analysis tools: JML MM-D KM IG. Wrote the paper:

JML MM-D KM IG.

References

1. Garcia M, Jemal A, Ward EM, Center MM, Hao Y, et al. (2007) Global Cancer

Facts & Figures 2007 American Cancer Society.
2. Cokkinides VBP, Siegel R, Ward EM, Thun MJ (2007) Cancer Prevention &

Early Detection Facts & Figures 2008 American Cancer Society.

3. Rajadhyaksha M, Gonzalez S, Zavislan JM, Anderson RR, Webb RH (1999) In
vivo confocal scanning laser microscopy of human skin II: advances in

instrumentation and comparison with histology. J Invest Dermatol 113:
293–303.

4. Levitt JM, Hunter M, Mujat C, McLaughlin-Drubin M, Münger K, et al. (2007)
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