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Keeping tabs on fructose
Too much fructose in the diet can worsen metabolic problems via a

process that involves thioredoxin-interacting protein.

ANATH SHALEV

F
ructose is a simple sugar that is found in

many fruits and plants. Its strong sweet-

ness and minimal effect on blood glucose

levels make fructose a more attractive sweetener

than other naturally occurring sugars. As a result,

high-fructose corn syrup is often added to a vari-

ety of foods and drinks to make them sweeter

(Figure 1). This has lead to people consuming

much more fructose than in previous decades,

especially in the United States and other west-

ernized countries (Cox, 2002; Goran et al.,

2013). Along with this trend, more and more

evidence suggests that consuming too much

fructose could detrimentally affect our metabo-

lism. In particular, excess fructose consumption

has been linked to an increased risk of insulin

resistance, obesity, type 2 diabetes and non-

alcoholic fatty liver disease (Elliott et al., 2002;

Kolderup and Svihus, 2015). However, it

remains controversial whether the fructose itself

actually causes these metabolic problems, and

different studies have reported conflicting

results (Campos and Tappy, 2016).

After we eat or drink fructose it is transported

through the cells that line our small intestine

with the help of sugar-transporting proteins

called GLUT5 and GLUT2 (Gould et al., 1991;

Burant et al., 1992). Once in the bloodstream,

it is taken to the liver via the hepatic portal vein.

The liver then removes some of the fructose in

the blood; this ensures that fructose levels in the

blood remain at least 10 times lower than glu-

cose levels (Douard and Ferraris, 2008). How-

ever, the liver also converts fructose into a

number of metabolites that can be used to

increase stores of glucose and fat, and this

might contribute to the detrimental effects on

metabolism that are linked to eating fructose.

The uptake of fructose by the small intestine is

limited to control how much fructose gets into

the blood and liver, but relatively little is known

about this process.

Now, in eLife, Richard Lee and co-workers –

including James Dotimas and Austin Lee as joint

first authors – report that a protein referred to

as TXNIP (which is short for thioredoxin-interact-

ing protein) regulates fructose uptake via a pre-

viously unrecognized interaction with GLUT5

and GLUT2 (Dotimas et al., 2016). Normally,

TXNIP acts to regulate the cell’s redox state.

However, too much TXNIP can detrimentally

affect how the body manages its glucose levels

(referred to as glucose homeostasis) in a number

of ways (Minn et al., 2005; Parikh et al., 2007;

Chutkow et al., 2008; Xu et al., 2013).

The gene that encodes TXNIP is itself acti-

vated by sugars like glucose and fructose

(Minn et al., 2005; Stoltzman et al., 2008; Cha-

Molstad et al., 2009), and Dotimas et al. – who

are based at Harvard and the Massachusetts

General Hospital – confirmed that fructose pro-

motes the production of TXNIP in the small

intestine. They also went on to show that fruc-

tose actually promotes the interactions between

TXNIP and GLUT5 and GLUT2 in the small intes-

tine, and that TXNIP in turn increases fructose

uptake.
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By using mutant mice and radioactively

labeled fructose, Dotimas et al. could show that

mice fed fructose via a tube ended up with high

levels of fructose in their blood and tissues, but

only if they had a working copy of the gene for

TXNIP. To confirm that TXNIP was making the

small intestine absorb more fructose, they then

performed a similar experiment but injected a

solution of fructose directly into the bloodstream

rather than feeding the mice via a tube. As

expected, when the small intestine was

bypassed like this, all the mice showed the same

elevated levels of fructose in their tissues

regardless of whether they had TXNIP or not

(Dotimas et al., 2016).

Previous studies have shown that diabetes

leads to increased production of TXNIP and that

deleting the gene for TXNIP (or otherwise inhib-

iting the protein) can prevent diabetes, improve

glucose tolerance and have a beneficial effect

on glucose metabolism (Chen et al., 2008).

Dotimas et al. found that mice without the gene

for TXNIP were also protected against the detri-

mental effects of a high fructose diet on

metabolism.

The researchers also found that triggering

diabetes in mice (by killing their insulin-produc-

ing cells with a toxin called streptozotocin) led

to more TXNIP being produced in the small

intestine. This in turn resulted in more fructose

being absorbed by the small intestine. Since

deleting the gene for TXNIP diminished this

effect, they propose that diabetes increases

fructose absorption and that TXNIP is involved

in this process. Indeed, the data show that

TXNIP links fructose absorption to both glucose

homeostasis and diabetes.

Though Dotimas et al. clearly demonstrate a

new protein-protein interaction between TXNIP

and the fructose transporters; it remains to be

shown that this interaction actually causes the

increase in fructose absorption. If indeed it

does, the next challenge will be to work out

exactly how this happens. Other challenges

include determining how diabetes affects the

levels of fructose circulating in the blood in

humans, and to tease apart whether any

changes in fructose levels are caused by the dia-

betes itself or by differences in diet.

In addition to supporting the notion that too

much fructose in the diet is bad for

metabolic control, at least in mice, the work of

Lee, Dotimas, Lee and co-workers might also

help explain why different studies have come to

different conclusions and suggests that the con-

text in which fructose is consumed is important.

Figure 1. Fructose in food and drink. High fructose corn syrup – which is synthetically manufactured from broken

down cornstarch – is added to many soft drinks to increase their sweetness, palatability and taste.
Image credit: “high fructose water color” by Laura Taylor (CC BY-NC-ND 2.0)
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Just by itself – that is, without glucose being

present and in the absence of diabetes or ele-

vated TXNIP levels – very little fructose might be

absorbed. In contrast, high levels of glucose will

lead to an increase in TXNIP levels, which will

promote the absorption of fructose and exacer-

bate existing problems with metabolism. In any

case, the latest work is consistent with the over-

all concept that inhibiting TXNIP is beneficial

for metabolism, and reveals yet another reason

why this might be. Another interesting future

research direction would be to ask how the gut

microbiome might affect the way TXNIP regu-

lates fructose uptake and any resulting meta-

bolic sequelae or complications.
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