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Hybrid leader based optimization: 
a new stochastic optimization 
algorithm for solving optimization 
applications
Mohammad Dehghani & Pavel Trojovský*

In this paper, a new optimization algorithm called hybrid leader-based optimization (HLBO) is 
introduced that is applicable in optimization challenges. The main idea of HLBO is to guide the 
algorithm population under the guidance of a hybrid leader. The stages of HLBO are modeled 
mathematically in two phases of exploration and exploitation. The efficiency of HLBO in optimization 
is tested by finding solutions to twenty-three standard benchmark functions of different types 
of unimodal and multimodal. The optimization results of unimodal functions indicate the high 
exploitation ability of HLBO in local search for better convergence to global optimal, while the 
optimization results of multimodal functions show the high exploration ability of HLBO in global 
search to accurately scan different areas of search space. In addition, the performance of HLBO on 
solving IEEE CEC 2017 benchmark functions including thirty objective functions is evaluated. The 
optimization results show the efficiency of HLBO in handling complex objective functions. The quality 
of the results obtained from HLBO is compared with the results of ten well-known algorithms. The 
simulation results show the superiority of HLBO in convergence to the global solution as well as the 
passage of optimally localized areas of the search space compared to ten competing algorithms. 
In addition, the implementation of HLBO on four engineering design issues demonstrates the 
applicability of HLBO in real-world problem solving.

Advances in science and technology have led to the emergence of new optimization challenges as well as the 
complexity of optimization problems. These cases indicate the need and importance of optimization with efficient 
tools to achieve optimal solutions. An optimization problem is identified and modeled with three main parts: 
decision variables, constraints, and objective function1. The goal in optimization is to achieve the best solution 
with respect to the constraints of the problem, among all solutions defined for an optimization problem2. Problem 
solving techniques in optimization applications fall into two groups of deterministic methods and stochastic 
methods. Deterministic methods using derivative information have acceptable performance in linear and convex 
spaces. However, these methods are incapable of dealing with high dimension and constraint problems, complex 
objective functions, nonlinear and non-convex spaces. Stochastic methods, by employing random operators 
and random scanning of the search space away from the difficulties of deterministic methods, have the ability 
to provide acceptable solutions to optimization problems. Simplicity in understanding, ease of implementation, 
no need for derivative information, the ability to cross local optimal areas, applicability in nonlinear, and non-
convex spaces are some of the advantages that have led to the popularity and pervasiveness of random methods. 
Optimization algorithms are one of the most popular techniques in the stochastic approach to optimizing the 
problem3. How to achieve the solution in optimization algorithms begins with generating a certain number of 
candidate solutions (equal to the population of the algorithm). Evaluating the objective function of the prob-
lem based on these candidate solutions determines the quality of each solution. Using this information and 
the algorithm steps, these candidate solutions are improved in an iterative process. Once the algorithm is fully 
implemented, the best candidate solution that provides a better value for the objective function compared to 
other candidate solutions is identified. Given the fact that every optimization problem has a basic solution called 
global optimal, the point made in optimization studies is that optimization algorithms do not guarantee that 
they can achieve exactly the global optimal solution. Therefore, quasi-optimal is the name given to the solutions 
obtained from the optimization algorithms4. Efforts to reduce the differences between quasi-optimal solutions 
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and global optimal solutions to find better solutions have paved the way for the design and development of 
numerous optimization algorithms.

Exploration and exploitation are capabilities that enable optimization algorithms to be efficient in finding 
solutions. Exploration is the ability to search globally in different areas of the search space while exploitation is 
the ability to search locally near the solutions obtained because there may be better solutions near those solutions. 
Balancing exploration and exploitation play a key role in the success of optimization algorithms in achieving 
optimal solutions5. The main research question in the study of optimization algorithms is whether there is still a 
need to introduce new optimization algorithms despite the fact that countless algorithms have been introduced 
so far. The No Free Lunch (NFL) theorem6 answers this question. The concept of the NFL theorem explains that 
there is no guarantee that an algorithm with optimal performance in solving a set of objective functions and 
problems will be able to perform the same performance in all optimization applications. It is not possible to 
ensure that a particular algorithm is the best optimizer in all optimization topics. The NFL theorem encourages 
researchers to develop new algorithms to find better solutions to optimization problems. The NFL theorem has 
motivated researchers in this paper to develop a new optimization algorithm for optimization applications.

Innovation of this study is in introducing and designing a new evolutionary algorithm called Hybrid Leader 
Optimization (HLBO). The main contributions of this paper are as follows:

•	 A new stochastic-based optimization algorithm is presented, whose fundamental idea is to guide the popula-
tion algorithm based on a hybrid leader generated by three different members.

•	 The stages of HLBO are described in two phases of exploration and exploitation and are mathematically 
modeled.

•	 The efficiency of HLBO has been benchmarked by optimizing twenty-three objective functions of a variety 
of unimodal and multimodal types.

•	 To evaluate the capability of HLBO, its performance has been compared with ten well-known algorithms.

In this section and in the following section, the related works are presented. The Hybrid Leader Optimization 
(HLBO) algorithm is introduced and modeled in the section “Hybrid Leader-Based Optimization”. Simulation 
studies are included in the section “Simulation Studies and Results”. The discussion of HLBO results is provided 
in the section “Results and Discussion”. HLBO performance test on IEEE CEC 2017 is presented in “Evaluation of 
the Effectiveness of HLBO in Handling Complex IEEE CEC 2017 Objective Functions”. Conclusions and several 
research subjects are provided for further study in the last section.

Related works
Optimization algorithms are stochastic techniques to solve optimization applications that are based on the 
concepts of stochastic mechanisms, e.g., concretely on random methods of trial and error, modeling of natural 
processes, animal behavior, physical sciences, biology sciences, rules of games and other evolutionary processes7. 
The main idea applied in the design categorizes the optimization algorithms into five groups: evolutionary-based, 
swarm-based, physics-based, game-based, and human-based optimization algorithms.

Evolutionary-based algorithms have been developed using the concept of natural selection, the concepts of 
biological and genetic sciences, and random operators such as selection, crossover, and mutation. Genetic Algo-
rithm (GA)8 and Differential Evolutionary (DE)9 are the most significant evolutionary algorithms whose main 
inspiration is modeling of the reproductive process. Simulation of the human immune system against diseases 
has paved the way for the design of an Artificial Immune System (AIS) algorithm10.

Swarm-based algorithms are inspired by the behaviors and strategies of animals, insects, birds, and other 
swarming activities in nature. The most widely used and famous techniques of this group are Particle Swarm 
Optimization (PSO)11, Ant Colony Optimization (ACO)12, Artificial Bee Colony (ABC)13, Firefly Algorithm 
(FA)14. The strategy of birds and fish in finding food sources using individual and collective information has 
been the basic inspiration in designing PSO. The ACO’s main idea has been the ability of ant colonies to find the 
shortest path between the nest and the food source, taking advantage of its pheromone properties and accumula-
tion. Utilizing the collective intelligence and smart behavior of the bee colony to search and find food has been 
the fundamental inspiration in ABC design. The light emitted by fireflies can be used for a variety of reasons, 
such as attracting prey and hunting, attracting other members of the group (attracting the opposite sex), and as 
a communication strategy. This fascinating light of fireflies has been a remarkable and interesting phenomenon, 
the inspiration of which has led to the development of the FA.

Searching strategies and behaviors of animals, birds, and insects to find food sources or prey hunting have 
been the main ideas in the design of various techniques such as Grey Wolf Optimization (GWO) algorithm15, 
Pelican Optimization Algorithm (POA)16, Marine Predator Algorithm (MPA)17, Orca Predation Algorithm 
(OPA)18, Whale Optimization Algorithm (WOA)19, which numerous efforts to improve it have led to “enhanced 
WOA” versions20,21, Reptile Search Algorithm (RSA)22, and Tunicate Search Algorithm (TSA)23.

Other swarm-based algorithms include Hunger Games Search (HGS)24, slime mould algorithm (SMA)25], 
Farmland Fertility26, African Vultures Optimization Algorithm (AVOA)27, Artificial Gorilla Troops Optimizer 
(GTO)28, Butterfly Optimization Algorithm29, Symbiotic Organisms Search (SOS)30, Tree Seed Algorithm 
(TSA)31, and Spotted Hyena Optimizer (SHO)32.

Physics-based algorithms have been developed on the base of using some physical processes and modeling 
of physical forces and laws. Simulated Annealing (SA) is the name of the most familiar physics-based algorithm 
based on simulation of the cooling of a molten metal in the refrigeration process33. The use of gravity force along 
with Newton’s laws of motion have been the basic principles employed in Gravitational Search Algorithm (GSA) 
design34. Flow regimes and classical fluid mechanics have been a fundamental inspiration in developing Flow 
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Regime Algorithm (FRA)35. Mathematical modeling of the nuclear reaction process in two stages of nuclear 
fusion and nuclear fission is employed in the design of Nuclear Reaction Optimization (NRO)36. The application 
of three concepts in cosmology, including wormholes, black holes, and white holes, has been the basis of the 
Multi-Verse Optimizer (MVO) design37.

Game-based algorithms are inspired by player behaviors, rules governing individual and group games. The 
strategy used by different players to put the puzzle pieces together and solve it has been the idea of designing the 
Puzzle Optimization Algorithm (POA)38. Simulation of the coaching process, holding competitions, and teams 
interacting with each other during a competitive season of volleyball has led to the design of the Volleyball Pre-
mier League (VPL) optimization method39. Mathematizing the competition between teams and groups playing 
a tug-of-war game and trying to win has been the main idea in the development of Tug of War Optimization 
(TWO) approach40.

Human-based algorithms are developed based on the simulation of human activities and behaviors in per-
forming various tasks. Among the approaches of this group can be mentioned Teaching-Learning-Based Opti-
mization (TLBO) based on modeling the interactions of a teacher and learners in the classroom41, Poor and 
Rich Optimization (PRO) based on the modeling of the efforts of the rich and poor groups to improve their 
economic situation42, and Human Behavior-Based Optimization (HBBO) based on the modeling of human 
thoughts and behaviors43.

Scientists’ research in optimization studies also includes improving existing algorithms44–47, extending hybrid 
algorithms by combining different algorithms to increase their efficiency48,49, and developing binary versions of 
optimization algorithms50–53.

Hybrid leader‑based optimization
In this section, the concepts of the proposed Hybrid Leader-Based Optimization (HLBO) approach are stated 
and the HLBO mathematical formulation is presented.

Inspiration and main idea of HLBO.  In population-based algorithms, each member of the population 
is a searcher in the problem-solving space and therefore a candidate solution. Based on the algorithm steps and 
information transfer, the population members are able to improve their position to provide better solutions. The 
dependence of the algorithm population update process on specific members (such as the best member of the 
population and the worst member of the population) may prevent the algorithm from searching globally in the 
problem-solving space. These conditions can lead to the rapid convergence of the algorithm towards the local 
optimal solution and as a result, the algorithm fails to identify the main optimal area in the search space. There-
fore, overreliance on the process of updating the algorithm population to certain members reduces the explora-
tion ability within the algorithm. In the proposed HLBO method, a unique hybrid leader is employed to update 
and guide each member of the algorithm population in the search space. This hybrid leader is generated based 
on three different members including the best member, one random member, and the corresponding member.

Mathematical model of HLBO.  The HLBO population is similar to other population-based algorithms 
that can be mathematically modeled using a matrix according to Eq. (1).

where X is the HLBO population, Xi is the ith candidate solution, xi,j is the value of jth variable determined by 
the ith candidate solution, N is the size of HLBO population, and m is the number of problem variables.

The position of each member Xi , i = 1, 2, . . . ,N  , of the population X is initially initialized randomly by 
considering the constraints of the problem variables based on Eq. (2).

where r is a random real number from the interval [0, 1], lbj and ubj are the lower and upper bound of the jth 
problem variables respectively.

The objective function of the problem is evaluated based on each of the candidate solutions determined by 
the members of the population X, which is specified in Eq. (3) using a vector.

where F represents the vector of the objective functions and Fi denotes the objective function value delivered 
from the ith candidate solution.
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The values obtained for the objective function are a measure of the quality of the candidate solutions. The 
member that provides the best value for the objective function is known as the best member (Xbest) and the 
member that provides the worst value for the objective function is known as the worst member (Xworst) . These 
values are updated in each algorithm iteration. What distinguishes optimization algorithms from each other is the 
process used to update the algorithm population. Two important and influential indicators in the performance 
of optimization algorithms that should be considered in the process of updating and changing the position in 
the search space are exploration (global search) and exploitation (local search).

Phase 1: Exploration (global search).  Exploration is a feature that enables members of the algorithm population 
to accurately scan different areas of the search space to be able to find the original optimal area. Excessive reli-
ance on specific members of the population (such as the best member) in the process of updating the algorithm 
population position prevents the global search of the algorithm in the search space and reduces the algorithm’s 
ability to explore. This dependence in the update process can lead to early convergence of the algorithm to the 
local optimal and as a result the algorithm fails to identify the main optimal area in the search space. However, 
some population members, like the best member, have useful information that should not be overlooked. HLBO 
uses a hybrid leader to update members of the population. This hybrid leader is produced for each member of 
the population at each repetition. In constructing a random leader, three members of the population, including 

	 (i)	 the corresponding member (the same member to be led by this hybrid leader),
	 (ii)	 the best member,
	 (iii)	 a random member of the population is influential.

The participation coefficient of each of these three members in the production of the hybrid leader is based on 
the quality of that member in providing a better value for the objective function. The quality of each member of 
the population in presenting the candidate solution is calculated using Eq. (4).

Then, using the results of Eq. (4), the participation coefficients for each member are calculated using Eq. (5).

where i, k ∈ {1, 2, . . . ,N} , k  = i , qi is the quality of the ith candidate solution, Fworst is the value of the objective 
function of the worst candidate solution, PCi , PCbest , PCk are the participation coefficients of the ith member, the 
best member, and the kth member (k is an integer determined randomly from the set {1, 2, . . . ,N} ), respectively, 
in producing the hybrid leader.

After determining the participation coefficients, the hybrid leader is generated for each member of the popu-
lation using Eq. (6).

where HLi is the hybrid leader for the ith member and Xk is a randomly selected population member which 
the index k is the row number of this member in the population matrix. The new position for each member of 
the population in the search space under the guidance of the hybrid leader is calculated using Eq. (7). This new 
position is acceptable to the corresponding member if the value of the objective function is improved from the 
previous position, otherwise it remains in the previous position. These update conditions are modeled in Eq. (8).

where Xnew,P1
i  is the new position of the ith member, xnew,P1i,j  is its jth dimension, Fnew,P1i  is its objective function 

value based on the first phase of HLBO, r is a random real number from the interval [0, 1], I is an integer which 
is selected randomly from the set {1, 2} , and FHLi is the value of the objective function obtained from hybrid 
leader of the ith member.

Phase 2: Exploitation (local search).  Exploitation is an ability for members of the algorithm population that 
enables them to search locally for finding better solutions near the obtained solutions. Therefore, in HLBO a 
neighborhood around each member of the population is considered that allows that member to change position 
by searching locally in that area and finding a position with a better value for the objective function. This local 
search is modeled to improve and increase HLBO exploitation ability using Eq. (9). In this phase, the newly 
calculated position is also acceptable if it improves the value of the objective function, which is simulated in 
Eq. (10).
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xi,j + r · (xi,j −HLi,j), else,
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Xi , else,
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where Xnew,P2
i  is the new position of the ith member, xnew,P2i,j  is its jth dimension, Fnew,P2i  is its objective function 

value based on the second phase of HLBO, R is the constant equal to 0.2, t is the iteration counter, and T is the 
maximum number of iterations.

Repetition process, pseudo‑code, and flowchart of HLBO.  By implementing the first and second phases, all 
HLBO members are updated and an iteration of the algorithm is completed. The algorithm enters the next 
iteration and the HLBO population update process continues based on the exploration and exploitation phases 
according to Eqs. (4)–(10). This process continues until the end of the algorithm, and finally the best candidate 
solution experienced during the iterations is introduced as the solution to the problem. The HLBO pseudocode 
is presented in Algorithm 1 and its flowchart is presented in Fig. 1. 

(9)xnew,P2i,j =xi,j + (1− 2r) · R ·

(

1−
t

T

)

· xi,j ,

(10)Xi =

{

Xnew,P2
i , Fnew,P2i < Fi;

Xi , else,
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Computational complexity of HLBO
The HLBO initialization and preparation process has a computational complexity equal to O(N m) , where N 
refers to the number of population members and m is the number of variables in the problem. In each iteration, 
for each member, a hybrid leader must be generated, resulting in the computational complexity of generating the 
hybrid leaders equal to O(N mT) , where T is the maximum number of iterations of the algorithm. The HLBO 
update process has two phases of exploration and exploitation, which in both phases the objective function is 
evaluated. As a result, the computational complexity of HLBO update process equals O(2N mT) . Thus, the total 
computational complexity of HLBO is equal to O(N m(1+ 3T)).

Input information of the optimization problem.

Create the initial population.

Set parameters and .

Calculate the objective function.

.Start HLBO.

Phase1: Calculate using Equation (4).

Calculate participation coefficients , , and using Equation (5).

Calculate
, 1

using Equation (7).

== ?

Save the best candidate solution so far.

.

Output of the best quasi-optimal solution of the objective function found by HLBO.

== ?

End HLBO.

No

No

Yes

Yes

= + 1

= + 1

= 1

Update using Equation (8).

Update using Equation (10).

Create using Equation (6).

Phase 2: Calculate 
, 2

using Equation (9).

Figure 1.   Convergence curves of the HLBO and competitor algorithms in optimizing objective functions F1 to 
F23.
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Simulation studies and results.  This section is devoted to simulation studies and evaluation of the 
proposed HLBO performance in optimization. HLBO has been implemented to provide optimal solutions of 
twenty-three standard benchmark functions of three main types (complete definitions, domains, and tables of 
suitable values of parameters of functions F1 to F23 can be found in the paper54) unimodal function (functions F1 
to F7 ), high-dimensional multimodal functions (functions F8 to F13 ), and fixed-dimensional multimodal func-
tions (functions F1 to F7 ). The optimization results obtained from HLBO are compared with the performance 
of ten well-known algorithms including PSO, MPA, HGS, SMA, GA, WOA, TLBO, TSA, GSA, and GWO. The 
HLBO and the ten mentioned algorithms in twenty independent implementations are employed in optimizing 
the benchmark functions while each iteration contains 1000 iterations. The optimization results are reported 
using four statistical indicators: mean, best, standard deviation, and median. Moreover, the rank of each algo-
rithm in providing a better solution for each benchmark function as well as for each group of objective functions 
is specified. Table 1 lists the adjusted values of the control parameters of the ten competitor algorithms.

Evaluation of unimodal benchmark functions.  The results of optimization of F1 to F7 benchmark 
functions using HLBO and competitor algorithms are released in Table 2. Experimental results show that HLBO 
provides the global optimal for F1 and F6 . HLBO is the best optimizer against competitor algorithms in optimiz-
ing F2 , F4 , and F7 . HLBO ranks as the second in F3 optimization and the third in F5 optimization. What can be 
deduced from the analysis of the reported results is that HLBO is highly efficient in addressing unimodal opti-
mization problems compared to ten competitor algorithms.

Evaluation of high‑dimensional multimodal benchmark functions.  The employment results of 
HLBO and ten competitor algorithms in optimizing F8 to F13 benchmark high-dimensional multimodal func-
tions are reported in Table 3. HLBO has managed to find the global optimum by optimizing the functions F9 
and F11 . HLBO is the first best optimizer for handling the function F10 . In the case of the functions F12 and F13 

Table 1.   Adjusted values of the control parameters of ten competitor algorithms.

Algorithm Parameter Value

HGS Ranging controller

R is gradually reduced to 0

R = 2 · shrink · rand − shrink

shrink = 2(1− t/T)

SMA Random parameter Z = 0.03

MPA

Binary vector U = 0 or U = 1

Random vector R is a vector of uniform random numbers in [0, 1]

Constant number P = 0.5

Fish Aggregating Devices FADs = 2

TSA

c1, c2, c3 Random numbers, which lie in the interval [0, 1]

Pmin 1

Pmax 4

WOA

l is a random number in [−1, 1]

r is a random vector in [0, 1]

Convergence parameter a a: Linear reduction from 2 to 0

GWO Convergence parameter a a: Linear reduction from 2 to 0

TLBO
random number rand is a random number from the interval [0, 1]

TF : teaching factor TF = round (1+ rand)

GSA

Alpha 20

G0 100

Rnorm 2

Rnorm 1

PSO

Velocity limit 10% of dimension range

Topology Fully connected

Inertia weight Linear reduction from 0.9 to 0.1

Cognitive and social constant (C1,C2) = (2, 2)

GA

Type Real coded

Mutation Gaussian ( Probability = 0.05)

Crossover Whole arithmetic ( Probability = 0.8)

Selection Roulette wheel (proportionate)
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the algorithm HGS is the first best optimizer, respectively, while HLBO is the fourth best optimizer for these 
functions. Analysis of simulation results shows HLBO capability in solving high-dimensional multimodal opti-
mization problems.

Evaluation of fixed‑dimensional multimodal benchmark functions.  The results of implementing 
HLBO and competitor algorithms on benchmark F14 to F23 benchmark functions are presented in Table 4. What 
is evident from the simulation results is that HLBO is the first best optimizer in solving F14 to F23 benchmark 
functions compared to competitor algorithms. The presented experimental results show that HLBO has a supe-
rior performance over similar algorithms in dealing with multimodal optimization problems.

The behavior of convergence curves of HLBO and competitor algorithms in achieving solutions for objective 
functions F1 to F23 is presented in Fig. 2.

Statistical analysis.  In this subsection, by using statistical analysis on the obtained optimization results, 
the superiority of HLBO over competitor algorithms is examined from a statistical point of view to determine 
whether this superiority is significant or not. Wilcoxon sum rank test55 is employed to address this goal. In this 

Table 2.   Evaluation results of unimodal functions.

GA PSO GSA TLBO GWO WOA TSA MPA SMA HGS HLBO

F1

Mean 13.391 1.8E−5 2.0E−17 1.3E−59 1.1E−58 1.8E−64 8.2E−33 1.7E−18 0 0 0

Best 6.905 2E−10 8.2E−18 9.4E−61 7.7E−61 1.3E−65 1.1E−62 3.4E−28 0 0 0

Std 5.553 5.9E−5 7.1E−18 2.0E−59 4.1E−58 2.8E−64 2.5E−32 6.8E−18 0 0 0

Med 11.045 9.92E−7 1.8E−17 4.7E−60 1.1E−59 6.3E−65 3.9E−38 1.3E−19 0 0 0

Rank 9 8 7 3 4 2 5 6 1 1 1

F2

Mean 2.480 0.3412 2.4E−8 5.6E−35 1.3E−34 1.6E−51 5.0E−39 2.8E−9 1.3E−193 8.2E−169 9.3E−222

Best 1.591 0.0017 1.59E−8 1.3E−35 1.55E−35 1.1E−57 8.3E−43 4.2E−18 0 0 2.3E−223

Std 0.6428 0.6696 4.0E−9 4.7E−35 2.2E−34 5.9E−51 1.7E−38 1.1E−8 0 0 0

Med 2.464 0.1301 2.3E−8 4.4E−35 6.4E−35 1.9E−54 8.3E−41 3.2E−11 6.3E−193 0 2.1E−222

Rank 11 10 9 6 7 4 5 8 2 3 1

F3

Mean 1537.012 589.508 279.358 7.0E−15 7.4E−15 7.6E−9 3.2E−19 0.3770 0 1.0E−143 3.1E−167

Best 1014.689 1.615 81.912 1.2E−16 4.7E−20 3.4E−9 7.3E−30 0.0320 0 0 6.4E−197

Std 367.2429 1524.01 112.299 1.3E−14 1.9E−14 2.4E−9 9.9E−19 0.2018 0 4.5E−143 0

Med 1510.715 54.154 291.532 1.9E−15 1.6E−16 7.2E−9 9.8E−21 0.3787 0 0 1.9E−181

Rank 11 10 9 5 6 7 4 8 1 3 2

F4

Mean 2.094 3.964 3.3E−9 1.6E−15 1.3E−14 0.0013 2.0E−22 3.7E−8 3.1E−200 2.4E−135 4.8E−206

Best 1.390 1.605 2.1E−9 6.4E−16 3.4E−16 5.9E−5 1.9E−52 3.4E−17 0 0 9.4E−208

Std 0.337 2.204 7.5E−10 7.1E−16 2.3E−14 0.0006 6.0E−22 6.5E−8 0 1.1E−134 0

Med 2.098 3.262 3.4E−9 1.5E−15 7.3E−15 0.0014 3.1E−27 3.0E−8 2.2E−254 0 8.7E−207

Rank 10 11 7 5 6 9 4 8 2 3 1

F5

Mean 310.452 50.266 36.109 145.675 26.863 27.177 28.770 42.500 5.649 18.018 26.282

Best 160.501 3.6471 25.838 120.793 25.230 26.451 28.538 41.587 0.0002 7.2E−5 24.770

Std 120.467 36.525 32.462 19.737 0.882 0.626574 0.365 0.6169 11.104 10.673 0.956

Med 279.517 28.703 26.075 142.944 26.718 26.935 28.549 42.491 0.2340 23.918 26.538

Rank 11 9 7 10 4 5 6 8 1 2 3

F6

Mean 14.551 20.2518 0 0.45 0.642 0.071 3.8E−20 0.3909 0.0010 3.2E−7 0

Best 6.004 5 0 0 1.6E−5 0.0146 6.7E−26 0.2746 0.0005 6.3E−10 0

Std 5.835 12.7760 0 0.5104 0.3012 0.0782 1.5E−19 0.0803 0.0003 4.1E−7 0

Med 13.5 19 0 0 0.6215 0.0293 6.7E−21 0.4066 0.0010 2.3E−7 0

Rank 9 10 1 7 8 5 2 6 4 3 1

F7

Mean 0.0057 0.1134 0.020694 0.0031 0.000819 0.0019 0.0003 0.0022 0.0001 0.0002 0.0001

Best 0.0021 0.0296 0.01006 0.0014 0.000248 4.2E−5 0.0001 0.0014 3.0E−5 2.2E−6 2.4E−5

Std 0.0024 0.0459 0.011363 0.0014 0.000503 0.0033 0.0001 0.0005 9.2E−5 0.0003 7.4E−5

Med 0.0054 0.1079 0.016995 0.0029 0.000629 0.0010 0.0004 0.0022 0.0061 8.7E−5 0.0001

Rank 9 11 10 8 5 6 4 7 2 3 1

Sum rank 70 69 50 44 40 38 30 51 13 18 10

Mean rank 10 9.8571 7.1429 6.2857 5.4286 5.4286 4.2857 7.2857 1.8571 2.5714 1.4286

Total rank 11 8 8 7 6 5 4 9 2 3 1
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test, an index called p-value indicates and determines the superiority of the target algorithm over the competitor 
alternative algorithm. The Wilcoxon simulation results are released in Table 5. What can be deduced from the 
simulation findings is that HLBO has a significant statistical superiority over the competitor algorithm in cases 
with p-values less than 0.05.

Evaluation of the effectiveness of HLBO in handling complex IEEE CEC 2017 
objective functions
In the previous section, the performance of HLBO in handling the objective and multimodal target functions 
was examined, indicating the satisfactory results of the proposed approach. In this section, the effectiveness of 
HLBO in solving complex IEEE CEC 2017 benchmark functions56 is evaluated. The implementation results of 
HLBO as well as ten competitor algorithms on objective functions C1 to C30 are presented in Tables 6 and 7. What 
emerges from the simulation results is that HLBO ranks first in optimizing C1 , C2 , C4 , C5 , C11 to C21 , C24 , C26 , 
C27 , C29 , and C30 functions by providing the best performance compared to competitor algorithms. The general 
analysis of the simulation results of C1 to C30 functions shows that HLBO has an acceptable efficiency in handling 
IEEE CEC 2017 objective functions.

Results and discussion
Optimization algorithms by utilizing exploration for global search and exploitation for local search, have the 
ability to handle optimization problems. To analyze the exploitation ability of HLBO in local search, the uni-
modal objective functions are favorable with only one main peak. In this type of optimization issues, the main 
challenge is the convergence towards the global optima. The optimization results of unimodal functions using 

Table 3.   Evaluation results of high-dimensional multimodal functions.

GA PSO GSA TLBO GWO WOA TSA MPA SMA HGS HLBO

F8

Mean − 8184.3 − 6908.6 − 2849.0 − 7803.5 − 5885.1 − 7687.5 − 5669.6 − 3652.1 − 12569.3 − 12569.1 − 8246.4

Best − 9717.68 − 8501.4 − 3969.23 − 9103.77 − 7227.05 − 8597.11 − 5706.3 − 4419.9 − 12569.5 − 12569.5 − 8763.3

Std 795.15 836.7 540.36 986.61 984.50 1105.16 21.86 474.58 0.3973 0.6999 300.44

Med − 8117.25 − 7098.95 − 2671.33 − 7735.22 − 5774.63 − 8290.68 − 5669.63 − 3632.65 − 12569.4 − 12569.4 − 8306.6

Rank 4 7 11 5 8 6 9 10 1 2 3

F9

Mean 62.416 57.065 16.269 10.678 8.5E−15 0 0.0059 152.703 0 0 0

Best 36.866 27.859 4.975 9.874 0 0 0.0048 128.2306 0 0 0

Std 15.216 16.517 4.660 0.397 2.0E−14 0 0.0007 15.1857 0 0 0

Med 61.679 55.225 15.422 10.888 0 0 0.0059 154.621 0 0 0

Rank 7 6 5 4 2 1 3 8 1 1 1

F10

Mean 3.2220 2.154811 3.6E−9 0.2632 1.7E−14 3.9E−15 6.4E−11 8.3E−10 5.1E−15 2.9E−15 1.9E−15

Best 2.7572 1.155151 2.6E−9 0.1564 1.5E−14 8.9E−16 8.1E−15 1.7E−18 8.9E−16 8.9E−16 8.9E−16

Std 0.3617 0.549389 5.3E−10 0.0728 3.2E−15 2.6E−15 2.6E−10 2.8E−9 1.5E−14 1.7E−14 1.7E−15

Med 3.1203 2.170083 3.6E−9 0.2615 1.5E−14 4.4E−15 1.1E−13 1.1E−11 8.9E−16 8.9E−16 8.9E−16

Rank 11 10 8 9 5 3 6 7 4 2 1

F11

Mean 1.2303 0.0463 3.7378 0.5877 0.0038 0.0030 1.6E−6 0 0 0 0

Best 1.1413 7.3E−9 1.5193 0.3101 0 0 4.2E−15 0 0 0 0

Std 0.0628 0.0518 1.6703 0.1691 0.0073 0.0135 3.4E−6 0 0 0 0

Med 1.2272 0.0295 3.4243 0.5820 0 0 8.8E−7 0 0 0 0

Rank 7 5 8 6 4 3 2 1 1 1 1

F12

Mean 0.0470 0.4807 0.0363 0.0206 0.0372 0.0078 0.0502 0.0826 0.0011 6.7E−9 0.0114

Best 0.0184 0.0001 5.6E−20 0.0020 0.0193 0.0011 0.0354 0.0779 1.9E−5 4.7E−10 0.0036

Std 0.0285 0.6027 0.0609 0.0286 0.0139 0.0090 0.0099 0.0024 0.0022 6.4E−9 0.0049

Med 0.0418 0.1556 1.5E−19 0.0152 0.0330 0.0039 0.0509 0.0821 0.0110 0.0004 0.0110

Rank 8 11 6 5 7 3 9 10 2 1 4

F13

Mean 1.2086 0.5084 0.0021 0.3291 0.5764 0.1933 2.6589 0.5653 0.0007 1.3E−7 0.1840

Best 0.4981 10.0E−7 1.2E−18 0.0383 0.2978 0.0297 2.6318 0.2803 9.8E−6 0.1362 0.1362

Std 0.3337 1.2517 0.0055 0.1989 0.1704 0.1509 0.0099 0.1878 0.0004 2.0E−7 0.0256

Med 1.2181 0.0440 2.1E−18 0.2830 0.5783 0.1520 2.6618 0.5799 0.0007 6.4E−8 0.1792

Rank 10 7 3 6 9 5 11 8 2 1 4

Sum rank 47 46 41 35 35 21 40 44 11 8 14

Mean rank 7.8333 7.6667 6.8333 5.8333 5.8333 3.5 6.6667 7.3333 1.8333 1.3333 2.3333

Total rank 10 9 7 5 5 4 6 8 2 1 3
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Table 4.   Evaluation results of fixed-dimensional multimodal functions.

GA PSO GSA TLBO GWO WOA TSA MPA SMA HGS HLBO

F14

Mean 0.9987 2.1737 3.5917 2.2644 3.7410 3.1062 1.7988 0.9988 0.9981 1.9746 0.998

Best 0.9980 0.9980 0.9995 0.9984 0.9980 0.9980 0.9979 0.9981 0.9980 0.9980 0.998

Std 0.0025 2.9365 2.7792 1.1496 3.9697 3.5336 0.5275 0.0003 0.0002 3.0056 0

Med 0.9980 0.9980 2.9867 2.2752 2.98217 0.9984 1.9126 0.9989 0.9980 0.9980 0.998

Rank 3 7 10 8 11 9 5 4 2 6 1

F15

Mean 0.0054 0.0017 0.0024 0.0032 0.0064 0.0007 0.0004 0.0039 0.0005 0.0006 0.0003

Best 0.0008 0.0003 0.0008 0.0022 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

Std 0.0081 0.0049 0.0012 0.0004 0.0094 0.0003 7.6E−5 0.0051 0.0003 0.0003 4.3E−13

Med 0.0021 0.0003 0.0023 0.0032 0.0003 0.0005 0.0004 0.0027 0.0004 0.0007 0.0003

Rank 10 6 7 8 11 5 2 9 3 4 1

F16

Mean − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316

Best − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316

Std 4.4E−5 3.2E−5 3.2E−5 3.18E−5 3.2E−5 3.2E−5 3.5E−5 4.1E−5 3.2E−5 3.2E−5 2.2E−16

Med − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316

Rank 3 2 2 2 2 2 4 4 2 2 1

F17

Mean 0.4370 0.7855 0.3979 0.3979 0.3979 0.3979 0.4001 0.4014 0.3979 0.3979 0.3979

Best 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3981 0.3989 0.3979 0.3979 0.3979

Std 0.1407 0.7217 8.6E−5 8.6E−5 8.6E−5 8.6E−5 0.0045 0.0044 8.6E−5 8.6E−5 0

Med 0.3979 0.3980 0.3979 0.3979 0.3979 0.3979 0.3991 0.3989 0.3979 0.3979 0.3979

Rank 6 7 2 2 3 3 4 5 2 2 1

F18

Mean 4.3605 3.0002 3.0002 3.0002 3.0002 3.0002 3.0018 3.0002 3.0002 3. 3.

Best 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3

Std 6.0399 0.0006 0.0006 0.0006 0.0006 0.0006 0.0009 0.0006 0.0006 0.0006 1.1E−15

Med 3.0011 3. 3. 3. 3.0000 3.0000 3.0018 3. 3. 3. 3.

Rank 6 2 2 2 4 3 5 2 2 2 1

F19

Mean − 3.8543 − 3.8627 − 3.8627 − 3.8613 − 3.8621 − 3.8606 − 3.8066 − 3.8627 − 3.8627 − 3.8627 − 3.8628

Best − 3.8628 − 3.8628 − 3.8628 − 3.8625 − 3.8628 − 3.8628 − 3.8366 − 3.8627 − 3.8627 − 3.8627 − 3.8628

Std 0.0148 0.0001 0.0001 0.0014 0.0017 0.0029 0.0153 0.0002 0.0002 0.0002 1.4E−7

Med − 3.8624 − 3.8628 − 3.8628 − 3.862 − 3.8628 − 3.8617 − 3.8066 − 3.8627 − 3.8627 − 3.8627 − 3.8628

Rank 7 2 2 5 4 6 8 3 2 2 1

F20

Mean − 2.8239 − 3.2619 − 3.3220 − 3.2011 − 3.2523 − 3.2229 − 3.3195 − 3.3211 − 3.2386 − 3.2804 − 3.3220

Best − 3.3134 − 3.322 − 3.322 − 3.2617 − 3.3220 − 3.3220 − 3.3212 − 3.3213 − 3.3220 − 3.3220 − 3.3220

Std 0.3860 0.0706 0.0001 0.0318 0.0766 0.0904 0.0031 0.0001 0.0560 0.0582 2.8E−5

Med − 2.9683 − 3.3217 − 3.322 − 3.2076 − 3.2623 − 3.1952 − 3.3206 − 3.3211 − 3.2031 − 3.3220 − 3.3220

Rank 11 6 2 10 7 9 4 3 8 5 1

F21

Mean − 4.6040 − 5.5392 − 5.4486 − 9.1901 − 9.4451 − 8.8763 − 5.5020 − 9.9043 − 10.153 − 9.8982 − 10.1532

Best − 8.5213 − 10.1532 − 10.1532 − 9.6639 − 10.1532 − 10.1531 − 9.5021 − 10.1532 − 10.1532 − 10.1532 − 10.1532

Std 1.9247 3.0763 3.0940 0.1207 1.7395 2.2635 1.2566 0.5592 0.0004 1.1400 4.2E−10

Med − 4.3747 − 5.1008 − 3.7693 − 9.1532 − 10.1525 − 10.1512 − 5.5021 − 10.1532 − 10.1531 − 10.1532 − 10.1532

Rank 11 8 10 6 5 7 9 3 2 4 1

F22

Mean − 5.1174 − 7.6322 − 9.7664 − 10.0486 − 10.4024 − 9.3372 − 5.9134 − 10.2858 − 10.4027 − 10.4028 − 10.4029

Best − 9.1106 − 10.4029 − 10.4029 − 10.4029 − 10.4028 − 10.4028 − 9.0625 − 10.4029 − 10.4029 − 10.4029 − 10.4029

Std 1.9696 3.5417 1.7084 0.3983 0.0004 2.1800 1.7549 0.2454 0.0003 0.0003 1.9E−5

Med − 5.0294 − 10.4024 − 10.4029 − 10.1836 − 10.4025 − 10.4012 − 5.0628 − 10.4028 − 10.4028 − 10.4029 − 10.4029

Rank 11 9 7 6 4 8 10 5 3 2 1

F23

Mean − 6.5621 − 6.1647 − 10.0188 − 9.2642 − 10.1302 − 9.4522 − 9.8098 − 10.1408 − 10.5362 − 10.2659 − 10.5364

Best − 10.2216 − 10.5364 − 10.5364 − 10.534 − 10.5363 − 10.5363 − 10.3683 − 10.5364 − 10.5364 − 10.5364 − 10.5364

Std 2.6172 3.7349 1.5938 1.6765 1.8144 2.2219 1.6064 1.1401 0.0003 1.2094 5.4E−6

Med − 6.5629 − 4.5055 − 10.5364 − 9.6717 − 10.536 − 10.535 − 10.3613 − 10.5364 − 10.5363 − 10.5364 − 10.5364

Rank 10 11 6 9 5 8 7 4 2 3 1

Sum rank 78 60 50 58 56 60 58 42 28 32 10

Mean rank 7.8 6 5 5.8 5.6 6 5.8 4.2 2.8 3.2 1

Total rank 9 8 5 7 6 8 7 4 2 3 1
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Figure 2.   Convergence curves of the HLBO and competitor algorithms in optimizing objective functions F1 to 
F23.
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HLBO indicate the exploitation ability of the proposed method in converging to the global optimal solution. In 
particular, HLBO has demonstrated its high local search ability by converging to the global optimal in handling 
the functions F1 and F6 . High-dimensional multimodal functions due to the existence of multiple local opti-
mal solutions are a suitable option for measuring the exploratory ability of optimization algorithms for global 
search and finding the main optimal area. The main challenge in solving these problems is to accurately scan 
the search space and prevent the algorithm from getting stuck in some of the optimal local areas. The results 
of implementing HLBO on high-dimensional multimodal functions show that the proposed approach has an 
acceptable exploration ability in scanning the search space and finding the optimal area. The exploratory power 
of HLBO in identifying the optimal region, especially in the F9 and F11 functions, is evident that it has been able 
to provide the global optimal. In addition to having the right quality of exploration and exploitation, having the 
right balance between these two indicators is the key to the success of optimization algorithms. Fixed dimensional 
multimodal functions have been selected to evaluate the ability of HLBO to strike a balance between exploration 
and exploitation. In this type of problem, it is important to simultaneously find the main optimal area based on 
global search and converge as much as possible to the global optimal based on local search. The optimization 
results of this type of function using the proposed approach show the high capability of HLBO in balancing 
exploration and exploitation to discover the optimal area and converge towards the global optimal.

Conclusion and future works
In this paper, a new optimization algorithm called Hybrid Leader Optimization (HLBO) is introduced. The use 
of a hybrid leader generated by three different members was HLBO’s idea in updating the algorithm population 
in the search space. The HLBO implementation process was mathematically modeled in two phases of explora-
tion and exploitation. Twenty-three objective functions were employed to evaluate the performance of HLBO 
in achieving optimal solutions for optimization problems. The results of the unimodal functions indicated the 
high exploitation ability of HLBO to search locally and converge towards global optima. The results of optimiz-
ing multimodal functions showed the high exploration ability of HLBO to search globally and discover the 
optimal area without getting caught up in local optimal. For further analysis of HLBO, its efficiency in handling 
complex IEEE CEC 2017 objective functions was studied. The results showed that HLBO is capable of solving 
such optimization problems.

The results of HLBO compared with the performance of ten well-known algorithms showed that HLBO has 
a superior performance by providing appropriate solutions in most cases due to the appropriate balance between 
exploration and exploitation. The proposed HLBO opens up several research subjects for further work in the 
future. Specific research potentials are the development of binary and multimodal versions of HLBO. The HLBO 
employment on optimization topics in various sciences as well as real-world applications are other suggestions 
for future studies. Similar to any stochastic-based optimization algorithm, there are concerns and limitations for 
the use of the proposed HLBO approach. Of course, we do not claim that HLBO is generally the best optimizer 
because according to the NFL theorem, there is no presupposition for the effective performance of an algorithm 
in dealing with optimization issues. It is also possible that there may be other algorithms or that new algorithms 
may be developed by researchers in the future that work better in some concrete applications.

Table 5.   p-values results from Wilcoxon sum rank test.

Compared algorithms

Test function type

Unimodal High-multimodal Fixed-multimodal

HLBO versus SMA 0.000330083 1.63352E−12 0.432505732

HLBO versus HGS 3.09811E−6 1.63352E−12 9.93431E−30

HLBO versus MPA 2.73907E−22 0.000331172 4.9571E−34

HLBO versus TSA 3.24444E−7 6.60407E−10 3.6466E−34

HLBO versus WOA 2.03592E−7 0.016139556 1.43615E−34

HLBO versus GWO 0.000121056 0.844919773 1.43615E−34

HLBO versus TLBO 4.24099E−22 0.001091824 1.49171E−25

HLBO versus GSA 3.3289E−8 6.10009E−8 0.001848864

WOA versus PSO 9.54457E−19 8.18756E−10 5.68697E−9

WOA versus GA 1.03289E−24 2.05428E−6 1.43615E−34
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Table 6.   Evaluation results of IEEE CEC 2017 objective functions C1 to C18.

GA PSO GSA TLBO GWO WOA TSA MPA SMA HGS HLBO

C1

Avg 9800 3960 296 2.0E+7 3.3E+5 8.5E+6 296 3400 156 2470 100

Std 6210 4660 287 4.2E+6 1.1E+5 2.4E+7 287 3840 3.8E+4 277 501

Rank 7 6 3 10 8 9 3 5 2 4 1

C2

Avg 5610 7060 7910 1.2E+4 314 461 216 219 201 201 200

Std 4360 2290 2260 6660 7510 7380 797 701 77.9 99 10.9

Rank 7 8 9 10 5 6 3 4 2 2 1

C3

Avg 8720 300 1.1E+4 2.8E+4 1540 2.3E+4 1.1E+4 300 301 1510 300

Std 6170 2.0E−10 1690 9240 1980 3900 1670 0 50.1 26.5 1.0E−10

Rank 5 1 6 8 4 7 6 1 2 3 1

C4

Avg 411 406 407 548 410 2390 407 406 403 404 400

Std 19.3 3.43 3.05 15.9 7.89 431 3.05 10.6 99 8.54 0.0596

Rank 7 4 5 8 6 9 5 4 2 3 1

C5

Avg 516 513 557 742 514 900 557 522 530 513 510

Std 7.24 6.83 8.78 36.9 6.37 83.1 8.79 11 60.9 25.4 4.13

Rank 4 2 7 8 3 9 7 5 6 2 1

C6

Avg 600 600 622 665 601 691 622 610 682 600 600

Std 0.698 1.02 9.43 43.9 0.092 11.4 9.43 8.63 37 1.46 6.4E−4

Rank 1 1 4 5 2 7 4 3 6 1 1

C7

Avg 728 719 715 1280 730 1860 715 741 713 713 723

Std 7.62 5.33 1.62 44.1 8.99 79.8 1.63 17.3 1.7 4.49 4.09

Rank 5 3 2 8 6 9 2 7 1 1 4

C8

Avg 821 811 821 952 814 1070 821 823 829 809 809

Std 9.36 5.72 4.9 19.9 8.63 46.5 4.9 10.4 55.4 8.37 3.26

Rank 5 3 5 8 4 9 5 6 7 1 2

C9

Avg 910 900 900 6800 911 2.9E+4 900 944 4670 910 900

Std 15.9 6.2E−14 6.2E−15 1360 20.4 9130 0 110 2150 20.9 0.017

Rank 2 1 1 6 3 7 1 4 5 2 1

C10

Avg 1720 1470 2690 5290 1530 7470 2690 1860 2590 1410 1440

Std 263 225 311 674 300 1420 311 308 433 36.6 147

Rank 5 3 8 9 4 10 8 6 7 1 2

C11

Avg 1130 1110 1130 1270 1140 1920 1130 1180 1110 1110 1100

Std 24.9 6.56 11 41.6 56.5 1980 11 62.5 26.5 11.7 1.33

Rank 3 2 3 6 4 7 3 5 2 2 1

C12

Avg 3.7E+4 1.4E+4 7.0E+5 2.2E+7 6.3E+5 1.8E+8 7.1E+5 2.0E+6 1630 1.5E+4 1250

Std 3.6E+4 1.2E+4 4.4E+4 2.2E+7 1.2E+6 1.8E+9 4.4E+5 2.0E+6 207 2800 56.7

Rank 5 3 7 10 6 11 8 9 2 4 1

C13

Avg 1.1E+4 8600 1.1E+4 4.2E+5 9840 1.9E+8 1.1E+4 1.61E+4 1320 6820 1310

Std 9330 5350 2200 1.3E+5 5880 1.4E+8 2200 1.1E+4 81.8 4450 2.7

Rank 6 4 7 9 5 10 7 8 2 3 1

C14

Avg 7050 1480 7150 4.1E+5 3400 2.0E+6 7150 1510 1450 1450 1400

Std 8530 44.4 1560 2.4E+5 2040 7.3E+6 1560 53.4 58.5 23.4 4.24

Rank 6 3 7 8 5 9 7 4 2 2 1

C15

Avg 9300 1710 1.8E+4 4.8E+4 3810 1.4E+7 1.8E+4 2240 1510 1580 1500

Std 9380 296 5750 1.6E+4 4030 2.1E+7 5750 597 17.1 134 0.543

Rank 7 4 8 9 6 10 8 5 2 3 1

C16

Avg 1790 1860 2150 3500 1730 3000 2150 1730 1820 1730 1600

Std 135 134 111 239 130 1250 111 133 240 125 1.03

Rank 3 5 6 8 2 7 6 2 4 2 1

C17

Avg 1750 1760 1860 2630 1760 4340 1860 1770 1830 1730 1710

Std 41.6 49.6 113 199 32.7 331 113 35.7 184 36.1 9.86

Rank 3 4 7 8 4 9 7 5 6 2 1

C18

Avg 1.6E+4 1.5E+4 8720 7.5E+5 2.6E+4 3.7E+7 8720 2.3E+4 1830 7440 1800

Std 1.3E+4 1.2E+4 5290 3.9E+5 1.6E+4 5.2E+7 5290 1.5E+4 14.1 4720 0.543

Rank 6 5 4 9 8 10 4 7 2 3 1
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