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Abstract: Suffering from structural deterioration and natural disasters, the resilience of civil structures
in the face of extreme loadings inevitably drops, which may lead to catastrophic structural failure and
presents great threats to public safety. Earthquake-induced extreme loading is one of the major reasons
behind the structural failure of buildings. However, many buildings in earthquake-prone areas of
China lack safety monitoring, and prevalent structural health monitoring systems are generally very
expensive and complicated for extensive applications. To facilitate cost-effective building-safety
monitoring, this study investigates a method using cost-effective MEMS accelerometers for buildings’
rapid after-earthquake assessment. First, a parameter analysis of a cost-effective MEMS sensor
is conducted to confirm its suitability for building-safety monitoring. Second, different from the
existing investigations that tend to use a simplified building model or small-scaled frame structure
excited by strong motions in laboratories, this study selects an in-service public building located
in a typical earthquake-prone area after an analysis of earthquake risk in China. The building is
instrumented with the selected cost-effective MEMS accelerometers, characterized by a low noise
level and the capability to capture low-frequency small-amplitude dynamic responses. Furthermore,
a rapid after-earthquake assessment scheme is proposed, which systematically includes fast missing
data reconstruction, displacement response estimation based on an acceleration response integral,
and safety assessment based on the maximum displacement and maximum inter-story drift ratio.
Finally, the proposed method is successfully applied to a building-safety assessment by using
earthquake-induced building responses suffering from missing data. This study is conducive to
the extensive engineering application of MEMS-based cost-effective building monitoring and rapid
after-earthquake assessment.

Keywords: cost-effective MEMS accelerometer; building safety monitoring; missing data reconstruc-
tion; structural health monitoring; after-earthquake assessment

1. Introduction

Civil structures, such as buildings, bridges, and tunnels working in the natural envi-
ronment, suffer from structural deterioration and even natural disasters (e.g., earthquakes
and typhoons) in their long-term service life. As a result, the resilience of civil structures to
extreme loadings drops inadvertently, which may lead to catastrophic structural failure and
present great threats to public safety. Earthquake-induced extreme loading is one of the
major reasons for the structural failure of buildings, and some typical damages to buildings

Sensors 2021, 21, 7327. https://doi.org/10.3390/s21217327 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1339-8145
https://doi.org/10.3390/s21217327
https://doi.org/10.3390/s21217327
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217327
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217327?type=check_update&version=4


Sensors 2021, 21, 7327 2 of 29

due to seismic disasters are shown in Figure 1. To reduce the seismic risk to buildings,
three scales of monitoring approaches, namely country-, urban-, and building-scale moni-
toring networks, are established for different tasks [1,2]. Country-scale seismic monitoring
networks have been well-established in many earthquake-prone countries, including the
USA, China, Japan, and Italy. These national networks are intended to determine the
occurrence time, epicenter location, and magnitude of an earthquake. Later, urban-scale
networks are developed for mapping higher-spatial-resolution earthquake intensity and
implementing early earthquake warning (EEW) systems. Recently, building-scale networks
are further conceived for structural health monitoring (SHM) and damage assessment with
different assessment indexes [3–5]. The three scales of the seismic monitoring network are
characterized by different coverage areas and densities of sensor nodes. It is noted that
the sensor density in a building-scale network is normally much higher than that of an
urban- or country-scale network. Therefore, the application of building-scale monitoring
is limited, due to the need for a great number of sensors and the associated high price of
SHM systems.

Figure 1. Typical damages of building after earthquakes. (a) Damaged building in 1985 Mexico city
earthquake. (b) Damaged building in 2008 Beichuan earthquake. (c) Damaged building in 2018
Hualien earthquake.

The low price of Micro-Electro-Mechanical System (MEMS) sensors makes it afford-
able for general-purpose applications and can potentially lead to the popularization of
dense seismic monitoring. Over the past ten years, cost-effective MEMS accelerometers
have been investigated for recording strong seismic motion and conducting dense EEW.
American researchers [6–8] proposed a novel MEMS-based strong-motion seismic network
named the Quake-Catcher Network (QCN) for community participation in earthquake
monitoring, targeted at providing an advance alert for an associated seismic hazard. More-
over, other studies explored the possibility of using the MEMS accelerometers integrated
within smartphones to develop citizen-engaging networks for earthquake observation
and EEW [9,10]. Nof and Chung et al. [11] proposed an array-based approach to improve
early-warning performance using mini-array low-cost MEMS accelerometers. Following
the establishment of a high-density seismic network equipped with a low-cost MEMS
system called the P-wave-alert-device (P-Alert) by the earthquake early-warning research
group at National Taiwan University [12,13], scholars from Taiwan investigated its appli-
cability to dense EEW [12–14]. Among them, Jyh and Wu et al. [14] demonstrated that
the P-Alert system can determine the near-real-time coseismic deformation (Cd) values as
accurately as using GPS and TSMIP stations. Later, Fu and Meng et al. [15] evaluated the
performance of low-cost MEMS seismic sensors for dense EEW, based on the 2018–2019
field testing data in Southwest China. The tests have shown that the low-cost MEMS
seismic sensors can obtain clear seismic phases and thus trigger earthquake detections for
EEW. Pierleoni and Marzorati et al. [16] proposed a low-cost MEMS accelerometric unit
and have conducted field tests in Italy to compare the performance of a seismic station
using the MEMS accelerometric unit and that of an INGV high-performance station. It
was found from the comparative analysis that the proposed MEMS sensors exhibited
performances very close to those of more sophisticated and expensive devices and could
satisfactorily meet the requirements of seismic monitoring and early warning. The above
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applications validate the effectiveness of MEMS sensors for urban-scale seismic monitoring,
which aims at higher-spatial-resolution seismic intensity identification and the potential for
indirect health condition estimation of buildings in the monitored urban area. The indirect
health condition estimation is a rough estimation approach by only measuring ground
motion to assess the seismic intensity and then indirectly predicting the potential health
state of buildings in the monitored urban area. The prediction also depends on statistical
health-condition data of different kinds of buildings under different seismic intensities.

Different from the EEW systems that installed MEMS sensors on the ground, the
building-scale seismic monitoring systems are characterized by the distributive deploy-
ment of MEMS sensors on multiple floors of a building. Due to the high costs of the
monitoring systems and their installation, management, and maintenance, building own-
ers are generally reluctant to install permanent monitoring systems, and most seismic
damage assessment of the building is currently conducted by technicians’ visual inspec-
tion. To overcome this limitation, extensive efforts have been devoted to pre-studies on
the applicability of cost-effective MSMS sensors to earthquake-induced building damage
assessment [17–20]. Liang et al. developed a MEMS-based SHM system and shaking
table tests were conducted on a small-scale three-story specimen [21]. By comparing
cost-effective MEMS accelerometers with the traditional force-balance principle-based
accelerometers characterized by high cost and accuracy, the experimental studies showed
that MEMS accelerometers were applicable for accurate acceleration response measurement
and structural frequency computation under relatively strong vibration. To guarantee the
safety and serviceability of buildings in Italy, the EU-funded MEMSCON project aims to
produce small-sized MEMS sensors for the measurement of strain and acceleration. In the
MEMSCON project, Pozzi and Zonta et al. [22] conducted comprehensive laboratory tests
and proved both the developed strain gauge and the accelerometer networks were reliable
under operational conditions close to those in a field application. Ha et al. [23] developed
a MEMS inclinometer for structure health monitoring and conducted an experimental
validation study on a beam model. This type of sensor has the potential to measure the
earthquake-induced absolute inclination of buildings. Yin and Wu et al. [24] conducted
a pre-study to examine the SHM performance of MEMS sensors. It validated that the
low-cost MEMS-type seismometer is reliable to measure the responses of an eight-story
one-quarter-scale steel frame structure and the fundamental normal-mode frequencies can
be successfully estimated from the measured responses. Fu et al. [25] proposed a demand-
based wireless MEMS sensor to meet the requirements of sudden event monitoring with
a minimal budget, and the experimental results have shown that the proposed system
was able to capture the occurrence of sudden events and provide high-fidelity data for
structural condition assessment. Ting and Ren et al. [26] conducted a series of steel-frame
shaking table tests with incremental damage and confirmed that the P-alert system was
effective for evaluating post-earthquake building safety.

The aforementioned investigations for MEMS-based building-scale seismic monitoring
mainly focus on sensor development and laboratory tests for sensor performance validation
and/or structural health assessment. To bridge the gap between laboratory exploration and
engineering applications, some researchers focus on the on-site application of MEMS-based
cost-effective SHM systems. Losanno and Londono et al. [27] presented a monitoring
system for a worship building and the system was included in the network of the Italian
Observatory of Structures. This investigation demonstrated that the system was able to
timely monitor the structural response under extreme events and give rapid assessment
results for emergency management. Potenza et al. [28] conducted long-term structural
monitoring of a church with a low-cost wireless MEMS sensor network, and the modal
parameters were successfully extracted for damage assessment.

To proceed with structural damage detection of civil structures, many vibration-based
damage detection methods have been developed [29–32] using a limited number of sensors.
The basic idea behind these investigations is that changes in the physical properties are
associated with changes in the modal properties and the vibration responses. A sensitivity-
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based model-updating method with different damage detection indexes are usually used
for detecting, localizing, and quantifying defects in structures [33–38]. However, the
sensitivity-based model-updating methods often rely on the input of artificial excitation
and a finite element model of the monitored civil structure. This requirement of a large
amount of artificial energy input is difficult to realize for a large civil engineering struc-
ture, and the establishment of its finite element model is also very time-consuming. To
overcome the requirement of artificial excitation, Law et al. [39–41] proposed a structural
condition assessment approach based on ambient excitation, which relies on the measured
acceleration responses of the structure before and after damage occurs to identify structural
damage. More recently, Lin and Xu et al. [42–44] proposed the use of multiple types of
sensors and a multi-scale finite element model for more accurate damage detection of large
civil structures. Nonetheless, these sensitivity-based model-updating methods still need to
build a complicated finite element model for the civil structures and the updating progress
is usually very time-consuming. Different from previously mentioned structural damage-
detection methods relying on offline calculation or finite element models, the first-order
eigen-perturbation techniques have been developed for real-time damage detection of
vibration systems and a comprehensive review can be found in Ref. [45]. To foster the de-
velopment of real-time eigen perturbation methods, Bhowmik and Krishnan et al. [46–50]
successively proposed multiple advanced algorithms incorporating the recursive princi-
pal component analysis (RPCA), RPCA-time-varying auto regressive (TVAR), recursive
singular spectrum analysis (RSSA), and recursive canonical correlation analysis (RCCA).
They are novel baseline-free approaches for continuous online damage detection, able to
decrease computational complexities and resource consumption compared with adaptive
filtering methods such as the traditional Kalman filter. To demonstrate the effectiveness
of the abovementioned real-time eigen perturbation methods for structural health assess-
ment, numerical and experimental case studies were undertaken for the damage detection
of single-degree-of-freedom oscillators and multiple-degrees-of-freedom beam models.
The case studies indicated that these real-time eigen perturbation methods can accurately
identify the damage occurrence of the oscillators and the beam models by using one
accelerometer or limited numbers of accelerometers.

To sum up, SHM is a cutting-edge solution for structural safety assessment, but
it often relies on expensive sensory systems cooperating with complicated damage de-
tection methods and finite element models. The prevalent SHM systems are generally
very expensive and complicated for extensive application, and thus many buildings in
earthquake-prone areas of China lack safety monitoring. Moreover, most investigations in
the SHM field are mainly confined to laboratory exploration, in which simplified building
models or small-scaled frame structures subjected to artificial excitations are employed for
experimental studies. With such a large difference from the fundamental frequencies of
real buildings and their real operational conditions, the results of these vibration-based
structural health monitoring investigations may not be extendable to in-service buildings.
In order to promote the extensive application of SHM technology to in-service buildings in
earthquake-prone areas, this paper proposes a building-safety monitoring and assessment
scheme using cost-effective MEMS accelerometers and examines its effectiveness with the
use of an in-service building subjected to real earthquakes.

The main contribution of this paper is the proposal and application study of a rapid
after-earthquake assessment scheme for building-safety assessment using cost-effective
MEMS accelerometers, which aims to facilitate rapid after-earthquake building assessment
for engineers. Specifically, the contribution of this study lies in multiple aspects, including
(i) offering parameter analysis of the cost-effective MEMS sensors and suitability assessment
of the sensors for building-safety monitoring; (ii) conducting an analysis of seismic risk
in China, and providing a distribution map of China’s active seismic faults, a historical
seismic event distribution map in China during 2009–2020, and an analysis of the number
and proportion of the historical earthquakes with five different magnitudes in China
during 2009–2020, which reveal the necessity of developing a cost-effective monitoring
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system and a rapid building-safety assessment scheme and the necessity of conducting
an application study using a real building; (iii) proposing a building safety assessment
scheme that systematically consists of fast missing data reconstruction, fast displacement
estimation based on the frequency-domain integral of acceleration response, and maximum
displacement and maximum inter-story drift ratio (IDR) based assessment; and (iv) instead
of performing experimental studies in the lab using scaled models and artificial excitations,
this paper carries out an application study using a typical in-service building selected from
an earthquake-prone area based on an analysis of seismic risk in China for validating the
proposed rapid after-earthquake assessment scheme in a missing data situation.

The rest of this paper is organized as follows. Section 2 describes the establishment
of the MEMS sensor-based building monitoring system. Section 3 presents the method-
ology for rapid after-earthquake assessment using data from the MEMS sensor-based
cost-effective structural health monitoring system. Section 4 provides a case study to vali-
date the assessment scheme including fast missing data reconstruction, fast displacement
estimation from the acceleration response, and the maximum displacement and maximum
IDR-based assessment. It is followed by Section 5 with further discussion. The conclusions
are drawn in Section 6.

2. MEMS Sensor-Based Building Monitoring System Establishment
2.1. Parameter Analysis of a Cost-Effective MEMS Sensor

A typical MEMS sensor can integrate the sensing module, filter, A/D conversion
module, control module, and data logger in a single circuit board, thus these types of
sensors can lead to a cost-effective application to building safety monitoring. However, the
accurate measurement and signal processing of small-amplitude low-frequency vibration
from civil structures are considerably more challenging than the measurement of strong
or high-frequency vibration information from mechanical engineering [51], which makes
many MEMS sensors developed by mechanical engineers inapplicable to SHM of civil
structures. To collect earthquake-induced vibration and realize rapid after-earthquake
assessment of a building, the cost-effective MEMS sensors (see Figure 2) developed by the
Institute of Geophysics affiliated with the China Earthquake Administration are examined
in this study.

Figure 2. The triaxial cost-effective MEMS accelerometer.
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Parameter analysis of the cost-effective MEMS sensors should be firstly conducted to
confirm their suitability for building-safety monitoring. To examine the typical properties
of the MEMS accelerometers, the noise level, frequency response, and linearity are tested by
installing the sensor on an observation pier connected to bedrock in a laboratory. Figure 3
shows a typical record of measurement noise acquired in the sensor test. The signal-to-noise
ratio is computed as 92 dB according to the equation SNR = 20 × lg (2000/

√
2/0.035) ≈

92 dB, where 2000 mg is the measurement range and 0.035 mg is the effective value of the
measured noise. Moreover, a frequency response test and a linearity test are conducted,
and the results are depicted in Figures 4 and 5. Typical curves of the frequency response
and the corresponding measurement error for the MEMS sensor are shown in Figure 4. It
is found from the frequency response (blue curve) that the −3 dB frequency band is up to
80 Hz. Since civil structures’ low-order vibration modes are dominant and the high-order
vibration modes are difficult to excite, a measurement bandwidth up to 20 Hz can meet
the measurement requirement of civil structures. The frequency response measurement
error (orange curve) is defined as the absolute value of the relative difference between
the input and output response. The typical measurement error of frequency response in
the frequency band up to 20 Hz is lower than 1% as shown in Figure 4. Similarly, typical
curves of the linearity and the corresponding measurement error for the MEMS sensor are
shown in Figure 5. The high linearity between the input and output can be observed and
the measurement range can reach ± 2000 mg. The linearity measurement error (orange
curve) is defined as the absolute value of the relative difference between the input and
output response, and it is observed that the typical measurement error of linearity is lower
than 2% as shown in Figure 5. As proven, the selected MEMS sensors have a low noise
level and low measurement error in the frequency band of interest, and thus are suitable
for the seismic response measurement of the building. The typical values of the above core
technical parameters and other parameters of the MEMS sensor are summarized in Table 1.

Figure 3. A typical record of measurement noise for the MEMS sensor.
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Figure 4. Typical curves of frequency response and the corresponding measurement error for the
MEMS sensor.

Figure 5. Typical curves of the linearity and the corresponding measurement error for the MEMS sensor.
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Table 1. Specifications of the selected triaxial MEMS accelerometer.

Parameters Specifications

Measurement Range ± 2000 mg
Noise Dynamic Range >90 dB@BW 0.1–20 Hz
Frequency response measurement error < 1% (0.1 Hz–20 Hz)
Linearity measurement error <2% (0.1 Hz–20 Hz)
Frequency Response (±3 dB) 0 Hz–80 Hz
Sampling Rates 200 Hz
Power Supply 12 V
Power Consumption 2 W
Time Service/Time Giving GPS or NTP
Transmission Port 10/100 M Adaptive network port
Data Memory 32 G Memory card, cyclic storage

Control System

Operation system: Embedded Linux system
MCU: Embedded 32-bit ARM CPU
Main frequency: 400 MHz
RAM: 64 MB
Flash memory: 256 MB
Supporting the operation of third-party software

2.2. Analysis of Seismic Risk in China and the Selected Building for Case Study

China is located in two of the world’s most active seismic belts, namely the circum-
Pacific seismic belt and the Eurasian seismic belt. Seismic activities in China are char-
acterized by frequent occurrence, high intensity, shallow source, and wide distribution.
According to the data from the China Earthquake Networks Center (CENC) and National
Earthquake Data Center (NEDC), the distribution map of China’s active seismic faults
and the historical seismic events in China during 2009–2020 are analyzed and depicted
in Figures 6 and 7. As seen in Figure 6, active seismic faults in China are numerous and
widely distributed. Moreover, earthquakes in China during 2009–2020 with a magnitude
larger than M3 (Magnitude level: 3) are counted and displayed on the China map, as seen
in Figure 7. Further, the statistical analysis of the historical seismic events is conducted
and shown in Figure 8. It can be found that the numbers (proportions) of earthquakes
with magnitudes among M3.0–3.9, M4.0–4.9, M5.0–5.9, M6.0–6.9, and M7.0–7.9 are 4235
(67.75%), 1662 (26.59%), 298 (4.77%), 52 (0.83%), and 4 (0.06%), respectively, in the past
twelve years. The above analysis indicates that buildings of many cities in China are poten-
tially subjected to high risk from earthquakes. As a result, cost-effective building safety
monitoring and its extensive application currently draw more attention from researchers
and disaster prevention institutes.

According to the statistical data of active seismic faults and seismic distribution in
Figures 6–8, it is noted that Beijing is located in an earthquake-prone area and is often
affected by earthquakes. Beijing is the capital city of China, and is also a political, economic,
and cultural center, which is characterized by a developed economy, a dense population,
extensive development of underground space, and many aging or even historical buildings.
The safety of aging buildings under seismic risk is a critical issue for the public, and thus
the building performance assessment after an earthquake event is especially important.
To study the building safety monitoring with cost-effective MEMS accelerometers for
rapid after-earthquake assessment, an in-service public building, Changping Guangdian
Mansion, located in the earthquake-prone area in Beijing is selected (see Figure 9). The
main building of this mansion is a 16-floor reinforced concrete frame-shear wall structure
building with a height of 48 m aboveground with a basement. The building was first used
in early 2005.



Sensors 2021, 21, 7327 9 of 29

Figure 6. Distribution map of China’s active seismic faults.

Figure 7. Historical seismic event distribution in China during 2009–2020.
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Figure 8. The analysis of the number and proportion of historical earthquakes with five different
magnitudes in China 2009–2020. (a) The number of the historical earthquakes with five different
magnitudes. (b) The proportion of the historical earthquakes with five different magnitudes.

Figure 9. The Changping Guangdian mansion in Beijing city.
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2.3. Establishment of Building Safety Monitoring System

To construct a safety monitoring system for the building, a deployment scheme
for sensor placement, data acquisition, and transmission is developed according to the
following principle. As the maximum displacement of the building top and the maximum
IDR profile are adopted as the building condition assessment indexes in this study, a
limited number of sensors is required for building safety assessment. The MEMS sensors
should be appropriately placed to measure the information necessary for computing the
building condition assessment indexes. Generally, the sensors should be evenly distributed
in a straight line along the height of the building, and the sensors should be preferentially
installed on certain important floors, such as the top of the building, reinforced floors of
a tall building, and certain floors containing vulnerable structures, etc. The more sensors
there are along the straight line of the building, the higher the obtained spatial resolution
of the IDR profile.

According to the principle mentioned above, ten triaxial MEMS accelerometers are
installed on the western walls of weak electricity rooms to measure the structural responses
in X-, Y-, and Z-directions (West–East, South–North, and vertical directions). As shown in
Figure 10, the accelerometers are placed in the basement and the 1st, 3rd, 5th, 7th, 9th, 11th,
13th, 15th, and the top of the Guangdian building. Considering data synchronization, the
ten sensors used for building-safety monitoring are connected to an industrial router by
wire. Then, the collected data are transmitted to cloud servers through a 5G/4G wireless
network. Thereafter, all the authorized users can gain remote access to the cloud server to
observe the signals and condition assessment results of the building.

Figure 10. Schematic diagram of the building safety monitoring system.

3. Methodology for Rapid after-Earthquake Building Safety Assessment

Ground motions induced by earthquakes can lead to abrupt or cumulative damage to
buildings, and thus a rapid assessment method is developed in this section. The proposed
rapid after-earthquake building-safety assessment will adopt the maximum displacement
and the maximum IDR of a building as safety indexes. However, the in-situ measurement
may encounter missing data problems, and the displacement responses cannot be directly
measured but can be indirectly estimated. Therefore, Sections 3.1–3.3 will introduce
the methods for missing data reconstruction, displacement estimation by an integral of
acceleration, and the calculation of IDR, respectively.

3.1. Method for Fast Missing Data Reconstruction

Missing data is a typical problem in the data acquisition process during structural con-
dition monitoring due to transmission error and sensor fault [52]. Incomplete monitoring
data can cause false analyses and missed detections of events, leading to inappropriate
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decisions made for arranging maintenance and contingency measures. Therefore, the accu-
rate reconstruction of missing data is of great importance, especially for emergencies such
as the case of an earthquake. Missing data is a common problem due to the use of wireless
transmission, and it happens inadvertently. In this study, the incomplete monitoring data
may result in the inability to correctly calculate the maximum displacement and IDR pro-
file, which are the indexes for assessing the after-earthquake safety of a building. In other
words, missing data could lead to an incorrect assessment of building safety conditions
and false alarms.

Many existing studies have focused on data reconstruction through mean and median
values, or simple interpolation methods, which are characterized by easy implemen-
tation but low accuracy [53]. To overcome this drawback, researchers are devoted to
the study of efficient and accurate missing data reconstruction algorithms [54–58]. The
matrix-decomposition-based data reconstruction method (e.g., low-rank matrix/tensor
completion) [55] is one of the widely advocated algorithms due to the direct expression
of the relationship between time series and spatial locations. Tensor completion methods
can be used in different fields to solve the missing data problem and are generally used for
image completion and traffic data imputation [59–64]. However, investigations on their
application to the data imputation of three-axial coupled structural responses of buildings
under seismic excitation for building safety assessment are rarely reported.

To reach high-accuracy data reconstruction, we propose the use of the following
low-rank tensor completion method with a fast-solving algorithm. The well-known opti-
mization problem for low-rank tensor completion can be formulated as

argmin
χ

:‖ χ ‖∗:= ∑n
i=1 αi ‖ χ(i) ‖∗

s.t. : χΩ = TΩ
(1)

where T is an n-mode (dimensional) input tensor constituted by the measured dynamic
responses with missing entries, χ is an estimated n-mode tensor after missing data re-
construction of T, subscript Ω denotes the subset of T and χ, which does not need to be
reconstructed, and αi is the weighting constant satisfying αi ≥ 0 and ∑n

i=1 αi = 1.
The difficulty in efficiently solving the tensor-trace-norm-related minimization prob-

lem in Equation (1) is that multiple dependent non-smooth terms exist in the objective
function. Nesterov [65] proposed a general method to solve a non-smooth optimiza-
tion problem. The smooth version of the minimization problem in Equation (1) can be
expressed as

argmin
χ

: ∑n
i=1 maxαi〈χ, yi〉 −

µi
2 ‖yi‖2

F

s.t. : χΩ = TΩ
(2)

where µi is a positive constant and yi is a dual variable. For solving this smooth mini-
mization problem above, a fast low-rank tensor completion algorithm is to be employed.
The comparison among the tensor completion algorithms, including Tucker-, Parafac-,
and SVD-based methods, SiLRTC, HaLRTC, and FaLRTC was conducted, and the results
showed that (i) the last three algorithms could work with a small number of samples and
fill larger missing regions, (ii) the HaLRTC and FaLRTC methods exhibited better recon-
struction performance than the others, and (iii) between FaLRTC and HaLRTC, the former
proved to be more efficient [59]. Therefore, the FaLRTC algorithm is adopted in this paper
for achieving good reconstruction performance with satisfactory computational efficiency.
In this study, the tensor is constructed by placing the acceleration response matrices along
the X-, Y-, and Z-directions (West–East, South–North, and vertical directions) into its first,
second, and third layers, respectively, such that the missing data along three directions can
be simultaneously estimated by solving Equation (2). Therefore, this paper takes advantage
of the FaLRTC method in terms of its direct exploitation of the relationship between time
series and spatial locations and its fast-convergency property for the three-axial coupled
missing seismic responses reconstruction.
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3.2. Method for Displacement Estimation

Accelerometers are widely used for on-site structural health monitoring of civil struc-
tures. Compared with velocity or displacement responses, acceleration responses can
be easily measured by less expensive sensors and the acceleration signals have a high
signal-to-noise ratio. Nonetheless, displacement is necessary for rapid after-earthquake
assessment of a building, because it is directly related to elastic or plastic deformation
and structural damage, and the thresholds of displacement rather than acceleration are
clearly defined in current seismic codes. After missing data reconstruction, the displace-
ment can be estimated by the integral of acceleration data. To avoid error accumulation
during the double integral process of the time-domain integral method and to improve
computational efficiency, the frequency-domain integral method is adopted in this study
for an accurate and fast integral. Specifically, the velocity and displacement responses are
estimated respectively using the following equations.

.
x(l) =

N−1

∑
k=1

1
j2πk∆ f

H(k)
..
X(k)ej2πkl/N (3)

x(l) =
N−1

∑
k=1
− 1

(2πk∆ f )2 H(k)
..
X(k)ej2πkl/N (4)

with

H(k) =

 1 ( fd ≤ k∆ f ≤ fu)

0 (others)
(5)

where
..
x(l),

.
x(l), and x(l) are the vectors of acceleration, velocity, and displacement re-

sponses,
..
X(k) is the Fourier transform of

..
x(l), k and l are sequence number in time and

frequency domain, ∆ f is frequency resolution, H(k) is a filter function, fd and fu are lower
cut-off frequency and upper cut-off frequency, and k∆ f falls in the interval between the
lower and upper cutoff frequencies. The estimated displacement responses are used to
calculate the maximum displacement of the top of the building and the maximum IDR
profile for the building safety assessment in Section 4.2.

3.3. Method for Inter-Story Drift Ratio Calculation

Advanced damage identification techniques with complex algorithms are often diffi-
cult for fast assessment. IDR is one of the most widely used and effective indicators for the
performance assessment of tall buildings, which can fulfill the fast and effective assessment
requirement. Thus, IDR is employed in this study for structural condition and damage
extent assessment. It is derived from the definition of inter-story drift, which is defined as
the relative translational displacement difference between two consecutive floors in current
seismic codes [66,67].

The inter-story drift consists of the inter-story shear drift and flexural drift induced
by the vertical members. To evaluate the safety condition of a building, the IDR can be
calculated [68] as:

θi =
∆xi
hi

=
xi − xi−1

hi
(6)

where θi is the IDR; xi(xi−1) is the horizontal displacement of the ith(i − 1th) floor; hi
is the story height between the ith and i − 1th floor. To achieve an earlier warning, the
IDR computation in Equation (6) uses a conservative calculation method, i.e., the secant
method [69] as shown in Figure 11.
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Figure 11. The secant method for calculating IDR.

The building-safety monitoring system with cost-effective MEMS accelerometers for
rapid after-earthquake assessment should be able to detect whether the building structure
remains in a safe state and release alarms immediately when the structural responses
exceed the predefined safety thresholds. This is essential to prevent fatalities and economic
loss. To describe the structural safety conditions and send out different levels of alarms,
proper safety criteria corresponding to different structural health states should be prede-
fined. The building safety conditions are divided into three levels according to the current
seismic codes, and the proposed MEMS-sensor-based approach can use the IDR index to
classify building safety conditions into elastic, elasto-plastic, or plastic deformation states.
The building safety level is assessed according to the calculated IDR and the threshold
values for IDR are listed in Table 2. Taking the building with the R.C. frame-shear wall
structure type in this paper as an example, if the IDR falls in the intervals IDR < 1/800 or
1/800 ≤ IDR < 1/100, it implies elastic deformation or elasto-plastic deformation occurs,
followed by an “immediate occupancy” or “occupancy after repair” contingency measure.
If the IDR ≥ 1/100, it implies severe damage occurs and “collapse prevention” should be
taken. The 1/800 and 1/100 are the alarm thresholds of IDR adopted in this study, which
are in accordance with the Chinese code GB50011-2010 for Seismic Design of Buildings
and the Chinese code JGJ3-2010 Technical Specification for Concrete Structures of Tall
Building [67,68,70].

Table 2. Three safety levels of a building with different structural types.

Key Parameter Structural Type
Building Safety Level

Level 1 Level 2 Level 3

IDR limitation

Med-high rise steel
building IDR < 1/300 1/300 ≤ IDR < 1/50 IDR ≥ 1/50

R.C. frame IDR < 1/550 1/550 ≤ IDR < 1/50 IDR ≥ 1/50

R.C. frame-shear wall,
slab-column-shear wall,

frame-tube
IDR < 1/800 1/800 ≤ IDR < 1/100 IDR ≥ 1/100

R.C. shear wall, tube-tube IDR < 1/1000 1/1000 ≤ IDR < 1/120 IDR ≥ 1/120

Structure performance - Elastic deformation Elasto-plastic
deformation Severe damage

Contingency measure - Immediate
occupancy

Occupancy after
repair

Collapse
prevention
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3.4. Procedure of Rapid After-Earthquake Assessment

The flowchart of the proposed rapid after-earthquake building safety assessment
scheme based on the use of cost-effective MEMS accelerometers is shown in Figure 12. It
includes the following steps:

Figure 12. Flowchart of the proposed rapid after-earthquake building safety assessment method.

Step1: Collect the dynamic acceleration responses by using the cost-effective MEMS
accelerometers installed in the selected building.

Step2: Check if the missing data problem happens to the measured acceleration
responses and reconstruct the missing data by using the fast reconstruction approach
(Equations (1) and (2)).

Step3: Assess the maximum displacement of the building top using a radar map after
the frequency-domain integral of acceleration and trigger the alarm once the maximum
displacement exceeds the predefined threshold.

Step4: Assess the maximum IDR for all floors equipped with MEMS accelerometers
and trigger the alarm once the maximum IDR exceeds the predefined threshold.

Step5: Repeat Step 1 to Step 4 for continuous building-safety monitoring and condition
assessment.

4. Validation of Building Safety Assessment Method

The rapid after-earthquake assessment method was carried out after the implementa-
tion of the proposed SHM monitoring system in Figure 10. The building-safety monitoring
system detected several seismic events of different magnitudes. Dynamic seismic responses
were successfully captured by the proposed cost-effective structural health-monitoring
system equipped with the adopted MEMS sensors during seismic events. One of the typical
events is the 2019 Tangshan earthquake with a magnitude of 4.5, the hypocenter of which
was located at 10 km in depth, 39.3◦ in latitude and 118.04◦ in longitude, and 184.4 km
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away from the Changping Guangdian Mansion in Beijing city. The selected event has a
typical data-missing scenario for the validation of the building safety assessment scheme.
In this section, the fast tensor-completion algorithm was employed for missing data re-
construction of the three-dimensional monitoring responses. The displacement responses
were estimated by the fast integral of acceleration after missing data estimation. On this
basis, a rapid after-earthquake assessment of the building was performed by assessing the
maximum displacement of the top of the building and the maximum IDR profile of the
whole building.

4.1. Missing Data Reconstruction

Missing data occurred in the data acquisition process of the third and seventh floors
during the 2019 Tangshan earthquake (Mag. = 4.5). Specifically, the original monitoring
responses with missing data are displayed in Figure 13. There are six graphs in this figure.
The graphs in (a), (c), and (e) show the responses of the third floor, and those of the seventh
floor are depicted in the right-side column of Figure 13. In each graph, “DM” in the upper
and lower subplots of each graph represents the part with missing data, and “DR” in
the lower subplot of each graph stands for the part with data artificially removed. The
target is to reconstruct the missing data, while the DR part is created for validating data
reconstruction performance by comparing the original response with the reconstructed
response. The absent data, including the missing and removed data, are to be subsequently
reconstructed.

To reconstruct the missing and removed data of the measured acceleration responses
in the third and seventh floors, the fast low-rank tensor completion method introduced
in Section 3.1 was employed. The measured acceleration responses of the ten floors are
placed into a three-layer tensor in which the first, second, and third layers are filled with
the acceleration data matrices along the X-, Y-, and Z-directions (West–East, South–North,
and vertical directions), respectively, to fully capitalize on the temporal-spatial information
and simultaneously estimate the triaxial absent data of the two floors. Figure 14 shows
the comparison between the original and reconstructed responses of the third floor, and
Figure 15 illustrates those of the seventh floor. The three graphs (a)–(c) in Figures 14 and 15
correspond to the triaxial acceleration responses along the X-, Y-, and Z-directions. In each
graph, there are three subplots, with the upper subplot showing the entire information
and the two lower subplots illustrating detailed information of Part I (the reconstruction
of DR part) and Part II (the reconstruction of DM part) in the upper subplot. For the
third floor, the upper subplots in Figure 14a–c show both the original measured data (blue
line) and the reconstruction data (orange line). The left-side lower subplot displays the
enlarged picture of a segment in Part I (the segment between 15 s and 26 s), and it is noted
that the reconstructed responses for the artificially removed data highly agree with the
original data. This proves the effectiveness of the missing data reconstruction method.
In the right-side lower subplot, both the reconstructed values of removed data in Part
I (the segment between 48 s and 50 s) and the reconstructed values of missing data in
Part II (the segment between 50 s and 59.5 s) are enlarged and displayed together. The
reconstructed responses in Part II also exhibit high consistency with the original measured
data. For the seventh floor, similar results can be drawn from the observation of Figure 15.
A good reconstruction performance is witnessed in both Figures 14 and 15, which illustrate
the original responses of two different floors with missing practical data and artificially
removed data and their reconstructed responses, and it is noted that the data imputation
performance in the case where the peak is missing is also exhibited. The missing peak
is obviously shown in Figure 13a and included in part of the artificially removed data.
Accordingly, it can be found in Figure 14a that the reconstructed response (orange line in
Part I) agrees well with the artificially removed data (blue line in Part I), demonstrating
good data reconstruction performance in the case where the region of missing data includes
the peak of the response.
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Figure 13. Responses with missing data (DM) and data artificially removed (DR). (a) X-axial vibration
of the third floor. (b) X-axial vibration of the seventh floor. (c) Y-axial vibration of the third floor.
(d) Y-axial vibration of the seventh floor. (e) Z-axial vibration of the third floor. (f) Z-axial vibration
of the seventh floor.
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Figure 14. Comparisons between original and reconstructed responses of the third floor. (a) X-axial
acceleration response of the third floor. (b) Y-axial acceleration response of the third floor. (c) Z-axial
acceleration response of the third floor.
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Figure 15. Comparisons between original and reconstructed responses of the seventh floor. (a) X-
axial acceleration response of the seventh floor. (b) Y-axial acceleration response of the seventh floor.
(c) Z-axial acceleration response of the seventh floor.



Sensors 2021, 21, 7327 20 of 29

4.2. Structural Safety Assessment

To conduct the rapid after-earthquake assessment of this building, the lateral dis-
placement responses were firstly obtained by calculating the integral of the acceleration
responses using Equation (4) after missing data reconstruction. As an example, Figure 16
shows the estimated X-axial and Y-axial velocities and displacements at the top of the
building subjected to the 2019 Tangshan earthquake.

Figure 16. The displacement obtained by the frequency-domain integral of acceleration responses.
(a) The X-axial velocity and displacement at the building top. (b) The Y-axial velocity and displace-
ment at the building top.

To intuitively observe the motion trail of the top of the building, a radar map was
used to illustrate the direction and amplitude of the tall building monitored. The radar
map can be drawn using both the X-axial and Y-axial displacements of the measurement
point as depicted in Figure 16. For the specific case study of the 2019 Tangshan earthquake,
the radar map for the motion trail of the building top is shown in Figure 17. Once the
maximum motion exceeds the safety threshold, the monitored building may suffer from
structural damage, and alarms should be triggered. For the 2019 Tangshan earthquake,
it can be found from Figure 17 that the maximum structural displacement occurs along
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the direction between 120 degrees and 150 degrees with an amplitude of 0.29 mm. The
motion-trail threshold for rough assessment was calculated using xlim = θlimH, where
θlim is the limit of IDR according to seismic design codes. The threshold for elastic IDR of
the R.C. frame-shear wall building in Table 2 is θlim = 1/800 and the height between the
top floor and the ground is H = 48m; thus, the maximum displacement threshold for the
motion trail of the top floor is 60 mm. The maximum displacement in the motion trail of
the building top is 0.29 mm, which is much smaller than the displacement threshold 60 mm.
Therefore, the building is probably in a safe condition after the earthquake, according to
the rough assessment using a radar map and the displacement threshold. It should be
noted that this is a simple and easy approach for a rough and quick assessment, and it is
applicable to the situation in which there is only one MEMS sensor installed in the building
and the sensor is installed on the top of the building. Besides, if the number of sensors
is very limited but still more than one, this method can be used to roughly evaluate the
maximum displacement of the few floors equipped with the MEMS sensors after H is
changed to the height between the instrument floors and the ground.

Figure 17. Radar map at the top of the building under the ground excitation of 2019 Tangshan
earthquake.

After the above rough assessment, further assessment using the IDR was conducted
to confirm the building-safety condition. The IDR of the building structure subjected to
the 2019 Tangshan earthquake was calculated using Equation (6) and applied to evaluate
the safety condition of the building after the earthquake. For all the floors equipped
with MEMS sensors, the maximum IDR along the East–West direction and South–North
directions of the building were computed and are illustrated in Figure 18. It is noted
that the maximum values in the IDR curve for the East–West direction in Figure 18a are
−3.32× 10−5 and 3.46× 10−5, while those for the South–North direction in Figure 18b are
−1.97× 10−5 and 2.25× 10−5. All the maximum IDRs are below the minimal predefined
limit listed in Table 2, which indicates that the building-safety condition is satisfactory. As
confirmed by human inspection after the earthquake, these assessment results coincide
with the actual situation of the building.
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Figure 18. Maximum IDR under the ground excitations of 2019 Tangshan earthquake. (a) The X-axial
IDR. (b) The Y-axial IDR.

The main contribution of this paper is the proposal and application study of the rapid
after-earthquake assessment scheme for building-safety assessment using cost-effective
MEMS accelerometers. The proposed scheme systematically consists of fast missing data
reconstruction, fast displacement estimation based on the frequency-domain integral of the
acceleration response, and maximum displacement and maximum IDR-based assessment.
The fast missing data reconstruction method (FaLRTC) serves as one functional component
in the scheme to solve the missing data problem in the practical scenario. This study
examined its applicability to this problem using an in-service building subjected to real
earthquakes and demonstrated its effectiveness by reconstructing artificially removed data
and missing practical data. On this basis, the maximum displacement and maximum IDR
profile were then obtained and successfully applied to the building safety assessment.

5. Discussion

A numerical study was conducted using a 2D cantilever steel beam model to further
discuss the accuracy and convergency rate of the missing data reconstruction method
and demonstrate the relationship between the proposed IDR index and the structural
damage of a building. As shown in Figure 19, the finite element model of the cantilever
beam consists of 21 nodes and 20 equal-length beam elements. The structural damping is
assumed to be Rayleigh damping with the first two damping ratios ξ1 = 0.01 and ξ2 = 0.01.
The Young’s elastic modulus and density are, respectively, 210 GPa and 7850 kg/m3. The
cantilever beam model is subjected to ground excitation in the x-direction. The scaled
seismic wave of the 1985 Michoacán Earthquake was employed as the ground excitation for
the numerical study. Considering the moderate earthquake design criterion in the Chinese
Seismic Design Code [67], the peak ground acceleration (PGA) of the ground excitation
was scaled to 0.025 g (0.25 m/s2) and the scaled seismic excitation is shown in Figure 20.
Eleven accelerometers were evenly installed on the beam model to measure the x-direction
structural acceleration responses under seismic excitation.
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Figure 19. The finite element model of a 2D cantilever beam structure.

Figure 20. The scaled seismic wave of the 1985 Michoacán Earthquake (PGA = 0.025 g).

The missing data reconstruction performance was assessed in two cases. In the first
case, the beam structure was in intact state (intact scenario), and in the second case, it was
assumed that beam elements 1, 2, and 3 have an 80% stiffness reduction (damaged scenario).
In both cases, a data segment of the acceleration response at Node 21 was removed and
the data reconstruction method described in Section 3.1 was used to estimate the removed
data. The data reconstruction performance in the intact and damaged scenarios are shown
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in Figures 21 and 22, respectively. For the intact scenario, the response with the removed
segment (blue line) and the response after reconstructing the removed data (orange line) are
depicted in the upper subplot of Figure 21. The comparison between the original segment
and the reconstructed segment is illustrated in the left-side lower subplot of Figure 21.
The reconstruction error calculated by e = ‖χ− T0‖/‖T0‖ × 100% is 3.7%, in which T0 is
the tensor of the eleven original responses and χ is the tensor of the responses with the
reconstructed segment. The convergence curve calculated by r = ‖χk+1 − χk‖/‖T‖× 100%
is displayed in the right-side lower subplot of Figure 21, in which k represents the iteration
number and T is the tensor of responses with the data removed. Fast convergency of the
data imputation algorithm is witnessed in this subplot. Similarly, good agreement between
the removed data and the reconstructed data in the damaged scenario is also observed in
Figure 22. In this scenario, the reconstruction error is 2.9% and fast convergency is also
found in the right-side subplot of Figure 22.

Figure 21. Data reconstruction performance in the intact scenario of the beam structure.

Figure 22. Data reconstruction performance in the damaged scenario of the beam structure.

After missing data reconstruction, a structural safety level assessment using the IDR
index in Equation (6) and thresholds in Table 2 was conducted for the cantilever beam
model. In this numerical study, three different scenarios representing intact, moderate-,
and severe-damage states are created by producing a 0%, 80%, or 95% stiffness reduction in
the first three elements close to the fixed end suffering from a higher stress concentration.
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The IDRs of the cantilever beam structure subjected to the scaled seismic wave of the
1985 Michoacán Earthquake in the three scenarios were calculated and are depicted in
Figure 23. Under the same seismic excitation, the three maximum IDR profiles (the blue,
orange, and yellow curves) are obtained when the beam model has a 0%, 80%, or 95%
stiffness reduction in the first three elements. It can be found that the three curves fall into
the three different categories according to the thresholds for a steel building structure in
Table 2. In the first scenario, the maximum value of the x-direction IDR curve is 0.0016,
which is smaller than the threshold (IDR < 1/300) for building safety level 1 and indicates
that the structure is in a safe condition. For the second scenario, the maximum value of
the x-direction IDR curve is 0.0067, which lies in the range of building safety level 2 with
1/300 ≤ IDR < 1/50 and implies that the structure encounters moderate damage. For the
third scenario, the maximum value in the x-direction IDR curve is 0.0268, which reaches
building safety level 3 with IDR > 1/50 and thus reveals that severe damage occurred to
the structure and collapse-prevention measures should be taken. Therefore, the proposed
method can identify the occurrence of structural damage, classify the structural conditions
into correct categories, and suggest contingency measures according to the identified safety
levels. Although the IDR index cannot identify damage locations or provide quantitative
damage extents for structural components, the proposed assessment method can realize
the global assessment of the entire building and efficiently classify the building conditions
into different safety levels even in missing data situations.

Figure 23. IDRs of the cantilever beam in three scenarios with different damage levels (ground
excitation PGA = 0.025 g).

6. Conclusions

An application study of cost-effective building-safety monitoring and rapid after-
earthquake assessment has been conducted with cost-effective MEMS accelerometers
deployed in an in-service building. The sensor parameter analysis revealed the MEMS
accelerometers’ low noise level and capability to acquire low-amplitude vibration in the
frequency band of interest, which demonstrated their suitability for building monitoring.
The adopted cost-effective MEMS accelerometers were installed in the selected building
and a cost-effective monitoring system was established. A rapid after-earthquake assess-
ment method was proposed, which consisted of fast missing data reconstruction, fast
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displacement estimation based on the frequency-domain integral of acceleration response,
and maximum displacement and maximum IDR-based assessment. The above three steps
formed the rapid assessment scheme that sets different alarm levels in accordance with the
safety-related thresholds defined in seismic design codes.

The performance of the assessment scheme was examined by a case study using
the in-situ monitoring seismic responses. When the missing data problem occurred for
different floors and different time segments in a seismic event, the proposed method
can accurately reconstruct the missing data including the missing peak. Thereafter, the
displacement responses were obtained by the frequency-domain integral of acceleration.
The rough assessment was conducted through a radar map and the displacement threshold,
and the three-level safety assessment was further performed via the maximum IDR. The
case study demonstrated that the cost-effective monitoring system and the proposed
assessment method were able to obtain the building displacement responses under seismic
events in a timely manner and provide rapid assessment results to support contingency
management. The significance of this study is to enhance the solid connection between
laboratory exploration and engineering application of MEMS-based cost-effective building
monitoring and rapid after-earthquake assessment.
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Symbols and Abbreviations

fd = the lower cut-off frequency
fu = the upper cut-off frequency
hi = the story heigh of the ith story
H(k) = the filter function
x(l) = the displacement vector
.
x(l) = the velocity vector
..
x(l) = the acceleration vector
..
X(k) = the Fourier transform of

..
x(l)

xlim = the threshold or limit of maximum displacement
θlim = the threshold or limit of inter-story drift ratio
θi = the inter-story drift ratio of the ith story
χ = n-mode tensor after missing data reconstruction
T = n-mode tensor with missing data
IDR = Inter-story Drift Ratio
MEMS = Micro-Electro Mechanical System
SHM = Structural Health Monitoring
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