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Abstract

Identifying enhancers regulating gene expression remains an important and challenging task. While recent sequencing-
based methods provide epigenomic characteristics that correlate well with enhancer activity, it remains onerous to
comprehensively identify all enhancers across development. Here we introduce a computational framework to identify
tissue-specific enhancers evolving under purifying selection. First, we incorporate high-confidence binding site predictions
with target gene functional enrichment analysis to identify transcription factors (TFs) likely functioning in a particular
context. We then search the genome for clusters of binding sites for these TFs, overcoming previous constraints associated
with biased manual curation of TFs or enhancers. Applying our method to the placenta, we find 33 known and implicate 17
novel TFs in placental function, and discover 2,216 putative placenta enhancers. Using luciferase reporter assays, 31/36
(86%) tested candidates drive activity in placental cells. Our predictions agree well with recent epigenomic data in human
and mouse, yet over half our loci, including 7/8 (87%) tested regions, are novel. Finally, we establish that our method is
generalizable by applying it to 5 additional tissues: heart, pancreas, blood vessel, bone marrow, and liver.
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Introduction

Transcriptional regulation in mammals is a highly orchestrated

process directed in part by the binding of sequence-specific

transcription factors (TFs) to genomic regulatory elements, such as

enhancers. Enhancers contain binding sites for sequence-specific

TFs that recognize particular DNA motifs. The combined input of

the multiple TFs that bind to a single enhancer region results in

tissue- and time-point- specific gene activation [1]. Identification

of active enhancers, particularly those enhancers that are most

relevant to a developmental process, is a challenging task that is

the subject of intense investigation.

The ENCODE project and Roadmap Epigenomics project

have recently provided DNase I hypersensitive sites (DHSs), which

can mark enhancers, promoters, silencers, insulators, and locus

control regions in many human cell and tissue samples [2,3].

Additionally, the mouse ENCODE project has provided ChIP-Seq

data for enhancer-associated chromatin marks in multiple mouse

tissues and cell types [4]. While highly valuable, these data provide

only indirect evidence of cis-regulatory activity. Chromatin must

be open for most trans-factors to bind, but not all open chromatin

must be active. Other epigenomic marks are highly correlated with

characterized cis-regulatory elements, but they are not confined to

demarcate only these elements, nor do they mark all of them.

Computational analysis can provide valuable complementary

information: it can predict the identity of the trans-factors binding

to putative cis-regulatory elements, it can highlight enhancers

under active purifying selection, and it can be used to provide

enhancer predictions in spatio-temporal contexts that have yet to

be assayed.

Many computational screens have been carried out in an

attempt to identify enhancers that are active in a particular tissue

[5,6]. Previous computational methods often rely heavily on

manual curation of TFs that are known to have a role in a

particular tissue, or manual curation of lists of known active

enhancers [5]. Known enhancers can be used to build a training

set that will allow the identification of patterns that are enriched in

the training set compared to a background set. Any region across

the genome with the same (binding site) patterns are putative

enhancers in the tissue from which the training set was built [5].

Because these methods rely on manual curation of data sets, they

either do not allow discovery of TFs that are important for a

process but have not yet been characterized, or are often limited

by the enhancer regions they were trained on.

Here, we introduce an integrated computational framework to

identify enhancers in a specific tissue by searching for clusters of

TF binding sites (TFBS) with a related function. Our framework

first uses a recently published approach to predict high-confidence
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binding sites across the genome [7]. Then, each TF is associated

with biological functions by taking the set of predictions and

analyzing them with GREAT, a functional enrichment analysis

tool that assigns biological meaning to a set of putative cis-

regulatory genomic regions [8]. We use this approach to first

identify TFs with functions related to a particular tissue, which

solves the constraint of manual literature curation of TFs and

allows identification of TFs with previously uncharacterized roles

in the tissue. Because transcription factors generally work in

concert through discrete enhancer modules [1], we then search for

clusters of binding site predictions for TFs with a related function.

These clusters of binding site predictions represent putative

enhancers in the tissue of interest.

We applied the above method to discover active enhancers in the

mammalian placenta, a tissue that is understudied despite its critical

role in human development. Placenta development is a complex,

step-wise process, where spatio-temporal control of gene expression

must be tightly regulated to ensure proper embryonic and fetal

growth [9]. In early stages of gestation, trophoblast cells that

surround the developing embryo are directly involved in implan-

tation by attaching the blastocyst to the uterine epithelium [9]. As

the placenta continues to develop, it contributes to establishing

blood flow between mother and fetus, transporting nutrients, and

eliminating waste products [9,10]. Therefore, distinct genetic

programs are activated at various times and locations throughout

placenta development. Defects in placenta development have also

been associated with human disorders such as preeclampsia, and

while many SNPs have been identified in association with

preeclampsia [11], the function of these SNPs remains unknown.

Our screen identified 2,216 putative placenta enhancers, or

TFBS clusters. Of these putative enhancers, 36 were tested using

luciferase reporter assays in two placental cell types: mouse

trophoblast stem cells (TSCs), and mouse trophoblast giant cells

(TGCs) differentiated in culture from TSCs. We also tested the

candidates in a primary non-placental cell type as a negative

control. We found that 31 (86%) of the candidates were able to

drive activity in at least one of TSCs and TGCs, the bulk of which

had significantly higher activity in trophoblast cells compared to

the other cell type. These results show that our method is able to

accurately predict evolutionarily conserved placenta enhancers,

which likely function in the development of the human placenta.

Because our approach is fully integrated with existing gene

ontology databases, we demonstrate it can be easily adapted to

well-annotated tissue types by running it on 5 additional tissues.

Results

Identification of TFs associated with placenta
development

We have previously shown that we can predict TFBS with high

accuracy across the genome using an excess conservation metric

[7] (Figure 1A). This metric, which improves state of the art TFBS

predictions, measures the likelihood for a binding site to be

conserved to the observed phylogenetic depth in a particular

region of the genome, and favors binding sites that are conserved

more strongly than the surrounding sequence [7]. We have also

shown that binding site predictions for each TF can be analyzed

using a functional enrichment analysis tool, GREAT (the Genomic

Regions Enrichment of Annotations Tool) [8], to predict functions

for the TFs [7]. GREAT contains terms, or lists of genes that have

functional commonalities (e.g. placenta development). Given a

particular term, GREAT computes the fraction of the genome

covered by the regulatory domains of the genes in the list, and the

number of binding site predictions hitting these regulatory

domains. These data can be used to calculate a p-value for each

term using the binomial test, thereby providing a statistic for the

enrichment of TFBS near genes annotated for the particular term.

Here we focus the above approach on a particular tissue, the

placenta, and search for TFs (motifs) most associated with specific

GREAT terms related to the placenta, such as ‘‘abnormal

placenta morphology’’, ‘‘placenta development’’, and ‘‘abnormal

placenta labyrinth morphology’’ (see Materials and Methods). We

used 917 non-redundant motifs curated from UniPROBE [12],

JASPAR [13], and TRANSFAC [14], and used the excess

conservation metric to identify high confidence matches to each

of the motifs genome-wide, that are conserved in mouse and

human. By requiring conservation of predictions between mouse

and human, we focus on similarities between the species, which

aids the study of human development by use of a mouse model.

We then obtained functional enrichments for each of the TFs by

analyzing the top 10,000 predictions for each motif using GREAT,

which allowed identification of the TFs that have the most

enrichment for placenta terms (Figure 1A). We next collapsed

similar binding motifs (see Materials and Methods), such that each

distinct motif was assigned both a q-value (corrected p-value),

based on the placenta term that was most enriched, and a most

likely TF, based on placenta gene annotations. The 50 TFs with

the most significant q-value for a placenta term are shown in

Figure 1B.

Assessment of TFs with known and predicted roles in
placenta development

To assess the quality of the 50 TFs predicted to be important for

placenta development, we first used an automated method to

determine which TFs in the entire ranked list have known roles in

placenta development. We predict a TF is involved in placenta

development if it has multiple binding sites near genes involved in

placenta development, and our prediction can be confirmed when

the TF itself is already associated with a placenta term (Figure 1A).

To obtain a list of TFs annotated for placenta function, we

combined gene lists from two placenta terms in GREAT (see

Materials and Methods). We found that a significant number

(p = 0.013) of TFs in the top 50 appeared in the known placenta

gene list (Supplementary Figure S1). We further assessed the

ranked list by manually annotating the top 50 TFs. While gene

ontologies can be used to identify many genes associated with a

process, they may not identify all genes associated with a process.

We classified each TF as either previously known to have a role in

placenta function, based on the literature, or predicted to have a

Author Summary

Enhancers are distal gene regulatory elements that can
activate tissue- and time-point specific gene expression.
Identification of active enhancers is challenging, and is the
subject of intense investigation. We developed an auto-
mated computational framework to predict transcription
factors (TFs) and enhancers that target a tissue of interest
by combining two growing resources: TF binding motifs
and target gene function annotations. We applied our
framework to the placenta, and confirmed our enhancer
predictions are more active in placental cell types than
others. To demonstrate generalizability, we applied our
approach to 5 additional tissues. The combination of
experimental sampling with computational prediction
approaches will aid in the identification of those enhancers
that are most likely active in a particular tissue, as well as
the characterization of groups of TFs associated with these
enhancers.

Enhancer Discovery from Motifs & Gene Annotations
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Figure 1. Prediction of transcription factors likely to have a role in placenta development. (A) For a library of 917 motifs, genome-wide
binding site predictions were generated using the excess conservation method [7]. The top 10,000 predictions for each motif were analyzed using

Enhancer Discovery from Motifs & Gene Annotations
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role in placenta function, based on our current approach

(Figure 1B, Supplementary Table S1). We determined that 33

(66%) of the top 50 TFs have a known role in the placenta. At the

top of our prediction list is Rbpj, for which knockout mice show a

number of abnormalities, including defects in placenta develop-

ment [15]. Other well-known TFs in the top 50 that have

knockout mice showing placental defects include Ets2, Junb, Ascl2,

and Foxo1 [16–20].

Interestingly, 17 (34%) of the top 50 TFs do not currently have a

well-characterized role in placenta development. We determined

the expression levels of the predicted TFs, using published human

RNA-Seq data in three placental components: amnion, chorion,

and decidua [21], as well as published mouse RNA-Seq data in

TSCs [22]. Fifteen out of the seventeen predicted TFs (88%) are

highly expressed in at least one of the four placental cell types

(Supplementary Table S2), which is significant (p = 561023) when

compared to the number of TFs highly expressed when TFs are

chosen randomly from all TFs with expression values (1,000

simulations), providing further evidence for their role in placenta

development.

Identification of potential placenta enhancers
To identify placenta enhancers, we developed an algorithm to

discern clusters of binding sites using predictions from the top 50

TFs annotated with a placenta function. The algorithm first uses

spatial hierarchical clustering based on distance between predicted

TFBS, and then segments the cluster hierarchy based on cluster

score (see Materials and Methods). The clustering process groups

the initial set of 485,038 binding site predictions (,10,000 per TF

in top 50) to 255,209 regions (average length 76 bp, maximum

544 bp) with 1 or more binding site prediction from the top 50

TFs. The 255,209 regions had a low fold enrichment for placenta

terms, as determined through GREAT. The fold enrichment

reported by GREAT measures the number of regions associated

with a term compared to the expected region hits, given the size of

the input set and the fraction of the genome covered by the term.

Because functional enhancers often harbor binding sites for

multiple TFs [1], we enriched for regions that are likely to

function as placenta enhancers by keeping only those regions with

5 or more non-overlapping binding site predictions for one or

more of the top 50 TFs, giving 3,014 potential placenta enhancers

that had an average size of 279 bp. This filtering step increased the

fold enrichment for multiple placenta terms well beyond the

default GREAT two fold significance threshold (Figure 2A).

We further quantified the enrichment obtained by choosing

regions with $5 TFBS. We show that when randomly choosing

3,014 regions from the set of 255,209 clusters that contain one or

more binding site predictions, the observed q-value (when regions

with $5 TFBS are chosen) of 3.99610224 for the ‘‘placenta

development’’ term is highly significant (log10 of Z-score = 19.08),

as the best q-value observed in 1,000 simulations was 3.8561029

(Figure 2B).

We also conducted a sensitivity analysis to determine the effect

of varying the thresholds we used in this process. We wanted to

choose a threshold that would result in a large number of TFBS

clusters (.1,000) and a high GREAT fold enrichment for a

representative GREAT term (.3). First, we determined the effect

on the GREAT fold enrichment for placenta terms when, instead

of clustering predictions from the top 50 TFs, we clustered

predictions from the top 25, 75, or 100 TFs. As shown in

Supplementary Figure S2, using the top 50 TFs provides both the

best fold enrichment and best balance between quantity and

purity. We next varied the number of non-overlapping TFBS used

to identify placenta TFBS clusters from at least 3 non-overlapping

placenta TFBS to at least 7 non-overlapping placenta TFBS.

Requiring at least 6 non-overlapping placenta TFBS slightly

increases the fold enrichment, but provides less than 1,000

predictions, while dropping the threshold to at least 4 non-

overlapping placenta TFBS lowers the fold enrichment to below 3

(Supplementary Figure S2). Finally, we tested the effect of

including non-placenta TFBS when counting non-overlapping

binding sites in a TFBS cluster to accommodate for both general

purpose and specific TFBS in the same enhancer. For example, for

each threshold of at least 4 non-overlapping TFBS to at least 7

non-overlapping TFBS in a region, we required that $3 of the

TFBS be from the placenta (top 50) TFs. As expected, we see that

reducing the number of TFBS that are required to be from

placenta TFs increases the number of TFBS clusters identified.

However, it also reduces the GREAT placenta term fold

enrichment (Supplementary Figure S2), indicating the TFBS

clusters identified are less likely to be involved in placenta

functions.

To further enrich for enhancers likely specific to placenta

development, we filtered regions that contain a high number of

non-placenta TFBS clusters. While these regions may be active

enhancers in the placenta, it is difficult to claim that they are

specific to the placenta based on TFBS composition alone, as the

number of non-placenta TFBS clusters in these regions is high. To

this end, we ran the binding site clustering approach using 50

random TFs that were unlikely to have a role in placenta

development (rank below 100 from the ordered list of TFs). We

carried out this process a total of 1,000 times to obtain a set of

background clusters with $5 non-overlapping TFBS. We then

determined the number of times each of the 3,014 putative

placenta enhancers overlapped a background cluster. Finally, we

removed from the putative placenta enhancer set those regions

that were identified in at least 5% of the background runs. This

process further enriched our set for placenta functions, increasing

the range of GREAT fold enrichments for placenta terms to 3.17–

4.56, and left us with our final set of 2,216 placenta TFBS clusters

(Figure 2A, Supplementary Table S3).

Because of the initial conservation criteria we used for binding

site predictions, each of the placenta TFBS clusters is conserved in

human. A roughly balanced 1.4% to 8.2% of the total predictions

we started with for each of the top 50 TFs before clustering ends

up in a placenta TFBS cluster; placenta TFBS clusters are

generally heterotypic, made up of binding site predictions for

multiple different TFs; and all of the top 50 TFs contribute to the

different clusters, irrespective of their motif information content, or

whether they are already known or not in placental contexts

(Supplementary Figure S3).

Functional validation of putative placenta enhancers
To functionally test the placenta TFBS clusters, we performed

enhancer reporter assays in a mouse placenta cell culture system.

This system allows one to maintain trophoblast stem cells (TSCs)

derived from early mouse development, which are the precursor

cells of the differentiated cells of the placenta [23]. TSCs can also

GREAT [8] and TFs were ranked by significance of association with a placenta term. The top 50 TFs were further analyzed to determine if their role in
placenta development has already been characterized. (B) The top 50 TFs most enriched for placenta terms, the TF DNA-binding domains, whether
the TF is known to have a role in placenta development and the corresponding placenta term q-values.
doi:10.1371/journal.pcbi.1003449.g001

Enhancer Discovery from Motifs & Gene Annotations
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be differentiated into trophoblast giant cells (TGCs), which are the

placental cell type that invade maternal tissue to help establish

maternal-fetal blood flow [23]. This cell culture system therefore

allows testing of enhancer elements using luciferase reporter assays

in two different placental cell types (Supplementary Figure S4).

Because TSCs often spontaneously differentiate into TGCs, we

ensured the purity of our transfected cell populations by using non-

overlapping transfection conditions that were optimized for each

cell type (see Materials and Methods), and by transfecting the

mouse placental lactogen II (mPL-II) enhancer as a control for

each set of TSC or TGC transfections. PL-II is known to be

specific to TGCs, and the enhancer region we tested has been

shown to be active in rat trophoblast giant cell-like cells [24].

Indeed, we found consistently high mPL-II enhancer activity in our

TGCs and little to no activity in our TSCs (Supplementary Figure

S4).

We tested 36 placenta TFBS clusters upstream of a minimal

promoter driving luciferase activity in TSCs and TGCs (Supple-

mentary Table S4). The candidates were selected to cover a range

of distances from gene transcription start sites (TSSs), to cover a

range of non-overlapping TFBS predictions, and to contain

different proportions of binding sites for known to predicted TFs.

Luciferase fold activity for all candidates was calculated compared

to an empty vector control. Of the 36 candidates, 31 (86%) showed

more than 2-fold activity in at least one of TSCs and TGCs, 26

(72%) showed more than 2-fold activity in TSCs, and 28 (78%)

showed more than 2-fold activity in TGCs (Supplementary Figure

S5). 19 of the 36 candidates consisted of more binding sites for TFs

we predicted to have a role in placenta development rather than

previously characterized placenta TFs. Of these 19 candidates, 16

(84%) had activity in at least one of TSCs and TGCs. Additionally,

there was no strong correlation between fold activity and

Figure 2. Identification of placenta TFBS clusters. (A) Three stages of data processing are used to identify placenta TFBS clusters. In stage 1, the
top 10,000 predictions for the top 50 TFs were compiled, and binding site predictions in close proximity were clustered. In the second stage, clusters
containing less than 5 non-overlapping binding sites were removed. In stage 3, regions that are rich in binding site predictions for TFs below rank 100
were removed. The filtering steps strongly enrich for placenta terms in GREAT, as shown by plotting the fold enrichment in each stage for six different
terms. (B) Null model showing that choosing clusters with $5 non-overlapping TFBS enriches for clusters in the regulatory domain of genes involved
in placenta development. Gray bars represent distribution of 2log10(q-value) for ‘‘placenta development’’ term when 3,014 (size-matched to stage 2
in (A)) clusters are selected randomly from stage 1 in (A). Arrow points to 2log10(q-value) when only clusters with $5 non-overlapping TFs are
selected.
doi:10.1371/journal.pcbi.1003449.g002

Enhancer Discovery from Motifs & Gene Annotations
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proportion of known placenta TFBS in either of the two cells types

for the candidates (TSC r2 = 0.19, TGC r2 = 0.17), further

implicating the predicted TFs in placenta development.

We then tested the specificity of the transfection system in

placental cells using 15 negative controls. Because our lab has

interest in the neocortex [25], we chose 6 negative controls that

are robust enhancers in neocortical cells (Supplementary Figure

S6). We also chose 9 negative controls within the same range of

GC content, length, and level of conservation to the placenta

TFBS cluster candidates. For both sets of negative controls, we

observed significantly lower activity in TSCs (unpaired t-test p-

value = 761023) and TGCs (unpaired t-test p-value #561023)

compared to the placenta TFBS cluster candidates, demonstrating

the robustness of the transfection system (Figure 3A–B, Supple-

mentary Figure S6).

Assessing tissue specificity of placenta TFBS clusters
To assess the specificity of the 36 placenta TFBS cluster

candidates tested in placental cell types, we also performed

luciferase reporter assays on neocortical cells isolated from e14.5

mice [25]. Of the 31 candidates that had more than 2-fold activity

in TSCs or TGCs, 22 (71%) had significantly higher (unpaired t-

test, p-value ,0.05) activity in TSCs or TGCs compared to

neocortical cells, including 12 candidates (39%) that were inactive

(,2-fold activity) in neocortical cells (Figure 3C–D and Supple-

mentary Figure S7). To ensure the difference we see is not due to

high basal activity of the promoter in placental cell types

compared to neocortex, we show that the basal activity of the

promoter is low in each cell type and should have no impact on

our results (Supplementary Figure S7). These data demonstrate

that our approach is able to identify placenta enhancers with high

accuracy, the bulk of which are more active in trophoblast cells

compared to neocortical cells.

To compare the predicted placenta TFBS clusters more globally

to putative enhancers in other tissues, we overlapped them with

epigenomic enhancer-associated marks in 18 other mouse tissues

and cell types [4]. Each cell type we compared to has, on average,

50,166 putative enhancers. We see that 793 (36%) of the placenta

TFBS clusters overlap with putative enhancers in zero other

tissues. 1,108 (50%) of the placenta TFBS clusters overlap with

putative enhancers in #2 other tissues, and only one placenta

TFBS cluster overlaps with putative enhancers in all other tissues

(Supplementary Figure S8). This comparison further suggests that

the placenta TFBS clusters are less likely to be active in many

other tissues.

Discovery of functional enhancers near genes involved in
placenta development

Our method has led to the identification of previously

uncharacterized enhancers in the regulatory domains of target

genes that play an important role in placenta development. For

example, Hand1 has been shown to be essential for placenta

development, as the knockout mice arrest by e7.5 and have

defective trophoblast giant cell differentiation [26]. Our analysis

reveals multiple putative enhancers in the regulatory domain of

Hand1, two of which are over 30 kb upstream of the transcrip-

tional start site and are conserved amongst placental mammals

Figure 3. Luciferase activity of placenta TFBS cluster candi-
dates. Box plots summarizing activity of placenta TFBS cluster
candidates and negative controls in TSCs (A) and TGCs (B). Significance
is calculated using the unpaired t-test. (C) Comparison of enhancer
activity relative to empty vector for the higher value between TSCs and
TGCs versus neocortical cells. In general, enhancers were much more
active in at least one of TSCs and TGCs. Colors correspond to groups in
(D). (D) Pie chart showing that the number of enhancers that had

significantly higher activity (unpaired t-test, p-value ,0.05) in placental
cell types versus neocortical cells was greater than the number of
enhancers in any other category. Candidates with $2-fold activity are
considered active, and those with ,2-fold activity are considered
inactive.
doi:10.1371/journal.pcbi.1003449.g003

Enhancer Discovery from Motifs & Gene Annotations

PLOS Computational Biology | www.ploscompbiol.org 6 January 2014 | Volume 10 | Issue 1 | e1003449



(Figure 4A). Our luciferase reporter assays show that both

candidates have significantly higher activity in the placental

cell types compared to neocortical cells (Supplementary Figure

S5). Another example is a putative enhancer ,13 kb upstream

of Dll4, a gene that is involved in the development of the

placenta vasculature (Figure 4B) [27,28]. This candidate was

also found to have significantly higher activity in placental cell

types than in neocortical cells (Supplementary Figure S5). In

total, 14 of the 36 candidates tested are found in the regulatory

domain of genes that are known to be involved in placenta

development. Both TSCs and TGCs showed no significant

difference in activity for candidates near target genes known to

be involved in placenta development compared to those that

have unknown functions in placenta (unpaired t-test, TSC p-

value = 0.27, TGC p-value = 0.32), suggesting that our method

can be used not only to predict TFs but also to predict target

genes that were not previously known to have a function in

placenta.

Because genes important in a particular context can be

regulated by multiple enhancers [25,29–32], we searched for

genes with the most predicted placenta TFBS clusters in their

regulatory domains. To carry out this analysis, we determined a q-

value (using GREAT) for all the genes in the genome based on the

likelihood associated with the observed number of placenta TFBS

clusters per gene, normalized to the length of the individual gene’s

regulatory domain. The ten genes with the most significant q-

values are shown in Supplementary Table S5. Of the top ten

genes, four of them, Pdgfb, Junb, Epha2, and Socs3 have previously

characterized roles in placenta development. Interestingly, Zbtb7b,

a TF we predict to have a role in placenta development based on

our approach, is also within the top ten, with five placenta TFBS

clusters within its regulatory domain.

Figure 4. Placenta TFBS clusters in the regulatory domain of genes with important roles in placenta development. Hand1 (A) and Dll4
(B) contain placenta TFBS clusters in their regulatory domains. Placenta TFBS clusters that were tested are shown in the lower panel of each figure
along with representative binding sites that were predicted over them. Binding sites for TFs that have a known role in placenta development are
shaded dark gray, whereas bindings sites for TFs that have a predicted role in placenta development are shaded in light gray.
doi:10.1371/journal.pcbi.1003449.g004

Enhancer Discovery from Motifs & Gene Annotations
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Comparison to mouse and human placenta data
We next sought to further compare our computational enhancer

predictions to published datasets that use biochemical assays to

predict enhancers genome-wide. The mouse ENCODE project

has recently generated ChIP-Seq data for enhancer-associated

chromatin marks in mouse term placenta [4], and the ENCODE

and Roadmap Epigenomics projects have generated DNase-Seq

data in human placenta tissue at 85–113 days gestation to assay for

open chromatin [2,3]. To enrich for enhancer-associated chro-

matin from the mouse ChIP-Seq data, we combined regions

marked by enhancer-associated marks H3K27ac and H3K4me1

that do not contain the promoter-associated mark H3K4me3. For

the human DNase-Seq set, we combined data from six biological

replicates (see Materials and Methods). Because we were interested

specifically in comparing enhancer-associated regions, we re-

moved regions within 1 kb of gene transcriptional start sites from

all three sets before comparison. This brought the number of:

placenta TFBS clusters to 1,847 (covering 0.02% of the genome),

mouse histone mark based data to 70,951 (covering 10.22% of the

genome), and human open chromatin data to 80,922 (covering

0.38% of the genome).

We first determined the enrichment for placenta terms using

GREAT for all three sets. As expected the placenta TFBS clusters

have the highest enrichment for several placenta terms, partly

because the process used to define them specifically enriches for a

subset of these terms. However, significance for the other two sets

was quite low, with most values between 1.7–1.9 fold enrichment,

below GREAT’s standard significance cut-off of 2-fold (Table 1).

These low values suggest that it might be more difficult to identify

functional placenta enhancers from these large sets.

Second, we wanted to determine if any of the placenta TFBS

clusters overlapped with the mouse or human enhancer-associated

regions. To compare mouse and human data, we first converted

human region coordinates to mouse coordinates (see Materials and

Methods). We found that 880 (48%) of the placenta TFBS clusters

overlapped with the mouse experimental set, and 390 (21%) of the

placenta TFBS clusters overlapped with the human experimental

set (Figure 5A–B). To determine if the overlaps we observed were

significant, we chose 1,847 (the set size of the placenta TFBS clusters

that are not within 1 kb of a TSS) size-matched random genomic

regions and checked the overlap with the mouse and human

experimental sets. We ran this process a total of 10,000 times. The

simulation demonstrates that the placenta TFBS clusters have very

significant overlap with both the mouse (p,1024, Z-score = 50.25)

and human (p,1024, Z-score = 77.71) experimental data

(Figure 5C–D). The simulation also demonstrates that while the

human experimental set has less overlap with the placenta TFBS

clusters, the Z-score for the overlap is more significant. The

difference in overlap and Z-score is likely due to the difference in

peak width between the datasets: the peaks in the mouse

experimental set are 3,000 bp wide whereas the peaks in the

human experimental set are, on average, 125 bp wide. To check

this, we padded each peak in the human experimental data set such

that the peak widths were 3,000 bp (with the full set now covering

9.26% of the genome). This increased the overlap with the placenta

TFBS clusters to 796 (43%), and brought the Z-score (53.61) closer

to the Z-score of the mouse experimental data set.

We next wanted to check that the placenta TFBS clusters that

do not overlap with the mouse and human experimental data are

likely to be involved in placenta development. We first identified

TFBS clusters that do not overlap with either the mouse or the

human experimental data. 831 (45%) of the placenta TFBS

clusters that are not within 1 kb of a TSS do not overlap with

either experimental dataset (Figure 5E). Additionally, of the

candidates that were tested for enhancer activity in TSCs and

TGCs, 8 are unique to the placenta TFBS clusters, and 7 of these

had more than 2-fold activity compared to the empty vector in at

least one of TSCs and TGCs. GREAT analysis of the 831

elements unique to placenta TFBS clusters shows they still have

strong enrichment for placenta functions; for example, ‘‘abnormal

trophoblast layer morphology’’ has a q-value of 2.4961028 and a

fold enrichment of 3.53 (Supplementary Table S6). We next

determined if the fraction of regions associated with a placenta

term in GREAT was higher for unique placenta TFBS clusters,

compared to regions that were only identified in the mouse

experimental set, or regions that were only identified in the human

experimental enhancer set. We found that the unique placenta

TFBS clusters have between 1.21-fold and 2.60-fold more regions

associated with placenta terms (Table 2). The GREAT terms are

somewhat incomplete, in that every gene involved in placenta

development has not been characterized. Nevertheless, this test

suggests that if choosing a candidate randomly from the sets that

are unique to each method, a candidate chosen from the placenta

TFBS clusters is more likely to function in the placenta.

Because our pipeline filters for regions of the genome that

contain an abnormally high number of non-placenta TFBS

clusters, we also compared our data to a filtered version of the

mouse experimental data, containing putative placenta-specific

enhancers. This set contains 4,326 regions (.1 kb from a gene

TSS) and was generated using a tissue-specificity index based on

H3K4me1 occupancy in the 18 tissue and cell types described

above [4]. GREAT analysis shows that while the putative

Table 1. GREAT enrichments for placenta TFBS clusters, mouse placenta epigenomic set, human placenta epigenomic set.

Ontology Term
Placenta TFBS clusters
fold enrichment

Mouse epigenomic
set fold enrichment

Human epigenomic
set fold enrichment

GO Biological Process embryonic placenta development 5.12 1.98 1.92

GO Biological Process placenta development 4.13 1.86 1.87

Disease ontology trophoblastic neoplasm 3.8 1.74 1.73

Mouse Phenotype Single KO abnormal trophoblast layer
morphology

3.79 2.01 1.93

Mouse Phenotype Single KO abnormal trophoblast giant cells 3.58 2.09 1.87

Mouse Phenotype Single KO abnormal placenta vasculature 3.46 1.83 1.71

GREAT fold enrichment for various placenta terms are shown for the three putative enhancer datasets. The placenta TFBS clusters have consistently higher fold
enrichment compared to the other datasets. Bold numbers are above the default fold enrichment cutoff for a term to be considered enriched in GREAT.
doi:10.1371/journal.pcbi.1003449.t001
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Figure 5. Overlap with large-scale experimental data. Overlap of placenta TFBS clusters with mouse placenta enhancer-associated ChIP-Seq
data (A) and human placenta DNase-Seq data (B). Placenta TFBS clusters had a significant overlap with both the mouse (C) and human (D)
experimental data. (E) Each dataset had a large proportion of regions that were not identified in the other two datasets. Over 800 placenta TFBS
clusters were not found in either the mouse or human experimental data. Counts for human data are after conversion to mouse mm9.
doi:10.1371/journal.pcbi.1003449.g005

Table 2. Fraction of unique placenta TFBS clusters associated with placenta terms compared to placenta experimental sets.

Ontology Term Placenta TFBS clusters : Mouse Placenta TFBS clusters : Human

GO Biological Process embryonic placenta development 1.68 1.95

GO Biological Process placenta development 1.54 1.67

Disease ontology trophoblastic neoplasm 2.59 2.60

Mouse Phenotype Single KO abnormal trophoblast layer morphology 1.92 2.29

Mouse Phenotype Single KO abnormal trophoblast giant cells 1.72 2.23

Mouse Phenotype Single KO abnormal placenta vasculature 1.21 1.53

For all terms, the fraction of unique placenta TFBS clusters (not found in the other two sets) found next to a placenta annotated target gene was higher than the fraction
of unique mouse/human experimentally annotated placenta enhancer sets associated with the same placenta term. First two columns show the term, the third column
shows the ratio of the fraction of unique placenta TFBS clusters to the fraction of unique mouse placenta experimental enhancers, and the fourth column shows the
ratio of the fraction of unique placenta TFBS clusters to the fraction of unique human placenta experimental enhancers.
doi:10.1371/journal.pcbi.1003449.t002
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placenta-specific enhancers from [4] are more enriched for

placenta terms than the full set of mouse experimental data, 5

out of 6 placenta terms have higher fold enrichment in GREAT

analysis of our placenta TFBS clusters (Supplementary Table S7).

There are only 12 regions shared between the placenta TFBS

clusters and mouse putative placenta-specific enhancers, and for

the same 5 out of 6 placenta terms, regions unique to the placenta

TFBS clusters have a higher fraction of regions associated with the

placenta terms (Supplementary Table S7).

Finally, we compared our data to recently published ChIP-Seq

data for enhancer marks and repressor marks in mouse TSCs [22].

One would hope that our placenta TFBS clusters have significant

overlap with enhancer mark ChIP-Seq data, and little overlap with

repressor mark ChIP-Seq data in this cell type, and this is indeed

the case. While 299 placenta TFBS clusters overlap with TSC

ChIP-Seq enhancer-associated peaks (enrichment p,1024, Z-

score = 21.93), only 1 placenta TFBS cluster overlaps with TSC

ChIP-Seq repressor associated peaks (H3K9me3: depletion p,

1024, Z-score = 8.09; H3K27me3: depletion p,1024, Z-

score = 4.13) (Supplementary Figure S9).

Together, these data show that while the large-scale experi-

mental data are valuable, they can be strengthened with

complementary computational analysis. The method we describe

provides a smaller, more focused set with additional candidates

that are near genes functioning in placenta development, and that

very likely drive activity in placental cell types.

Generalizing our method to other tissues
To demonstrate that our approach can be generalized, we

applied our method to identify TFs and TFBS clusters in five

additional tissues: heart, pancreas, blood vessel, bone marrow,

and liver. The top 50 motifs and all TFBS clusters for each tissue

are provided as Supplementary Tables S8, S9, S10, S11, S12. We

first examined whether TFs annotated by GREAT as contribut-

ing to tissue development are indeed enriched in our predicted

top 50 TFs per tissue (Supplementary Figure S10). The

enrichment is strong in four of five tissues (heart, blood vessel,

bone marrow and liver; all p,1023), but not in pancreas

(p = 0.1). When we examine the top GREAT enrichment for the

TFBS clusters for each tissue we obtain a similar picture: clusters

for the same four tissues yield a top prediction that matches the

tissue identity (e.g. ‘‘abnormal ventricle myocardium morpholo-

gy’’ for heart), while the top term for pancreas is a mismatched

brain related term (Table 3).

Because our method identifies the most relevant TFs for a tissue

based on enrichment of the TFBS near target genes already

annotated to have a role in the tissue, we expected that our

approach would be most suitable for tissues with well-annotated

terms. If a GREAT term is not well annotated for a tissue, then it

is more difficult to determine if the binding site predictions for a

particular TF are enriched near genes involved in development of

the tissue, because the number of genes that are known to be

relevant for the tissue is low. Indeed, we see that the GREAT term

used to identify TFs involved in pancreas development is only

annotated with 75 target genes, compared to 340–1,047 genes

associated with terms used for the other tissues investigated

(Supplementary Table S13). These data confirm that our

approach works best when genes involved in the tissues or

processes are well annotated, likely because of increased ability to

predict the TFs that are the most relevant to the tissue.

Discussion

Here we describe a novel method to identify previously

uncharacterized TFs that may have a role in a tissue of interest,

as well as active enhancers particularly relevant to the tissue of

interest. The automated identification of TFs relevant to a tissue

overcomes limitations of current methods for computational

identification of enhancers.

We first used our method to implicate 50 TFs in placenta

development, 33 of which were confirmed to have roles in

placenta development in the literature. We predict that the 17

remaining TFs have a role in placenta development, and binding

sites for these TFs would not be included as input for previous

computational methods that rely heavily on manual curation of

TFs. There are multiple lines of evidence supporting our

prediction that the remaining 17 TFs have a role in placenta

development, both through our analysis and the literature. For

example, the highest ranking TF (4th) we predict to have a role in

placenta development is Zbtb7b. Zbtb7b knockout mice have defects

in the hematopoietic system, and defects in T-cell development

and differentiation [33]. Furthermore, intercrosses of mice with a

mutation in Zbtb7b produce small litters, whereas wild-type females

crossed with mutant males have normal litter sizes [33]. This

suggests impairment of female fertility in mutant mice, perhaps

due to defects in the decidua, the maternal component of the

placenta. ZBTB7B is also highly expressed in three components of

the human placenta, including the decidua (top quartile for

expression value) [21]; is highly expressed in mouse TSCs [22];

and has been shown to be up-regulated in placentas from

pregnancies that resulted in intrauterine growth restriction

(IUGR), or placentas from pregnancies that resulted in pre-

eclampsia and IUGR [34]. To further investigate and confirm the

importance of the TFs we predict to be involved in placenta

development, placenta-specific mouse misregulation models could

be generated [35,36].

Table 3. TFBS clusters for other tissues.

Tissue # TFBS clusters Most enriched term q-value Fold enrichment

Heart 2251 abnormal ventricle myocardium morphology 1.06E-24 3.43

Pancreas 1697 abnormal brain commissure morphology 1.88E-22 3.36

Blood Vessel 1674 abnormal dorsal aorta morphology 2.16E-22 4.04

Bone Marrow 1184 abnormal CD4-positive T cell physiology 2.05E-12 3.64

Liver 566 abnormal liver size 7.49E-11 3.31

We ran our pipeline on 5 additional tissues: heart, pancreas, blood vessel, bone marrow, and liver (Supplementary Tables S8, S9, S10, S11, S12), and show the top
enriched term for the MGI Phenotype Single KO ontology for each. Pancreas (in italics) is the only tissue for which the top term reported through GREAT was not
relevant to the tissue analyzed (see text).
doi:10.1371/journal.pcbi.1003449.t003
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We next used our method to identify placenta enhancers by

searching for regions of the genome containing clusters of five or

more non-overlapping placenta TFBS. We found that the set of

placenta TFBS clusters was highly enriched for placenta terms in

GREAT, and we generated a null model to ensure the enrichment

was due to choosing regions with $5 placenta TFBS. We

validated our approach using luciferase reporter assays for two

placental cell types: TSCs, and TGCs differentiated from TSCs.

31 (86%) of the candidates we tested were active in at least one of

TSCs and TGCs. It remains possible that the 5 (14%) that did not

show activity are active in a different placenta cell type. Of the 5

candidates that do not show activity in TSCs or TGCs, 4 (80%)

are annotated as biochemically active in the mouse or human

experimental placenta datasets [2–4]. Many of the candidates we

tested are in the regulatory domain of genes that are well studied

and have a known role in placenta development. The enhancers

we identify near these genes have not been characterized, and

could be important regulators of the placenta genes. We also show

that of the 19 placenta TFBS clusters we tested that consist of

more binding sites for TFs we predict to have a role in placenta

development, 16 (84%) are active in at least one of TSCs and

TGCs. These enhancers would not be identified in computational

screens that first identify relevant TFs based on manual curation

and then search for clusters of binding sites for only those TFs.

We also showed that we can add value to the experimental

assays used to generate large-scale data sets through the ENCODE

and Roadmap Epigenomics projects. These projects have provid-

ed tens of thousands of regions, consisting of enhancer-associated

chromatin marks and open chromatin that may be functional

during a specific time of placenta development. Our approach

allows focusing on regions that are likely more specific for placenta

functionality, and identifies many additional putative placenta

enhancers, unique to those identified in the experimental datasets.

The comparison between putative enhancers identified through

our computational approach and putative enhancers identified

through epigenomic approaches demonstrates that both approach-

es likely result in numerous false negatives. While our approach

identifies putative enhancers that are missed at specific time-points

assayed, we only capture a subset of the putative enhancers

identified through experimental approaches. Therefore, it is the

combination of computational and experimental approaches that

will allow us to more comprehensively understand the enhancers

that govern embryo development, through its many tissue and

time point combinations.

To show that our approach can be generalized, we applied it to

generate TFBS clusters in 5 other tissues. Of these tissues, 4

yielded a relevant top enrichment in GREAT. The tissue for

which TFBS clusters did not result in a relevant GREAT

enrichment was limited by the low number of genes annotated

for the relevant GREAT term. These results show that the

computational framework described can be easily adapted to other

tissues, developmental processes, or across different environmental

conditions for which functional annotations are available. This can

help overcome the burden associated with carrying out biochem-

ical assays on every tissue and experimental condition and will

become even more powerful as gene ontologies for various tissues

and processes continue to improve. Gene ontologies are also

becoming more specific, and terms in the ontologies more often

relate to a particular cell type of a tissue. Tissues are generally not

made up of homogenous cell populations, so as the more specific

terms become better annotated, our approach is expected to

provide enhancer sets for these different cell types.

Comparison of mouse and human placentas has shown that

gene expression patterns and pathways are often conserved

[37,38]. The conserved placenta TFBS clusters we identify are

likely functional in both species. Using a conservation metric

provides confidence in the functionality of the elements we

identify, as it has been shown that conserved binding sites are

more likely to lie within active enhancers [39,40]. Additionally,

our method of identifying commonalities between mouse and

human is beneficial as it allows us to learn about the human

condition by using insights from the mouse model.

Transcriptional regulation is a complex process, and identifica-

tion of enhancers that regulate each developmental process is a

challenging task. We have shown that the method we described

can be used to accurately predict enhancers in the placenta. This

method can be generalized to other tissues, and can complement

tissue and time-point restricted data coming from projects such as

ENCODE and the Epigenomics Roadmap, highlighting enhanc-

ers that have been under purifying selection through mammalian

evolution, and therefore are more likely to contribute to

phenotypic and disease susceptibility differences.

Materials and Methods

Transcription factor motif library curation
A transcription factor motif library was curated as described

previously [7], resulting in a non-redundant set of 917 motifs from

UniPROBE [12], JASPAR [13], and TransFac [14].

Binding site predictions
The excess conservation method used for binding site prediction

was described previously [7]. Binding site predictions for our motif

library were carried out in mouse mm9, ensuring that all

predictions were conserved in human hg18, using the PRISM

pipeline for binding site prediction and scoring with the following

parameters: binding site prediction threshold was 800, binding

sites were allowed to shift by 20 base pairs relative to the reference,

binding sites were required to have a minimum branch length of 2

substitutions per site, the binding site had to be present in at least 5

species, one of those species had to be human, and the p-value of

the observed motif score against motif shuffles in similarly

conserved windows had to be #0.05.

Identification of TFs functioning in placenta
The top 10,000 predictions, ranked by p-value, were obtained

for all 917 motifs. If a motif did not have 10,000 predictions

satisfying the prediction criteria, then the lower number of

predictions for that motif was used. If the motif had additional

predictions after the top 10,000 with the same score (ties) as the

last prediction included, they were also included for further

analysis. Each set of predictions was run through GREAT [8]

using default parameters and a binomial fold enrichment cutoff $

1.5. GREAT results were filtered for ‘‘placenta’’ and ‘‘tropho-

blast’’, using only GO Biological Process, MGI Phenotype, and

MGI Phenotype Single Knockout (KO) ontologies. The MGI

Phenotype Single KO ontology is a version of the MGI Phenotype

ontology that only includes single mutant gene to phenotype

associations. Each motif was assigned a q-value, based on the best

q-value for all placenta terms. Motifs were then sorted by these q-

values.

Clustering similar motifs
Similar Position Weight Matricies (PWMs) were grouped in

order to remove redundant binding site predictions as described

previously [41]. The similarity of two motifs was defined as the

maximum pairwise alignment score achieved when all alignments

of the two motifs were assessed by shifting the motifs relative to
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each other for both orientations of the motifs. The alignment score

was defined as the sum of column scores for all aligning columns

normalized by the geometric mean of the self-alignment of each

motif to itself. The column scoring function used was:

(1) Pr(Match) = fA1 * fA2+fC1* fC2+fG1* fG2+fT1* fT2

(2) matchScore = Pr(Match)2(1–Pr(Match))/3

The column score function attempts to capture the probability

that a specific column will select the same base and is then

penalized by the chance that it will not select the same base. A

similarity threshold of 0.85 was used.

Automated assessment of enrichment of known TFs
To generate a list of known placenta TFs using an automated

approach, we combined gene lists from GREAT for the most

general placenta terms, abnormal placenta morphology (GO

Biological Process ontology), and placenta development (Mouse

Phenotype Single KO ontology). This resulted in a list of 349

genes. We then associated PWMs with gene names to classify each

group of similar PWMs as ‘known’ or ‘unknown’ depending on

whether any single PWM in a group of similar motifs mapped to

the list of 349 genes. After each motif was classified using this

method, we determined whether a significant number of TFs in

the top 50 appeared in the known placenta gene list. We did so by

comparing the number of ‘known’ TFs in the top 50 to the

number of TFs that appear in the known placenta gene list when

50 random TFs (below rank 100) were chosen from the list, a total

of 1,000 times. We also calculated a Wilcoxon rank-sum p-value to

determine if known TFs were enriched toward the top of the list.

For each of the other tissues analyzed, we generated a list of known

TFs using the same approach, but with the following GREAT

terms: heart: heart development, abnormal heart development;

pancreas: pancreas development, abnormal pancreas develop-

ment; blood vessel: blood vessel development, abnormal blood

vessel morphology; bone marrow: abnormal bone marrow cell

morphology/development; liver: liver development, abnormal

liver size.

Predicted versus known placenta TFs
To more carefully determine if the top 50 TFs in our list were

known to be involved in placenta development, we searched the

literature. For a TF to be considered ‘known’ or ‘well-studied’ in

the placenta, the literature must show strong experimental

evidence, such as placenta abnormalities upon gene knockout, or

defects in trophoblast function upon gene knockout/knockdown/

overexpression in relevant placenta cell lines. TFs that have

structurally similar family members involved in placenta develop-

ment for which we do not have motifs were also considered

‘known’. Additionally, TFs with PWMs that closely resemble

PWMs that map to genes involved in placenta development, but

were just below the 0.85 grouping threshold, were considered

‘known’. For a TF to be considered ‘predicted’, single studies may

have implicated the TF in placenta development, but the

relationship has not been well characterized. Additionally, if the

only evidence for a TF’s involvement in placenta was gene

expression, the TF was considered ‘predicted’.

Identifying potential placenta enhancers (placenta TFBS
clusters)

To identify potential placenta enhancers, we used a hierarchical

clustering approach (UPGMA) over the genome to search for

binding site predictions in close proximity of each other for the 50

TFs described above. We first placed each binding site prediction

in its own TFBS cluster, mapped to its own centroid. We then

iteratively agglomerated the two TFBS clusters with the nearest

centroids. Each TFBS cluster was scored based on the number of

non-overlapping binding site predictions (TFBS that share #3 bp)

falling within it. To reward TFBS density, the scores for regions

longer than 250 bp were weighted by a penalty function: exp(2

0.5(regionLength2250)2/2502). TFBS clusters were ranked by score,

and then the ranked list was traversed, outputting only those TFBS

clusters that did not overlap a previously output TFBS cluster. We

discarded TFBS clusters that overlapped with exons.

Filtering GREAT results
GREAT analysis was performed using default GREAT filters

for significant terms: region-based fold enrichment $2 and false

discovery rate (FDR) q-value #0.05, with the additional require-

ment that at least 25 genes in the term were hit. Unless specifically

noted, GREAT results were filtered by fold enrichment.

TSC and TGC cell culture
TSCs (a kind gift from Dr. Emin Maltepe at UCSF) were

grown, differentiated, and passaged according to standard

protocols [42]. Passage 2 mouse embryonic fibroblasts (MEFs)

(Applied Stem Cell) were expanded and treated with Mytomycin

C as previously described [42], aliquoted and frozen to use as

feeder cells for TSCs. TSCs were split once a week at a 1:50

dilution onto a plate of fresh MEFs. For differentiation into

trophoblast giant cells (TGCs), a 1:10 dilution of confluent TSCs

was plated onto a 10 cm plate. Five days later, the differentiating

TSCs were split into a 24-well plate at a 1:8 dilution.

Cloning
Inserts were amplified from mouse genomic DNA (Clonetech

Laboratories, Inc.) using Phusion High Fidelity DNA Polymerase

(NEB, Inc.) and cloned into the 59 KpnI and 39 HindIII sites of

pGL4.23 (Promega, Corp.). A second reporter vector was

constructed, pGL4.23 LIC, by introducing a Ligation Indepen-

dent Cloning (LIC) linker into the 59KpnI and 39 HindIII sites of

pGL4.23. The LIC forward site was: 59-cGCTCTTCGGGATG-

GAGGGATATCCACCTTACCCGAAGAGCa-39 and the LIC

reverse site was: 59-agcttGCTCTTCGGGTAAGGTGGATATC-

CCTCCATCCCGAAGAGCggtac-39.

The genomic inserts were cloned into the pGL4.23 LIC vector

using an LIC method described previously [43]. All positive clones

were identified by colony PCR and sequenced. Primers used to

amplify genomic regions are listed in Supplementary Table S4.

TSC/TGC transfection assays
Transfections were done according to the Invitrogen

protocol for Lipofectamine LTX & Plus reagent. For TSCs, a

confluent 10 cm plate was split 1:4 into a 24 well plate. We

used a 1 mg:4 ml ratio of DNA to reagent, and transfected 1 mg

of reporter construct and 20 ng of pRL-TK vector (used as a

transfection efficiency control vector, Promega Corp.) per well.

Cells were lysed 24 hours post-transfection and frozen until

luciferase assays were performed. For TGCs, plates were

transfected 12 days after starting differentiation. We used a

1 mg:3 ml ratio of DNA to reagent, and transfected 750 ng

reporter construct and 15 ng of pRL-TK vector (used as a

control vector, Promega Corp.). Cells were lysed 48 hours post-

transfection and frozen until luciferase assays were performed.

Each candidate was tested in triplicate within a single plate

(technical replicates), and on at least 3 different days (biological

replicates).
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Neocortex nucleofection assays
Primary neocortical cells were prepared from e14.5 mice and

transfected with pGL4.23 or pGL4.23 LIC containing the

genomic regions and pRL-CMV (as a control vector) using the

Amaxa 96-well Shuttle Protocol for Primary Mammalian Neurons

(Lonza) [25]. We used 2.56105 cells, 100 ng plasmid DNA, and

60 ng pRL-CMV per nucleofection sample. Transfected cells were

resuspended in 120 ml supplemented PNBM media (Lonza) and

plated on a 96-well plate treated with Poly-D-Lysine. 40 ml of this

suspension were added to 160 ml PNBM per well. Cells were lysed

48 hours post-transfection and frozen until luciferase assays were

performed.

Luciferase assays
Luciferase assays were done using the DLR kit (Promega)

according to manufacturer’s instructions and read using a

Promega Glomax luminometer using the ‘‘Dual-Luciferase 2

injectors’’ program with a 50 ml injection volume for both LAR II

and Stop & Glo Reagent.

Mouse placenta data
Mouse placenta data from [4] was downloaded from the Ren

Lab website: http://chromosome.sdsc.edu/mouse/download.

html

We took the union of the regions in the placenta.enhancer.txt

file with the regions in the placenta.h3k27ac.peak.txt file, after

padding each given coordinate by 61500 bp, as recommended by

the Ren lab. We then removed regions within 1 kb of gene

transcriptional start sites, resulting in 70,951 peaks. Placenta-

specific regions were downloaded from the same website, and were

similarly padded by 61500 bp.

Mouse ChIP-Seq data from 18 tissues
Mouse tissue data from [4] was downloaded from the Ren Lab

website: http://chromosome.sdsc.edu/mouse/download.html

We downloaded enhancer files for 18 tissues and cell types, and

padded each given coordinate by 61500 bp before determining

the overlap with the placenta TFBS clusters. We analyzed the

following tissues and cell types: cortex, MEFs, bone marrow,

cerebellum, e14.5 liver, e14.5 brain, e14.5 heart, e14.5 limb, liver,

heart, intestine, kidney, spleen, lung, mESCs, olfactory bulb,

testes, and thymus.

Human placenta data
DNAse I hypersensitive sites in human placenta were provided

by the Stamatoyannopoulos lab [2,3]. Data from 6 samples were

provided, aged at 113 days gestation, 108 days gestation, 105 days

gestation, 91 days gestation, and two at 85 days gestation. Peaks

from samples below 100 days old were intersected and peaks from

replicates above 100 days old were intersected. The union of the

two sets was then taken and converted to mm9 coordinates using

UCSC’s liftover tool with default parameters. We then removed

regions within 1 kb of gene transcriptional start sites, resulting in

80,922 peaks.

TSC RNA-Seq and ChIP-Seq data
TSC data are from [22] and were downloaded from GEO.

RNA-Seq data were ranked according to average tag count

between biological replicates, normalized to the 39 UTR length for

reported genes. TSC H3K27ac and H3K4me1 data were

intersected to generate a TSC putative enhancer set. For each

set of peaks we used (H3K27ac, H3K4me1, H3K27me3,

H3K9me3), regions within 1 kb of gene TSS were removed.

Supporting Information

Figure S1 Enrichment of known placenta TFs. Gray

distribution shows the number of TFs that are annotated by

GREAT as being involved in placenta development when 50

random TFs (below rank 100; See Figure 1B) are chosen from the

ranked list a total of 1,000 times. Our chosen list of top 50 (black

arrow) has a p-value of 0.013. Overall, the ranked list is also

enriched for placenta TFs towards the top, as indicated by a

Wilcoxon rank-sum test.

(PDF)

Figure S2 Sensitivity analysis for thresholds used to
identify TFBS clusters. Each panel shows the GREAT fold

enrichment for a representative GREAT term versus the

number of TFBS clusters identified at various thresholds. In

the top panel, we vary the number of top TFs used to obtain

predictions for binding site clustering. In the middle panel,

using the top 50 TFs, we varied the minimal number of non-

overlapping placenta TFBS required to call a placenta TFBS

cluster. In the bottom panel, we allowed a mixed TFBS

threshold. The label above each point in the bottom panel

indicates the number of non-overlapping TFBS required, at

least 3 of which are from the top 50 TFs (placental TFs). In

each panel, the threshold that we chose, based on wanting to

maximize GREAT fold enrichment for placenta terms while

keeping the number of TFBS clusters identified relatively high,

is circled in red.

(PDF)

Figure S3 Details on TF composition of placenta TFBS
clusters. Top panel shows the % of the total predictions we started

with for each TF (before clustering) that end up in placenta TFBS

clusters. Middle panel (left) shows the total number of TFBS in each

cluster, and (right) the number of unique TF motifs (appearing once

or more) in each cluster. Bottom panel shows that predictions for

each of the top 50 TFs occurs frequently within the placenta TFBS

clusters, regardless of whether they have a known role or a predicted

role in placenta development. Predicted placenta TFs with the most

binding site predictions have high information content, indicating

predictions are not due to weak motif matches to the genome.

(PDF)

Figure S4 Differentiation of mouse trophoblast stem
cells into trophoblast giant cells. TSCs that were isolated

from early stages of mouse development were provided by Emin

Maltepe (UCSF). We show that we can differentiate the TSCs into

TGCs by removal of FGF4 and Heparin from the media (left),

using protocols described previously [23]. PL-II is known to be

specific to TGCs, and an enhancer region for the gene has been

shown to be active in rat trophoblast giant cell-like cells [24].

Therefore, we demonstrated the purity of our cell populations by

transfecting the corresponding mouse (mPL-II) enhancer region in

both of our cell types. We see activity is consistently high in our

TGCs, and low in our TSCs (right). Error bars represent the

standard deviation of the mean. Significance was calculated using

the unpaired t-test. We always used the mPL-II enhancer as a

control in TSC and TGC transfections.

(PDF)

Figure S5 Placenta TFBS clusters activity over empty
vector. Chart showing enhancer activity relative to empty vector

for all 36 candidates in TSCs, TGCs, and neocortical cells. Error

bars represent the standard deviation of the mean. The x-axis

shows predicted target genes of the placenta TFBS clusters that

were tested for enhancer activity.

(PDF)
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Figure S6 Activity over empty vector for negative con-
trols. Top panel shows negative controls that were length, GC, and

conservation matched to placenta TFBS clusters. Activity is shown for

TSCs and TGCs. Bottom panel shows enhancers that are active in

neocortical cells. Activity is shown for TSCs, TGCs, and neocortical

cells. Error bars represent the standard deviation of the mean.

(PDF)

Figure S7 Comparing activity of placenta TFBS clusters
in TSCs vs. neocortex and TGCs vs. neocortex. When

comparing activity of placenta TFBS clusters in TSCs (top panel)

and TGCs (middle panel) to neocortex, we see that TFBS clusters

generally have higher activity in placental cell types. Candidates

with $2-fold activity are considered active, and those with ,2-fold

activity are considered inactive. Very few candidates have higher

activity in neocortex. Basal promoter activity (bottom panel), as

measured by activity (luciferase/renilla activity) of the empty

vector, is low in each of the cell types tested.

(PDF)

Figure S8 Comparing placenta TFBS clusters to puta-
tive enhancers in 18 other tissues and cell types. We

obtained putative enhancer data from [4], where each tissue has

on average 50,166 putative enhancers. For each placenta TFBS

cluster we determined how many other tissues have overlapping

putative enhancers. 50% of placenta TFBS clusters overlap with

putative enhancers in #2 other tissues.

(PDF)

Figure S9 Overlap with mouse TSC ChIP-Seq data.
ChIP-Seq data from [22] were compared to the placenta TFBS

clusters. Significantly more TFBS clusters overlap with TSC

enhancer data compared to random regions of the genome (top

panel) whereas significantly less TFBS clusters overlap with TSC

repressor data compared to random regions of the genome (middle

and bottom panels).

(PDF)

Figure S10 Enrichment of top 50 TFs in 5 additional
tissues tested. For each panel, the gray distribution shows the

number of TFs that are annotated as being involved in

development of the tissue when 50 random TFs (below rank

100) are chosen from the ranked list for each tissue a total of 1,000

times. Arrow points to the number of TFs in the top 50 that are

annotated as being involved in development of the tissue, along

with matching p-value. Wilcoxon rank-sum p-value is also shown

at the bottom of each panel.

(PDF)

Table S1 Top 50 TFs. The motif name and most likely TF for

the top 50 motifs ranked by their association with a placenta term

is shown. Each TF is categorized as known to have a role in

placenta development, or predicted to have a role in placenta

development based on the PMIDs (PubMed Identifiers) provided.

(XLSX)

Table S2 Expression levels of predicted TFs. Human

expression data was obtained from [21] and ranked according to

Fragments Per Kilobase of transcript per Million mapped reads

(FPKM) values provided. TSC data was obtained from [22], and

ranked according to average tag count between biological replicates,

normalized to the 39 UTR length for reported genes. It was then

determined which quartile of expression each predicted TF was in,

where 1 is the top quartile and 4 is the bottom quartile. 15 out of 17

predicted TFs in Figure 1B were within the top two quartiles and

considered expressed in at least one of the 4 data sets.

(DOCX)

Table S3 Placenta TFBS clusters. For each of the final set of

2,216 placenta TFBS clusters, the chromosome, start coordinate,

end coordinate, and number of TFBS in each placenta TFBS

cluster are listed.

(XLSX)

Table S4 List of primers used in to clone candidate
regions. For each region that was tested, forward and reverse

primers, as well as the vector that was used are listed. Sequences

listed are for mm9.

(XLSX)

Table S5 Genes with the most significant number of
placenta TFBS clusters in their regulatory domains.
Genes are ranked by q-value, which indicates the likelihood

associated with the observed number of placenta TFBS clusters

per gene versus the length of the individual gene’s regulatory

domain. Genes in bold have well characterized roles in placenta

development. PMID: PubMed Identifier.

(DOCX)

Table S6 GREAT results for placenta TFBS clusters that
do not overlap experimentally annotated placenta
enhancers. Placenta TFBS clusters that do not overlap the

mouse or human experimentally annotated placenta enhancers are

still enriched for placenta functions in GREAT.

(DOCX)

Table S7 GREAT comparisons for placenta TFBS
clusters and putative placenta-specific enhancers from
mouse experimental data. GREAT fold enrichments for

various placenta terms are shown for the placenta TFBS clusters

(column 3) and mouse placenta-specific regions (column 4). The

placenta TFBS clusters have higher fold enrichment in 5 out of 6

terms. Column 5 shows that the fraction of unique placenta TFBS

clusters associated with a placenta term was higher for 5 out of 6

terms than the fraction of unique mouse placenta-specific regions

associated with the same placenta term.

(DOCX)

Table S8 Heart TFs and TFBS clusters. For each of the

final set of heart TFBS clusters, the chromosome, start coordinate,

end coordinate, and number of TFBS in each heart TFBS cluster

are listed. The top 50 motifs and TF names are also shown.

(XLSX)

Table S9 Pancreas TFs and TFBS clusters. For each of the

final set of pancreas TFBS clusters, the chromosome, start

coordinate, end coordinate, and number of TFBS in each

pancreas TFBS cluster are listed. The top 50 motifs and TF

names are also shown.

(XLSX)

Table S10 Blood vessel TFs and TFBS clusters. For each

of the final set of blood vessel TFBS clusters, the chromosome,

start coordinate, end coordinate, and number of TFBS in each

blood vessel TFBS cluster are listed. The top 50 motifs and TF

names are also shown.

(XLSX)

Table S11 Bone marrow TFs and TFBS clusters. For each

of the final set of bone marrow TFBS clusters, the chromosome,

start coordinate, end coordinate, and number of TFBS in each

bone marrow TFBS cluster are listed. The top 50 motifs and TF

names are also shown.

(XLSX)

Table S12 Liver TFs and TFBS clusters. For each of the

final set of liver TFBS clusters, the chromosome, start coordinate,

Enhancer Discovery from Motifs & Gene Annotations

PLOS Computational Biology | www.ploscompbiol.org 14 January 2014 | Volume 10 | Issue 1 | e1003449



end coordinate, and number of TFBS in each liver TFBS cluster

are listed. The top 50 motifs and TF names are also shown.

(XLSX)

Table S13 Gene counts associated with terms used to
identify TFs relevant for various tissues. The primary term

used to identify TF enrichment for each tissue is shown in column 2,

and column 3 shows the number of genes annotated with the term.

For bone barrow, blood vessel, placenta, and liver, the MGI Mouse

Phenotype ontology is shown, and for heart and pancreas the GO

Biological Process term is shown. The term used for pancreas has a

much lower gene count than other tissues investigated.

(DOCX)
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