Complete Plastid Genome Sequencing of Trochodendraceae Reveals a Significant Expansion of the Inverted Repeat and Suggests a Paleogene Divergence between the Two Extant Species

Yan-xia Sun^{1,2}, Michael J. Moore³, Ai-ping Meng¹, Pamela S. Soltis⁴, Douglas E. Soltis^{4,5}, Jian-qiang Li^{1*}, Heng-chang Wang^{1*}

1 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China, **2** University of Chinese Academy of Sciences, Beijing, China, **3** Department of Biology, Oberlin College, Oberlin, Ohio, United States of America, **4** Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America, **5** Department of Biology, University of Florida, Gainesville, Florida, United States of America

Abstract

The early-diverging eudicot order Trochodendrales contains only two monospecific genera, Tetracentron and Trochodendron. Although an extensive fossil record indicates that the clade is perhaps 100 million years old and was widespread throughout the Northern Hemisphere during the Paleogene and Neogene, the two extant genera are both narrowly distributed in eastern Asia. Recent phylogenetic analyses strongly support a clade of Trochodendrales, Buxales, and Gunneridae (core eudicots), but complete plastome analyses do not resolve the relationships among these groups with strong support. However, plastid phylogenomic analyses have not included data for Tetracentron. To better resolve basal eudicot relationships and to clarify when the two extant genera of Trochodendrales diverged, we sequenced the complete plastid genome of Tetracentron sinense using Illumina technology. The Tetracentron and Trochodendron plastomes possess the typical gene content and arrangement that characterize most angiosperm plastid genomes, but both genomes have the same unusual ~4 kb expansion of the inverted repeat region to include five genes (rpl22, rps3, rpl16, rpl14, and rps8) that are normally found in the large single-copy region. Maximum likelihood analyses of an 83-gene, 88 taxon angiosperm data set yield an identical tree topology as previous plastid-based trees, and moderately support the sister relationship between Buxaceae and Gunneridae. Molecular dating analyses suggest that Tetracentron and Trochodendron diverged between 44-30 million years ago, which is congruent with the fossil record of Trochodendrales and with previous estimates of the divergence time of these two taxa. We also characterize 154 simple sequence repeat loci from the Tetracentron sinense and Trochodendron aralioides plastomes that will be useful in future studies of population genetic structure for these relict species, both of which are of conservation concern.

Citation: Sun Y-x, Moore MJ, Meng A-p, Soltis PS, Soltis DE, et al. (2013) Complete Plastid Genome Sequencing of Trochodendraceae Reveals a Significant Expansion of the Inverted Repeat and Suggests a Paleogene Divergence between the Two Extant Species. PLoS ONE 8(4): e60429. doi:10.1371/journal.pone.0060429

Editor: Jonathan H. Badger, J. Craig Venter Institute, United States of America

Received December 15, 2012; Accepted February 26, 2013; Published April 5, 2013

Copyright: © 2013 Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by Knowledge Innovation Project of Chinese Academy of Sciences (KSCX2-EW-J-20), National Natural Science Foundation of China grant (31070191) and U.S. National Science Foundation grant (ER-0431266). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lijq@wbgcas.cn (JQL); hcwang@wbgcas.cn (HCW)

Introduction

The eudicot order Trochodendrales [1] contains only two extant genera, both of which are monotypic: *Trochodendron* Sieb. & Zucc. and *Tetracentron* Oliver. Historically, these two genera have been treated either as the separate families Trochodendraceae and Tetracentraceae, or as the combined family Trochodendraceae [1–7]. The Trochodendraceae *sensu* APG III [1] appear to have been widespread in the Northern Hemisphere during the Paleogene and Neogene [7–15]. However, the two extant species of the family have small geographic ranges and are restricted to eastern Asia [16]. *Trochodendron aralioides* Sieb. & Zucc. is a large, evergreen shrub or small tree native to the mountains of Japan to South Korea and Taiwan, and the Ryukyu Islands [2,17], whereas *Tetracentron sinense* Oliver is a deciduous tree occurring in southwestern and central China and the eastern Himalayan regions. Both species are characterized by apetalous flowers arranged in cymose inflorescences and by loculicidal capsules that dehisce to release winged seeds [2,5,7,18]. Although earlier researchers reported that wood of Trochodendrales wood lacked vessels and thus suggested that Trochodendrales were among the earliest-diverging angiosperms, recent research has documented the presence of vessels in the wood of both genera [2,7,19].

Molecular phylogenetic studies, including analyses of complete plastid genome sequences, have routinely recovered Trochodendrales as an early-diverging member of the clade *Eudicotyledoneae* (*sensu* [20]; all italicized clade names follow this system), specifically as part of a strongly supported clade with Buxales and *Gunneridae*, or core eudicots [21–27]. However, the relationships among Trochodendrales, Buxales, and *Gunneridae* have often been only weakly supported. In the 17-gene analysis of Soltis et al. [28], which included data from all three plant genomes, Trochodendrales and Buxales were subsequent sisters to *Gunneridae*, with 100% and 98% BS support, respectively. However, other studies have found Buxales to be sister to *Gunneridae* with only weak support [24,26,29–30], whereas in other analyses Trochodendrales have appeared as sister to *Gunneridae* [27,31–32].

Complete plastid genome sequences have been used increasingly over the past decade to resolve deep-level phylogenetic relationships that have been unclear based on only a few genes. For example, recent plastid phylogenomic studies have helped to resolve key relationships among the earliest-diverging *Mesangiospermae* [33] as well as early-diverging *Eudicotyledoneae* and *Pentapetalae* [26,34]. Indeed, the plastid genome represents an excellent source of characters for plant phylogenetics due to the generally strong conservation of plastid genome structure and its mix of sequence regions that vary tremendously in evolutionary rate [35–37], which enable plastid genome sequence data to be applied to phylogenetic problems at almost any taxonomic level in plants [26,38–43]. It is now relatively inexpensive to generate complete plastid genome sequence due to rapid improvements in next-generation sequencing (NGS) technologies [25,44–45] and due to the relatively small size of the plastid genome (~150 kb) and its structural conservation, which enable dozens of plastomes to be multiplexed per sequencing lane and facilitate relatively straightforward genome assembly [45–48].

Figure 1. Map of the *Tetracentron sinense* plastid genome. doi:10.1371/journal.pone.0060429.g001

Figure 2. Map of the *Trochodendron aralioides* plastid genome. doi:10.1371/journal.pone.0060429.g002

Despite the promise of NGS technology for plastid genomics, the complete plastomes of only eight genera of early-diverging eudicots have been reported: *Ranunculus* (Ranunculaceae, Ranunculales), *Megaleranthis* (Ranunculaceae, Ranunculales), *Nandina* (Berberidaceae, Ranunculales), *Nelumbo* (Nelumbonaceae, Proteales), *Platanus* (Platanaceae, Proteales), *Meliosma* (Sabiaceae, Sabiales), *Trochodendron* (Trochodendraceae, Trochodendrales) and *Buxus* (Buxaceae, Buxales). Previous phylogenetic analyses based on some of these complete genomes have not fully resolved the relationships among early-diverging eudicots, however; in addition to the uncertainty surrounding relationships of Buxales, Trochodendrales, and *Gunneridae*, the positions of Sabiales and Proteales remain poorly supported [26–27]. Plastome taxon sampling is still sparse in these clades, however, and additional sampling may help elucidate these recalcitrant relationships.

Figure 3. Comparison of the IR junctions in *Tetracentron* and *Trochodendron*. doi:10.1371/journal.pone.0060429.g003

In addition to their important role in phylogenetics, plastid genomes may be rich sources of population-level data. The nonrecombination and uniparental inheritance of most plastid genomes can make plastid genomes extremely useful for population genetics, particularly for tracing maternal lineages [49–50]. For example, chloroplast simple sequence repeats (cpSSR) have been widely used in plant population genetics [51], including within early-diverging eudicots, where numerous cpSSR loci have been reported from the plastid genome of the endangered species *Megaleranthis saniculifolia* (Ranunculaceae) [52].

Here we report the complete plastid genome sequences of *Tetracentron sinense* and *Trochodendron aralioides* (the protein-coding and rRNA genes of *Trochodendron* cp genome were used for phylogenetic analyses in Moore et al. [26], but the cp genome structure of this genus has never been reported), as well as the results of new phylogenetic analyses based on adding *Tetracentron* and *Megaleranthis* genomes [52] to the 83-gene data set of Moore et al. [26]. We also compare the plastid genome structure of *Trochodendron* and *Tetracentron*, including the characterization of a significant expansion of the inverted repeat in both taxa, and we estimate the divergence time between the two genera. Finally, we characterize the distribution and location of cpSSRs in both *Tetracentron sinense* and *Trochodendron aralioides*, which provided further opportunity to study the population genetic structures of these two ancient relict species.

Table 1. Basic characteristic of the *Tetracentron sinense* and

 Trochodendron aralioides plastid genomes.

	Tetracentron	Trochodendron
total genome length	164467	165945
IR length	30231	30744
SSC length	19539	18974
LSC length	84466	85483
total length of coding sequence	94699	95168
total length of noncoding sequence	69768	70777
overall G/C content	38.1%	38.0%

All values given are in base pairs (bp), unless otherwise noted. doi:10.1371/journal.pone.0060429.t001

Results

Sequencing and Genome Assembly

Illumina paired-end sequencing produced 892.11 Mb of data for *Tetracentron sinense*. We obtained 9912310 raw reads of 90 bp in length. The N50 of contigs was 13,981 bp and the summed length of contigs was 143,709 bp. The mean coverage of this genome was 5424.2×. After de novo and reference-guided assembly, we obtained a cp genome containing nine gaps. PCR and Sanger sequencing were used for filling the gaps. Four junction regions between IRs and SSC/LSC were first determined based on de novo contigs, and subsequently confirmed by PCR amplifications and Sanger sequencing, sequenced results were compared with the assembled genome directly and no mismatch or indel was observed, which validated the accuracy of our assembly. The genome sequences of *Tetracentron sinense* and *Trochodendron aralioides* have been submitted to GenBank (GenBank IDs: KC608752 and KC608753).

General Features of the *Tetracentron* and *Trochodendron* Plastomes

The plastid genome size of *Tetracentron sinense* is 164,467 base pairs (bp) (Figure 1), and that of *Trochodendron aralioides* is 165,945 bp (Figure 2). Both genomes show typical quadripartite structure, consisting of two copies of an inverted repeat (IR) separated by the large single-copy (LSC) and small single-copy

Table 2. The principal noncoding regions contributing to the size difference between the *Tetracentron* and *Trochodendron* plastid genomes.

Spacer region or intron names	Tetracentron	Trochodendron	length difference
trnK-UUU/rps16 spacer	870	1308	438
rps16/trnQ-UUG spacer	1529	1797	268
trnS-GCU/trnG-UCC spacer	505	658	153
trnE-UUC/trnT-GGU spacer	957	1316	359
trnT-UGU/trnL-UAA spacer	1199	1309	110
petA/psbJ spacer	1146	754	-392
ycf1/ndhF spacer	440	325	-115
*rpl16 intron	865	972	107

All sizes are in base pairs. The only locus residing in the IR is marked with an asterisk (*).

doi:10.1371/journal.pone.0060429.t002

Ldsq

.....

Figure 4. Amount of sequence divergence between the protein-coding genes of Tetracentron and Trochodendron. doi:10.1371/journal.pone.0060429.g004

Figure 5. Sequence identity plot between Trochodendron and Tetracentron. doi:10.1371/journal.pone.0060429.g005

Table 3. List of genes present in the plastid genomes of Tetracentron sinense and Trochodendron aralioides.

	Group of genes	Name of genes
Protein synthesis and DNA replication	Ribosomal RNAs	rrn4.5 (×2) rrn5 (×2) rrn16 (×2) rrn23 (×2)
	Transfer RNAs	trnH-GUG trnK-UUU* trnQ-UUG trnS-GCU trnG-UCC* trnR-UCU trnC-GCA trnD-GUC trnY-GUA trnE-UUC trnT-GGU trnS-UGA trnG-GCC trnfM-CAU trnS-GGA trnT-UGU trnL- UAA* trnF-GAA trnV-UAC* trnM-CAU trnW-CCA trnP-UGG trnI-GAU* (×2) trnL-CAA (×2) trnV- GAC (×2) trnI-GAU (×2) trnA-UGC* (×2) trnR-ACG (×2) trnN-GUU (×2) trnL-UAG
	small subunit	rps2 rps3 rps4 rps7 (×2) rps8 rps11 rps12* (×2) rps14 rps15 rps16* rps18 rps19
	Ribosomal proteins large subunit	rpl2* (×2) rpl14 rpl16* rpl20 rpl22 rpl23 (×2) rpl32 rpl33 rpl36
	RNA polymerase	rpoA rpoB rpoC1* rpoC2
Photosynthesis	Photosystem I	psaA psaB psaC psaI psaJ
	Photosystem II	psbA psbB psbC psbD psbE psbF psbH psbI psbJ psbK psbL psbM psbN psbT psbZ
	Cytochrome b6/f	petA petB* petD* petG petL petN
	ATP synthase	atpA atpB atpE atpF* atpH atpl
	NADH dehydrogenase	ndhA* ndhB*(\times 2) ndhC ndhD ndhE ndhF ndhG ndhH ndhI ndhJ ndhK
	Large subunit of Rubisco	rbcL
Miscellaneous proteins	Subunit of Acetyl-CoA-carboxylase	accD
	c-type cytochrome synthesis gene	ccsA
	Envelope membrane protein	cemA
	Protease	clpP*
	Translational initiation factor	infA
	Maturase	такК
Genes of unknown function	Hypothetical conserved coding frame	ycf1 ycf2(×2) ycf3* ycf4

Genes with introns are marked with asterisks (*).

doi:10.1371/journal.pone.0060429.t003

(SSC) regions (Table 1). The IR exhibits a significant expansion relative to most other angiosperms at the LSC/IR junction; specifically, the IR in both *Tetracentron* and *Trochodendron* has expanded to include the entirety of the *rps19*, *rpl22*, *rps3*, *rpl16*, *rpl14*, and *rps8* genes (Figures 1, 2). The SSC/IR boundary occurs within the *ycf1* gene, as is typical in angiosperms, but is slightly expanded in the *Trochodendron* genome to include 1461 bp of the 5' end of *ycf1* (versus 1083 bp in *Tetracentron*; Figure 3). This expansion of the IR at the SSC junction contributes to the difference in length between the two Trochodendrales plastomes; the remainder of the difference is largely the result of length differences among various noncoding regions (Table 2).

Both genomes contain 119 genes (79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes) arranged in the same order, of which 24 are duplicated in the IR regions (Table 3). Sequence divergence between Tetracentron and Trochodendron in coding regions is low (Table 4, Figures 4, 5). Only 7 genes (rps11, rpoA, rpl32, rps16, ndhF, ycf1, and rpl36) exhibit divergences of more than 2%, and 12 genes have an identical sequence (Table 4, Figure 4). The genes *ndhF*, *ycf1*, and *rpl36* have the highest sequence divergences (2.7%, 3.5% and 4.4%, respectively). The coding regions account for 57.5% and 57.3% of the Tetracentron and Trochodendron plastid genomes, respectively. For both cp genomes, single introns are present in 18 genes, whereas three genes (*rps12*, *clpP*, and *ycf3*) have two introns (Table 5). The overall genomic G/C nucleotide composition is 38.1% and 38.0% for Tetracentron and Trochodendron, respectively; detailed A/T contents of different regions of the plastome for both genomes are listed in Table 6. Due to the lower A/T content of the four rRNA genes, the IR regions possess lower A/T content than the single-copy regions.

Characterization of SSR Loci

In all, 154 SSR loci (77 each from *Tetracentron sinense* and *Trochodendron aralioides*) were detected in the two plastid genomes, of which 123 are mononucleotide repeats, 28 are dinucleotide repeats, two are trinucleotide repeats, and one is a tetranucleotide repeat (Table 7). Nearly all of the SSR loci are composed of A/T repeats (Table 7), and these SSR loci are mostly present in noncoding regions. The tetranucleotide locus identified in *Tetracentron* is in the first intron of *ycf3*. The two trinucleotide loci in *Trochodendron* are both located in the spacer region between *trnK-UUU* and *rps16*. The unique C mononucleotide repeat from *Trochodendron* is present in the *trnV-ndhC* intergenic spacer region.

Phylogenetic and Molecular Dating Analyses

ML analyses of the 83-gene, 88-taxon data set yielded a tree with a similar topology and bootstrap support (BS) values (Figure 6) as that of the plastid phylogenomic study of Moore et al. [26]. The clades of *Trochodendron+Tetracentron* and *Ranunculus+Megaleranthis* were supported with 100% ML BS support. Trochodendrales are sister to the remaining angiosperms with high support (BS = 100%), but Buxaceae are sister to Gunneridae with only 67% BS support.

Molecular dating analyses suggest that *Trochodendron* and *Tetracentron* diverged between 44-30 million ago. The crown group 95% highest posterior density (HPD) age estimates for other major lineages of *Pentapetalae* were as follows: *Superasteridae* (115-109 mya), Dilleniaceae+*Superrosidae* (116-112 mya), *Superosidae* (114-111 mya), Santalales (98-75 mya), *Caryophyllales* (76-60 mya), *Asteridae* (104-99 mya), *Rosidae* (111-108 mya), Vitaceae+Saxifra-gales (114-110 mya), and Saxifragales (109-107 mya).

Table 4. Comparisons of the protein-coding genes of *Tetracentron* and *Trochodendron*.

Gene	Length in Tetracentron	Length in Trochodendron	Number of nucleotide differences	Proportion of nucleotide differences	Number of indel differences
petL	102	102	0	0	0
psal	111	111	0	0	0
psaJ	129	129	0	0	0
psbE	252	252	0	0	0
psbF	120	120	0	0	0
psbJ	123	123	0	0	0
psbL	117	117	0	0	0
psbT	108	108	0	0	0
rpl23	288	288	0	0	0
rps19	279	279	0	0	0
rps7	468	468	0	0	0
rps8	399	399	0	0	0
rpl2	825	825	1	0.00121	0
rps3	657	657	1	0.00152	0
petD	504	504	1	0.00198	0
rpl16	501	501	1	0.00249	0
rpl14	369	369	1	0.00271	0
ycf2	6879	6897	19	0.00276	1
ndhB	1533	1533	5	0.00326	0
ycf3	507	507	2	0.00394	0
rpl33	201	201	1	0.00498	0
psbZ	189	189	1	0.00529	0
psaA	2253	2253	12	0.00533	0
psbK	186	186	1	0.00538	0
rps12	372	372	2	0.00538	0
psbA	1062	1062	6	0.00565	0
rpl20	354	354	2	0.00565	0
rpoC1	2049	2070	12	0.00586	1
atpA	1524	1524	9	0.00591	0
rpl22	486	480	3	0.00625	1
ndhJ	477	477	3	0.00629	0
psbD	1062	1062	7	0.00659	0
petA	963	963	7	0.00727	0
rpoB	3213	3213	24	0.00747	0
psbN	132	132	1	0.00758	0
psaB	2205	2205	17	0.00771	0
psbC	1422	1422	11	0.00774	0
atpH	246	246	2	0.00813	0
psaC	246	246	2	0.00813	0
ndhA	1095	1095	9	0.00822	0
rps4	606	606	5	0.00825	0
infA	234	234	2	0.00855	0
atpB	1497	1497	13	0.00868	0
cemA	690	690	6	0.0087	0
petG	114	114	1	0.00877	0
psbl	111	111	1	0.00901	0
rbcL	1428	1428	13	0.0091	0
petB	648	648	6	0.00926	0
atpl	744	744	7	0.00941	0

Table 4. Cont.

Gene	Length in Tetracentron	Length in Trochodendron	Number of nucleotide differences	Proportion of nucleotide differences	Number of indel differences
clpP	609	609	6	0.00985	0
rps14	303	303	3	0.0099	0
atpE	402	402	4	0.00995	0
ccsA	966	966	10	0.01035	0
psbB	1527	1527	16	0.01048	0
accD	1491	1491	16	0.01073	0
ndhK	822	858	9	0.01095	1
ndhC	363	363	4	0.01102	0
petN	90	90	1	0.01111	0
ndhG	531	531	6	0.0113	0
rpoC2	4137	4146	50	0.01209	1
ndhD	1503	1503	18	0.01264	0
rps2	711	711	9	0.01266	0
psbH	222	222	3	0.01351	0
ndhl	543	543	8	0.01473	0
atpF	555	555	9	0.01622	0
matK	1536	1536	25	0.01628	0
ndhE	306	303	5	0.0165	1
rps18	303	303	5	0.0165	0
ndhH	1182	1182	20	0.01692	0
ycf4	555	555	10	0.01805	0
rps15	273	273	5	0.01832	0
psbM	105	105	2	0.01905	0
rps11	417	417	9	0.02158	0
rpoA	1014	1014	24	0.02367	0
rpl32	162	162	4	0.02469	0
rps16	227	227	6	0.02622	0
ndhF	2223	2223	61	0.02744	0
ycf1	5688	5691	195	0.0345	6
rpl36	114	114	5	0.04386	0

Genes are ranked from lowest to highest proportion of nucleotide differences. doi:10.1371/journal.pone.0060429.t004

Discussion

Expansion of the IR Region in Trochodendrales Plastomes

The plastid genomes of Tetracentron and Trochodendron exhibit the typical gene content and genome structure of angiosperms [37,53-54], with the notable exception of a significantly expanded IR region (Figures 1, 2, 3). This ~ 4 kb expansion is responsible for the relatively large size of both Trochodendrales plastomes, which are $\sim 4-5$ kb larger than the typical upper size range of angiosperm plastid genomes, including those of nearly all other early-diverging eudicots (Table 8). Significant expansion, contraction, and even loss of the IR appears to be an evolutionarily uncommon phenomena but are nonetheless associated with much of the more significant variation in plastome size in angiosperms. For example, the largest known angiosperm plastome, that of Pelargonium x hortorum, also possesses the largest known IR, at ~76 kb in length [55]. Other significant IR expansions and contractions have been found in Campanulaceae [56-57], Apiaceae [58], and Lemna (Araceae) [59].

Impact of Additional Taxon Sampling on Basal Eudicot Phylogeny

The inclusion of Megaleranthis and Tetracentron in our analyses had no effect on the relationships among the major early-diverging eudicot lineages, and very little effect on support values. Of the basal splits among the eudicots with BS values less than 100% in both the current tree and that of Moore et al. [26], all were within 3% BS value. For example, the sister relationship of Buxales and Gunneridae is 70% in Moore et al. [26] vs. 67% with the inclusion of Megaleranthis and Tetracentron, and the sister relationship of Sabiales and Proteales has BS support of 80% in Moore et al. [26] vs. 83% in the current analyses. These similar values are unsurprising given that Tetracentron and Trochodendron are found to be relatively closely related in our analyses. Indeed, the relatively low sequence divergence between the Tetracentron and Trochodendron plastid genomes supports the taxonomic placement of Tetracentraceae within Trochodenraceae, as advocated by APG III [1]. Although it is possible that the addition of the noncoding regions of the

Table 5. Exon and intron lengths (bp) in plastid genes containing introns in *Tetracentron sinense* and *Trochodendron aralioides*, respectively.

Gene	Exon 1 (<i>Te/Tr</i>)	Intron 1 (Te/Tr)	Exon 2 (<i>Te/Tr</i>)	Intron 2 (Te/Tr)	Exon 3 (<i>Te/Tr</i>)
trnK-UUU	37/37		35/35		
trnG-UCC	24/24	698/698	48/48		
trnL-UAA	35/35	444/442	50/50		
trnV-UAC	39/39	583/585	37/37		
trnl-GAU	42/42	954/954	35/35		
trnA-UGC	38/38	794/794	35/35		
petB	6/6	793/797	642/642		
petD	8/8	704/709	496/496		
atpF	145/145	727/724	410/410		
ndhA	553/553	1106/1084	542/542		
ndhB	777/777	700/700	756/756		
rpl2	391/391	671/674	434/434		
rpl16	9/9	865/972	402/402		
rps12	114/114		232/232	538/536	26/26
rpoC1	432/432	728/714	1617/1638		
clpP	71/71	682/710	292/292	659/650	246/246
ycf3	124/124	734/725	230/230	731/758	153/153
rps16	40/40	831/844	227/227		

The *rps12* gene is trans-spliced, and hence the length of intron 1 is unknown. doi:10.1371/journal.pone.0060429.t005

plastid genome (or at least those noncoding regions that can be aligned) to our data set may improve support for these relationships, we may have to look to the other plant genomes for a confident resolution of relationships among the early-diverging eudicots. In fact, the sister relationship of Buxales and *Gunneridae* received high support (BS = 98%) in the 17-gene analyses of Soltis et al. [28], which employed a combination of 11 plastid genes, 18S and 26S nuclear rDNA, and 4 mitochondrial genes. However, the sister relationship of Sabiales and Proteales were more poorly supported (BS = 59%) in Soltis et al. [28].

Divergence Time Between *Tetracentron* and *Trochodendron*

Cenozoic Trochodendrales fossils are known throughout the Northern Hemisphere, with the Paleocene Nordenskioldia the earliest certain fossil of the order [7–15]. Both Tetracentron and Trochodendron had wide distributions in the Northern Hemisphere during the Paleogene and Neogene. Fossil remains of Tetracentron have been found in Japan [60–61], Idaho [62], Princeton, British

Table 6. A/T content (%) of different regions in *Tetracentron* and *Trochodendron*.

Region	Tetracentron	Trochodendron
overall	61.86	61.98
LSC	63.50	63.74
IR	57.63	57.83
SSC	67.84	67.48
Protein-coding regions	61.58	61.53

doi:10.1371/journal.pone.0060429.t006

Columbia and Republic, Washington [63], and Iceland [15]; *Trochodendron* fossil remains have been reported from Kamchatka [64], Japan [11], Idaho and Oregon [11–12], Washington [7], and British Columbia [63]. Our estimate of the divergence time between the two genera of Trochodendraceae (44-30 mya) encompasses the recent estimate of 37-31 mya from Bell et al. [65], which was based on analysis of 567 taxa and three genes, as well as the mid-Eocene estimate of ~45 mya derived from the *rbcL* analysis of Anderson et al. [66], which employed numerous fossil constraints from the early-diverging eudicots. The congruence among these studies and with the fossil record suggests that a midto late Eocene divergence for the two extant Trochodendraceae lineages may be a reasonable estimate.

Analysis of Plastid SSR Loci in the Trochodendrales

Because microsatellite loci, including cpSSRs, often exhibit high variation within species, they are considered valuable molecular markers for population genetics [67–69]. A limited number of SSR loci were recently characterized for *Tetracentron* [70], but no cpSSR loci are available for Trochodendraceae. The 77 cpSSR loci that were identified in both *Tetracentron* and *Trochodendron* represent \sim 42% more loci than the 54 loci reported in the plastid genome of *Megaleranthis* (Ranunculaceae), the only other early-diverging eudicot for which a comprehensive analysis of cpSSR loci is available. The abundant and varied cpSSR loci identified in Trochodendrales will be useful in characterizing the population genetics of both extant species, which are of conservation interest in the wild because of their relatively narrow, presumably relictual distributions, and decreasing numbers [71]. *Tetracentron* is officially afforded second-class protection in China.

Table 7. Distribution of SSR loci in the plastid genomes of *Tetracentron* and *Trochodendron*.

BaneInterpretationSTAINSelectionSTAINSelectionStainSel			
Six boxi in Fereence A 0 000000000000000000000000000000000000	Base	Length	Position in plastid genome
A 10 2085-2004 7164-713 4987-4987 17266-17275 39226-3929 47812-47821 58880-5889 69330-69391 14810-124825 136417-136426 11 0 119821 46807-46902 47147-47157 59813-59823 75797-75807 80875-80883 82302-82312 133069-133079 160432-160442 12 217-228 49977-4998 50332-50343 118899-118910 162450-162461 163452-163463 163940-163951 15 3884-38856 15 3884-73807 16 5265-527 6724-6733 9153-9162 19332-19341 54465-54470 63461-63470 67706-67715 107277-107286 112508-112517 117373-11782 17 0 7047-7016 79495 13141 3131-13371 3737-37794-7779 47789 67810-647320 70013-76023 88492-88502 17 100 1004-7016 797-899 131441 3131-13371 3737-37753 47779-47789 67810-647320 70013-76023 88492-88502 18 7309-73518 71723-71734 84983-84994 85471-85482 86473-86484 118884-118895 119027-110038 130 1004-7014 709-7969 131441-3143 1310-131371 7392-73753 47797 947789 67810-64732 02013-76020 88492-88502 141 0 3299-13914 142 826-4731 2996-13007 114822-114833 143 100 3083-34092 34111-34120 114741-114750 144 0 04687-6694 154 0666-6007 0101 144 04322-94453 145 <td>SSR loci in i</td> <td>Tetracentron</td> <td></td>	SSR loci in i	Tetracentron	
11 0611-021 46822-4602 47147-47157 50813-5022 75797-75807 80873-80883 42202-42312 13300-133079 100432-160442 12 217-228 49977-49988 50332-50243 118899-118910 102450-162461 163452-163463 163940-163951 15 38642-38856 17 38991-39907 18 74833-7485 22 7288-72907 7 38991-39907-10226 113208-112317 13737-13782 10 5266-275 570-753 10723-7719 45983-10424 5130614-50470 6706-67715 107277-107286 113208-112517 117373-117382 11 7004-704 7679-7689 1314-13154 31361-31371 3792-37935 47779-47789 67810-67820 76013-76023 86492-88502 12 5307-5531 71723-77134 4983-48994 85471-65462 64473-65404 118881-118895 119027-119038 13 3090-13914 14 72925-72933 14 66686-666699 12 4802-4873 12906-13007 11422-114333 14 66686-666699 14 66686-666699 15 4867-6688 14 66686-66699 15 4867-4684 12 4867-4684 13 1932-61307 11422-114333 14 66686-66699 15 46875-4684	A	10	2085–2094 7164–7173 9478–9487 17266–17275 39220–39229 47812–47821 58880–58889 69930–69939 124816–124825 136417–136426 141648–141657
12 17.28.4997-4988 50332-50343 118899-118910 162460 162461 163452-163463 163940-163991 14 65157-65170 15 3842-3865 17 3991-39907 18 74385-78577 18 74385-7857 18 74385-7857 18 74385-7857 18 74385-7857 18 74385-7857 18 74385-7857 18 7635-5375 (724-6739 1933-1941 54466-54477 63461-63470 67706-67715 107277-107286 112508-112517 117373-117328 18 7004-7014 7679-7689 13144-13154 31361-31371 37925-37335 47779-47789 67810-67820 76013-76023 88492-88502 12 5507 55318 7172-71724 4983-4694 85471-65482 86473-66464 118884-118895 110027-119038 13 13002-71393 14 6666-66699 14 6666-66699 14 6666-66699 15 46132-46844 16 16132-26914220-1142313 11420-114741-114750 17 4687-4689 17 4687-4689 17 4687-4684 17 14406-134416 16427-16437 33036-3016 398-33973 51490-51507 07911-70221 81823-8183 9789-9799 <td></td> <td>11</td> <td>9611-9621 46892-46902 47147-47157 50813-50823 75797-75807 80873-80883 82302-82312 133069-133079 160432-160442</td>		11	9611-9621 46892-46902 47147-47157 50813-50823 75797-75807 80873-80883 82302-82312 133069-133079 160432-160442
14 6157-65170 15 38842-38856 16 38981-38907 18 7488-74855 20 72886-72907 1 20 5266-5275 6724-6733 9153-9162 1932-19341 54468-54477 63461-63470 67706-67715 107277-107286 112508-112517 117373-117322 11800-118309 121204-12121 126456-120460 130614-10623 1 7004-7047 70-769 1341-4151-31373-317325-37932 47799-47789 67810-67820 76013-76023 8492-88502 12 5507-55318 71723-71734 84983-8494 85471-85482 86473-86484 118895 119027-119038 13 19002-19914 7229-7739 AT 0 724-1743 20833-20842 50404-50413-63181-63190 12 4802-4873 1296-13007 114822-11433 14 7292-67814-41007 11472-114730 14 6066-609 14 6068-609 14 6068-609 14 8033-34002 34111-34120 114741-114750 14 6068-609 15 64073 -6668-5139-6638 16 11834-11885 126258-126267 14293-143002 163821-16330 18142-18151 40389-40398 41060- 41069 51091-51100 6136-6145 6899 68078 66878 11 13440-134416 16427 -17437 3036-30310 39961-93203 15102 79911-70921 81823-818		12	217-228 49977-49988 50332-50343 118899-118910 162450-162461 163452-163463 163940-163951
15 3884-38856 17 38991-39907 18 7483-74855 22 7288-72807 10 5265-375 6724-6733 913-9162 19332-119341 54468-54477 65461-63470 67706-67715 107277-107286 112508-112517 117373-117382 11 7004-7014 7679-7689 13144-13154 31351-31371 37925-37935 47779-47789 67810-67820 76013-76023 8492-8492 12 5207-57318 71723-17738 48983-84994 85471-85482 86473-86484 118895 119027-119038 13 19902-13914 14 72825-72939 AT 10 1734-1743 20833-20842 50404-50413-63181-63190 14 4862-4873 12996-13007 114822-114833 14 4932-94945 15 4863-34092 34111-34120 114741-114750 14 4932-94945 15 4863-46994 16 11885-11863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060-41069 51091-51100 6136-6145 68969 17 144416 16427-16447 30306-50316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 17 11845-11863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060-41069 51091-51100 6136-6145 68969 18 11845-11868 126258-126267 142993-143002 163821-154305 18142-18151 40389-40398 41060-41069 51091-5110 6136-6145 68969 11 124402-10411 40058-48004 49		14	65157–65170
17 38901-39907 18 7438-74655 22 7288-72907 10 526-5275 6724-6733 9153-9162 19332-19341 54468-54477 63461-63470 67706-67715 107277-107286 112508-112507 117373-117382 11 7044-7014 7679-7689 13144-13154 31361-31271 37925-37935 47779-47789 67810-67820 76013-76023 84492-84802 12 5307-55318 7172-71734 84083-84994 85471-65482 86473-86484 118895 119027-119038 13 13902-13914 14 72925-72939 AT 10 1734-1743 20833-20842 50404-50413-63181-63190 12 4662-4873 12996-13007 114822-11483 14 66686-6609 15 46893-46093 12995-14007 14222-11483 16 18354-118863 129558-126267 142993-143002 163821-163830 18142-18151 40380-40398 41060- 41069 51091-51100 6136-6145 68969 17 14 4932-46914 18 18554-118863 122558-126267 142993-143002 163821-163830 18142-18151 40380-40398 41060- 41069 51091-51100 6136-6145 68969 11 184406-134416 16427-16437 30306-30316 33963-33973 51490-51500 7091-70921 81822-81833 9789-9799 12 10420-10431 4055-44646 13 164932-16494 14 10440-13441 4055-456467541457957 15		15	38842–38856
18 74838-74855 22 72866-72907 10 5266-5275 6724-6733 9153-9162 19332-19341 54468-54477 63461-63470 67706-67715 107277-107286 112508-112508-112508-112508 11 7004-7014 7679-76981 131371 37923-3795 47779-47789 67810-67820 76013-76023 88492-88502 12 55307-55318 71723-71734 64963-84994 85471-68482 66473-66484 118895 119027-119038 13 13902-13914 14 72926-72939 AT 10 14 72926-73939 15 6686-60699 14 70926-7014822-114833 14 90308-3002 34111-34120 114741-114750 14 49132-49145 17A 10 34083-4002 34111-34120 114741-114750 17A 10 34083-4002 34111-34120 114741-114750 17A 10 118854-11863 115258-126267 14993-143002 163821-163830 18142-18151 40389-40398 41060- 41669 51091-5100 6136-6145 68969 87B loci In 75000-7609 111 1440-01431 40058-48069 48322-48333 17 118954-11863 11027.77.73792 5726-75741 116 116 11607-777.73792 5726-75741 15 6189-46203 110 127885-127895 14700-1471 9 55604-5514 57547-57557 111 127885-127895 14700-1471 9 5560-45314 71022		17	39891–39907
22 72886-72907 T 10 5266-5275 6724-6733 9153-9162 19332-19341 54468-54477 63461-63470 67706-67715 107277-107286 112508-112517 117373-117382 11 7004-7014 7679-7689 13144-13154 1306-131371 37925-37935 47779-47789 67810-67820 76013-76023 88492-88502 12 55307-55318 71723-71734 84983-84994 85471-85482 86473-86484 118884-118895 119027-119038 13 19302-13914 14 72926-72939 AT 10 1734-1743 20833-20842 50404-50413-63181-63190 14 60666-60699 14 60666-60699 14 60666-60699 14 40833-34092 34111-34120 114741-114750 14 40332-49145 17 10 3122-59-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060- 41069 51091-51100 6136-6145 69899 68978 70661 -76690 86529-86538 69979 11 134406-134416 1427-16447 30306-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 10400-10431 48058-48069 48322-48333 13 164932-164943 14 19402-104363 12042-120437 121037 12265-12267 131951-131960 164891-164900 20189-20188 40375-40387 48933-48942 13 16488-46203 14		18	74838–74855
10 526-527.5 6724-0733 9153-9162 19332-19341 54468-54477 63461-63470 67706-67715 107277-107286 112508-112507 117373-117382 11 7004-7014 7679-7689 13144-13154 31361-31371 37925-37935 47779-47789 67810-67820 76013-76023 88492-88502 12 55307-55316 71723-71734 84983-84994 85471-85482 86473-86484 118884-118895 119027-119038 13 13902-72399 AT 10 1734-1743 20833-20842 50404-50413-63180 12 4862-4873 12996-13007 114822-114833 14 60086-60699 TA 10 34083-34092 34111-34120 114741-114750 14 49132-49145 55R bicl in <i>Trochodendoru</i> A 0 68073 76689 55R bicl in <i>Trochodendoru</i> 68087 67689 A 10 118854-118863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060-41069 51091-51100 6136-6145 68989 68978 76809 68078 76681-76690 68527 68089 511 134406-134416 16427-16437 30306-30316 39963-39973 51490-51500 79911-79921 81823-81833 9789-9799 12 10420-1031 40058-81069 48322-48333 13 164932-164944 16 166005-161820 79777-73792 75726-75741 17 11422-108136 120 79777-03792 75706 6030 -6039 68604-6861		22	72886-72907
11 7004-7014 7629-7689 13144-13154 31361-31371 37925-37935 47779-47789 67810-67820 76013-76023 88492-88502 12 55307-55318 71723-71734 84983-84994 85471-85482 86473-86484 1188895 119027-119038 13 13002-72939 AT 10 1734-1743 20833-20842 50404-50413-63181-63190 12 4662-4673 12996-13007 114822-114833 14 60686-60699 TA 10 34083-34092 34111-34120 114741-114750 14 49132-49145 TAAA 20 46875-46894 68776 76681-76690 68529-66538 68787 76681-76690 68529-66538 11 138466-14877 30306-30316 39953-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 10420-10431 46058-48069 48322-48333 13 164932-164944 16 161805-161820 73777-7392 75726-75741 17 214-230 83299-83315 9304-9320 17 214-230 83299-83315 9304-9320 18 10 19 108427-108436 102424-120433 11026-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 11 127885-127895 14709-14719 55604-55614 57547-5757 12 50271-50282 13 <	т	10	5266-5275 6724-6733 9153-9162 19332-19341 54468-54477 63461-63470 67706-67715 107277-107286 112508-112517 117373-117382 118300-118309 121204-121213 126456-126465 130614-130623
12 55307-55318 71723-71734 84983-84994 85471-85482 86473-86484 118884-118895 119027-119038 13 13902-13914 14 73926-72939 AT 10 1734-1743 20033-20842 50404-50413-63181-63190 12 4862-4873 12996-13007 114822-114833 14 05066-60699 14 04032-941945 14 4913-249145 15 48175-46894 55R loci in Torbodenote 6875-6689 55R loci in Torbodenote 6875-76681-76690 86529-86538 11 138440-134416 16427-16437 30206-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 04020-10431 40058-48069 48322-48333 13 164932-164944 14 16403-164804 15 41893-46203 16 161005-161820 73777-73792 75726-75741 17 11-230 8329-83315 9304-9320 17 11-230 8329-83315 9304-9320 18 11-230 8329-83315 9304-9320 18 12-330 8329-83315 9304-9320 19 12-333 8229-83315 9304-9320 11 12-2885-122864 12 53154-53163 53339-53348 5700-5709 6030-6039 68604-766613 72934-72943 83282-83291 87599-87608 <td></td> <td>11</td> <td>7004-7014 7679-7689 13144-13154 31361-31371 37925-37935 47779-47789 67810-67820 76013-76023 88492-88502</td>		11	7004-7014 7679-7689 13144-13154 31361-31371 37925-37935 47779-47789 67810-67820 76013-76023 88492-88502
13 13902-13914 14 72926-72939 AT 10 1734-1743 20833-20842 50404-50413-63181-63190 12 466-4873 12996-13007 114822-114833 14 60686-60699 TA 10 34083-34092 34111-34120 114741-114750 14 49132-49145 TAAA 20 4687-4693 SSR loci in Trochodendoro A 10 118854-118863 126258-126267 142993-143002 153821-163830 18142-18151 40389-40398 41060-41069 51091-51100 6136-6145 68989 SSR loci in Trochodendoro A 10 118854-118863 126258-126267 142993-143002 153821-163830 18142-18151 40389-40398 41060-41069 51091-51100 6136-6145 68989 SSR loci in Trochodendoro A 10 118854-118863 126258-126267 142993-143002 153821-163830 18142-18151 40389-40398 41060-41069 51091-51100 6136-6145 68989 SSR loci in Trochodendoro 11 134406-134416 16427-16437 30306-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 10420-10431 48058-48096 48322-48333 13 164932-164944 14 12423 83238 5700-57090 60		12	55307-55318 71723-71734 84983-84994 85471-85482 86473-86484 118884-118895 119027-119038
14 72926-72939 AT 10 1734-1743 2083-20842 50404-50413-63181-63190 12 4862-4873 12996-13007 114822-114832 4862-4873 12996-13007 114822-114832 14 4862-4873 12996-13007 114822-114832 6865-60699 TA 0 34083-34092 34111-34120 114741-114750 TAAA 20 46875-46894 SSR loci in <i>Twochodendoru</i> 5 SSR loci in Twochodendoru 1 3 18454-11863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060- 41069 51091-51100 6136-6145 68969 68978 76681-76690 68529-86538 11 134406-134416 16427-16437 30306-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 1420-01431 48058-48069 48322-4833 13 164932-164944 14 164932-164944 15 46189-46203 16 161805-161820 73777-73792 75726-75741 17 214-230 83299-83315 9304-9320 17 214-230 83299-83315 9304-9320 18 127885-127895 14709-14719 35064-55614 57547-57557 19 127885-127895 14709-14719 35056-515614 57547-57557 10 127885-127895 14709-14719 35056-51561 55747-57557 11 127885-127895 14709-14719 55064-55614 57547-57557 12 9601-89624 14 76896-76909 15 9860-896		13	13902–13914
AT 10 1734-1743 20833-20842 50404-50413-63181-63190 12 4862-4873 12996-13007 114822-114833 14 60686-60699 14 0688-60699 14 49132-49145 TAAA 20 46875-46894 SSR loci in <i>Trochodendor</i> - A 10 18854-113863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060-41069 51091-51100 6136-6145 68969 SSR loci in <i>Trochodendor</i> - A 10 148654-18863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060-41069 51091-51100 6136-6145 68969 SSR loci in <i>Trochodendor</i> - - 11 14440-134416 16422-16437 3030-3016 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 01402-10431 4058-48069 48322-48333 - 13 164932-164944 - 14 16480-161820 73777-73792 75726-75741 - 15 46189-46203 - 16 161805-161820 73777-73792 75726-75741 - 17 214-230 83299-83315 9304-9320 - 18 214-230 83299-83315 9304-9320 - 11 127885-127895 14709-14719 5560-55614 55747-57557 - </td <td></td> <td>14</td> <td>72926–72939</td>		14	72926–72939
12 4862-4873 12996-13007 114822-114833 14 60686-60699 TA 10 34083-34092 34111-34120 114741-114750 TAA 20 48675-46894 SSR loci in <i>Tochodembor</i> 558 SSR loci in <i>Tochodembor</i> 740 10 118854-118863 126258-126267 14293-143002 163821-163830 18142-18151 40389-40398 41069- 41069 51091-51100 6136-6145 6899 68529-68538 11 118854-18863 126258-126267 14293-143002 163821-163830 18142-18151 40389-40398 41069 41069 51091-51100 6136-6145 6899 68529-68538 12 10420-10431 48058-48069 48322-48333 13 164932-164944 16 161805-161820 73777-73792 75726-75741 16 161805-161820 73777-73792 75726-75741 17 214-230 88299-83315 9304-9320 17 214-230 88299-83315 9304-9320 17 214-230 88299-83315 9304-9320 18 168427-104436 12042-120431 121028-121037 122665-123674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 19 108427-104436 120424-120431 121028-121037 122665-123674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 10 108447-104436 120424-120431 121028-121037 122665-123674 131951-131960 164891-164900 20189-20198 40375-40387 49934-4995 11 127885-127895 14709-14719 55604-5614 5	AT	10	1734–1743 20833–20842 50404–50413–63181–63190
14 60686-60699 TA 10 44083-34022 34111-34120 114741-114750 14 49132-49145 TAAA 20 46875-46894 TAAA 10 118854-118863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060- 41069 51091-51100 6136-6145 68969 A 10 118854-118863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060- 41069 51091-51100 6136-6145 68969 A 11 134406-134416 16427-16437 30306-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 10420-10431 48058-48069 48322-48333 10420-10431 48058-48069 48322-48333 13 164932-164944 161805-161820 73777-73792 75726-75741 14 16489-46203 11 161805-161820 73777-73792 75726-75741 15 46189-46203 11 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 16 1080427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 17 127885-127895 14709-14719 55604-55614 57547-57557 11 127885-127895 14709-14719 55604-55614 57547-57557 18 73814-73426 86485-86497 14 76889-76990 <td< td=""><td></td><td>12</td><td>4862-4873 12996-13007 114822-114833</td></td<>		12	4862-4873 12996-13007 114822-114833
TA 10 34083-34092 34111-34120 114751 TAAA 20 46875-46894 SRB loci II		14	60686–60699
14 49132-49145 TAAA 20 46875-46894 SSR loci in <i>Trochodendror</i> A 10 118854-118863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060- 41069 51091-51100 6136-6145 68969 6978 76681-76090 86529-86538 11 134406-134416 16427-16437 30306-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 10420-10431 48058-48069 48322-48333 13 164932-164944 16 161805-161820 73777-73792 75726-75741 17 214-230 83299-83315 9304-9320 17 214-230 83299-83315 9304-9320 18 10 18492-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 23154-53163 53339-53348 5700-5709 6030-6039 66604-66613 72934-72943 83282-83291 87599-87608 11 127885-127895 14709-14719 55604-55614 57547-57557 12 50271-50282 13 73814-73826 86485-86497 14 78889-48903 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4934-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-51110 5145-5156 5186-5197	ТА	10	34083–34092 34111–34120 114741–114750
TAAA 20 46875-46894 SSR loci in Trochodendru- 11 18854-118863 126258-126267 142993-13030 163821-163830 18142-18151 40389-40398 41060-41069 519191-5110 6136-6145 68959 A 10 18854-11863 126258-126267 142993-13030 163821-163830 18142-18151 40389-40398 41060-41069 519191-5110 6136-6145 68959 A 11 134406-134416 16427-16437 30306-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 10402-10431 48058-48069 48322-48333 164932-164944 16 161805-161820 73777-73792 75726-75741 16 161805-161820 73777-73792 75726-75741 17 214-230 83299-83315 9304-9320 17 214-230 83299-83315 9304-9320 17 214-230 83299-83315 9304-9320 18 72885-127895 14709-14719 55604-55614 57547-57557 19 12 50271-5028 11 127885-127895 14709-14719 55604-55614 57547-57557 12 50271-5028 13 73814-73826 86485-86497 14 78896-76909 15 4889-48903 16 89609-89624 AT 10 1724-1733 51556-51556 564459-64468 17 10 1724-1733 51556-51556 564459-64468 18		14	49132–49145
SSR loci in Trochodendrom A 10 118854-118863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060- 41069 51091-51100 6136-6145 68989 68978 76681-76690 86529-86538 11 134406-134416 16427-16437 30306-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 10420-10431 48058-48069 48322-48333 13 166932-164944 16 161805-161820 73777-73792 75726-75741 17 214-230 83299-83315 9304-9320 17 214-230 83299-83315 9304-9320 18 108427-108435 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 53154-53163 53339-53348 5700-5709 6030-6309 68604-68613 72934-72943 83282-83291 87599-87608 10 108427-150835 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 53156 53155 53156 53156 5338 5700-5709 6030-6309 68604-68613 72934-72943 83282-83291 87599-87608 10 108427-150835 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 4994-4995 4998-4995 4998-4994 4994-4994 4994-4994 12 50271-5028 13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468	TAAA	20	46875–46894
A 10 118854-118863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060- 41069 51091-51100 6136-6145 68969 68978 76681-76690 86529-86538 11 134406-134416 16427-16437 30306-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 10420-10431 48058-48069 48322-48333 13 164932-164944 16 161805-161820 73777-73792 75726-75741 17 214-230 83299-83315 9304-9320 17 214-230 83299-83315 9304-9320 18 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 53154-53163 53339-53348 5700-5709 6030-6039 68604-68613 72934-72943 83282-83291 87599-87608 11 127885-127895 14709-14719 55604-55614 57547-57557 12 50271-50282 13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TA 10 1738-1747 21689-21698 TA 10 5	SSR loci in 1	Trochodendr	on
11 134406-134416 16427-16437 30306-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799 12 10420-10431 48058-48069 48322-48333 13 164932-164944 16 161805-161820 73777-73792 75726-75741 15 46189-46203 17 214-230 83299-83315 9304-9320 17 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 53154-53163 53339-53348 5700-5709 6030-6039 68604-68613 72934-72943 83282-83291 87599-87608 11 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 53154-53163 53339-53348 5700-5709 6030-6039 68604-68613 72934-72943 83282-83291 87599-87608 11 127885-127895 14709-14719 55604-55614 57547-57557 12 50271-50282 13 73814-73826 86485-86497 14 76896-76909 15 4889-48903 16 8960-989624 AT 10 1724-1733 51555-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 13	A	10	118854-118863 126258-126267 142993-143002 163821-163830 18142-18151 40389-40398 41060- 41069 51091-51100 6136-6145 68969- 68978 76681-76690 86529-86538
12 10420-10431 48058-48069 48322-48333 13 164932-164944 16 161805-161820 73777-73792 75726-75741 15 46189-46203 17 214-230 83299-83315 9304-9320 17 214-230 83299-83315 9304-9320 1 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 10 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 11 127885-127895 14709-14719 55604-55614 57547-57557 12 50271-50282 13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 5599-56008		11	134406-134416 16427-16437 30306-30316 39963-39973 51490-51500 70911-70921 81823-81833 9789-9799
13 164932-164944 16 161805-161820 73777-73792 75726-75741 15 46189-46203 17 214-230 83299-83315 9304-9320 T 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 53154-53163 53339-53348 5700-5709 6030-6039 68604-68613 72934-72943 83282-83291 87599-87608 11 127885-127895 14709-14719 55604-55614 57547-57557 12 50271-50282 13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 5599-56008		12	10420-10431 48058-48069 48322-48333
16 161805-161820 73777-73792 75726-75741 15 46189-46203 17 214-230 83299-83315 9304-9320 T 10 18 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 10 12885-127895 14709-14719 55604-55614 57547-57557 12 50271-50282 13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 5599-56008		13	164932–164944
15 46189-46203 17 214-230 83299-83315 9304-9320 T 10 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 53154-53163 53339-53348 5700-5709 6030-6039 68604-68613 72934-72943 83282-83291 87599-87608 11 127885-127895 14709-14719 55604-55614 57547-57557 12 50271-50282 13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 5999-56008		16	161805–161820 73777–73792 75726–75741
17 214-230 83299-83315 9304-9320 T 10 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 53154-53163 53339-53348 5700-5709 6030-6039 68604-68613 72934-72943 83282-83291 87599-87608 11 11 127885-127895 14709-14719 55604-55614 57547-57557 12 50271-50282 13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 5599-56008		15	46189–46203
T 10 108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 53154-53163 53339-53348 5700-5709 6030-6039 68604-68613 72934-72943 83282-83291 87599-87608 11 127885-127895 14709-14719 55604-55614 57547-57557 12 50271-50282 13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 55999-56008		17	214–230 83299–83315 9304–9320
11 127885-127895 14709-14719 55604-55614 57547-57557 12 50271-50282 13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 17 10 124 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 55999-56008	т	10	108427-108436 120424-120433 121028-121037 122665-122674 131951-131960 164891-164900 20189-20198 40375-40387 48933-48942 53154-53163 53339-53348 5700-5709 6030-6039 68604-68613 72934-72943 83282-83291 87599-87608
12 50271-50282 13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 55999-56008		11	127885-127895 14709-14719 55604-55614 57547-57557
13 73814-73826 86485-86497 14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 55999-56008		12	50271-50282
14 76896-76909 15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 55999-56008		13	73814–73826 86485–86497
15 48889-48903 16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 55999-56008		14	76896–76909
16 89609-89624 AT 10 1724-1733 51556-51565 64459-64468 12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 55999-56008		15	48889–48903
AT 10 1724–1733 51556–51565 64459–64468 12 4921–4932 4943–4954 4984–4995 4998–5009 5044–5055 5085–5096 5099–5110 5145–5156 5186–5197 5200–5211 18 73275–73292 TA 10 1738–1747 21689–21698 TAA 18 5016–5033 5218–5235 C 10 55999–56008		16	89609-89624
12 4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211 18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 55999-56008	AT	10	1724–1733 51556–51565 64459–64468
18 73275-73292 TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 55999-56008		12	4921-4932 4943-4954 4984-4995 4998-5009 5044-5055 5085-5096 5099-5110 5145-5156 5186-5197 5200-5211
TA 10 1738-1747 21689-21698 TAA 18 5016-5033 5218-5235 C 10 55999-56008		18	73275–73292
TAA 18 5016–5033 5218–5235 C 10 55999–56008	ТА	10	1738–1747 21689–21698
C 10 55999–56008	TAA	18	5016-5033 5218-5235
	с	10	55999–56008

doi:10.1371/journal.pone.0060429.t007

Materials and Methods

Sample Preparation, Sequencing, and Assembly

Fresh leaves of *Tetracentron sinense* were collected from the Kunming Institute of Botany at the Chinese Academy of Sciences,

and a voucher was deposited at the Herbarium of Wuhan Botanical Garden, Chinese Academy of Science (HIB). Chloroplast DNA was isolated following the protocol of Zhang et al. [45], and an Illumina library was constructed following the manufacturer's protocol (Illumina). The DNA was indexed by tag and

Figure 6. A maximum likelihood tree determined by GARLI (-In L = -1095466.026) for the 83-gene, 88-taxon data set. Numbers associated with branches are ML bootstrap support values. Error bars around nodes correspond to 95% highest posterior distributions of divergence times based on 6 fossils using the program BEAST. Eo = Eocene, Mi = Miocene, OI. = Oligocene, Pa = Paleocene, PI = Pliocene. doi:10.1371/journal.pone.0060429.q006

sequenced together with eight other species in one lane of an Illumina Genome Analyzer IIx at Beijing Genomics Institute (BGI) in Shenzhen, China. Illumina Pipeline 1.3.2 was used conducting image analysis and base calling. Raw sequence reads produced by Illumina paired-end sequencing were filtered for high quality reads which were subsequently assembled into contigs with a minimum length of 100 bp using SOAPdenovo [72] with the Kmer = 57. Contigs were aligned to the *Trochodendron aralioides* plastid genome using BLAST (http://blast.ncbi.nlm.nih.gov/), and aligned contigs were ordered according to the reference genome.

Genome Annotation and Analysis

The *Tetracentron* and *Trochodendron* plastid genomes were annotated with DOGMA [73] and BLAST tools from NCBI (the National Center for Biotechnology Information). Physical maps were generated using GenomeVx [74] with subsequent manual editing. Sequence divergence between the *Tetracentron* and *Trochodendron* plastid genomes was evaluated using DnaSP version 5.10 [75], and genome sequence identity plots were generated using mVISTA [76] (http://genome.lbl.gov/vista/mvista/submit. shtml). Msatfinder ver. 1.6.8 [77] was used to identify SSR loci by manually setting repeat units.

Basal eudicot lineages	Species	Genes in IR region	cp genome size (bp)
Ranunculales	Ranunculus macranthus	20	155129
	Megaleranthis saniculifolia	19	159924
	Nandina domestica	19	156599
Proteales	Nelumbo lutea	18	163206
	Platanus occidentalis	19	161791
Sabiales	Meliosma aff. cuneifolia	18	160357
Buxales	Buxus microphylla	18	159010
Trochodendrales	Tetracentron sinense	24	164467
	Trochodendron aralioides	24	165945

Table 8. Numbers of genes (including genes that span IR/SC junctions) in the IR regions of early-diverging eudicots.

doi:10.1371/journal.pone.0060429.t008

Phylogenetic and Divergence Time Analyses

All protein-coding sequences, as well as all rRNA sequences, were extracted from the *Tetracentron* and *Megaleranthis* plastome [52] and added manually to the 83-gene, 86-taxon alignment of Moore et al. [26]. ML analyses were performed on the concatenated 83-gene data set using the following partitioning strategy: (1) codon positions 1 and 2 together; (2) codon position 3; and (3) rRNA genes. The optimal nucleotide sequence model was selected for each partition using jModelTest 2.1.1 using the Decision Theory (DT) criterion [78]. The following models were selected: TVM+I+ Γ for codon positions 1+2 and for codon position 3, and TIM1+ I+ Γ for rRNA.

Partitioned ML analyses were conducted using GARLI 2.0 [79]. A total of ten search replicates were conducted to find the optimal tree, and nonparametric bootstrap support was assessed with 100 replicates [80]. All ML searches used random taxon addition to build starting trees.

Divergence times were estimated using BEAST version 1.7.4 [81], using the same dating strategies employed in Moore et al.

References

- Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161: 105–121.
- Smith AC (1945) A taxonomic review of *Trochodendron* and *Tetracentron*. J Arnold Arbor Harvard University 26: 123–142.
- Cronquist A (1981) An Integrated System of Classification of Flowering Plants. New York: Columbia University Press.
- Endress PK (1986) Reproductive structures and phylogenetic significance of extant primitive angiosperms. Plant Syst Evol 152: 1–28.
- Endress PK, Igersheim A (1999) Gynoecium diversity and systematics of the basal eudicots. Bot J Linn Soc 130: 305–393.
- Magallón S, Crane PR, Herendeen PS (1999) Phylogenetic pattern, diversity, and diversification of eudicots. Ann Missouri Bot Gard 86: 297–372.
- Pigg KB, Wehr WC, Ickert-Bond SM (2001) *Trochodendron* and *Nordenskioldia* (Trochodendraceae) from the Middle Eocene of Washington State, U.S.A. Int J Plant Sci 162: 1187–1198.
- Crane PR (1989) Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons. Plant Syst Evol 162: 165–191.
- Crane PR, Manchester SR, Dilcher DL (1990) A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota, Fieldiana Geol NS 20: 1–63.
- Crane PR, Manchester SR, Dilcher DL (1991) Reproductive and vegetative structure of *Nordenskioldia* (Trochodendraceae), a vesselless dicotyledon from the early Tertiary of the Northern Hemisphere. Am J Bot 8: 1311–1334.
- Manchester SR, Crane PR, Dilcher DL (1991) Nordenskioldia and Trochodendron fruits (Trochodendraceae) from the Miocene of northwestern North America. Bot Gaz 152: 357–368.
- Fields PF (1996a) The Succor Creek flora of the middle Miocene Sucker Creek Formation, southwestern Idaho and eastern Oregon: systematics and paleoecology. PhD diss. Michigan State University, East Lansing.
- Fields PF (1996b) A *Trochodendron* infructescence from the 15 Ma Succor Creek flora in Oregon: a geographic and possibly temporal range extension. Am J Bot 83(suppl): 110.
- Manchester SR (1999) Biogeographical relationships of North American Tertiary floras. Ann Missouri Bot Gard 86: 472–522.
- Grímsson F, Denk T, Zetter R (2008) Pollen, fruits, and leaves of *Tetracentron* (Trochodendraceae) from the Cainozoic of Iceland and western North America and their palaeobiogeographic implications. Grana 47: 1–14.
- Watson L, Dallwitz MJ (2006) The families of flowering plants: descriptions, illustrations, identification, information retrieval. Version 3.
- Mabberley DJ (1987) The plant-book. Cambridge: Cambridge University Press.
 Doweld AB (1998) Carpology, seed anatomy and taxonomic relationships of *Tetracentron* (Tetracentraceae) and *Trochodendron* (Trochodendraceae). Ann Bot 82: 413–443.
- Li HF, Chaw SM, Du CM, Ren Y (2011) Vessel elements present in the secondary xylem of *Trochodendron* and *Tetracentron* (Trochodendraceae). Flora 206: 595–600.
- Cantino PD, Doyle JA, Graham SW, Judd WS, Olmstead RG et al. (2007) Towards a phylogenetic nomenclature of *Tracheophyta*. Taxon 56: 822–846.
- Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Phylogeny and Evolution of the Angiosperms. Sunderland, MA: Sinauer.
- Qiu Y, Dombrovska O, Lee J, Li L, Whitlock BA, et al. (2005) Phylogenetic analysis of basal angiosperms based on nine plastid, mitochrondrial, and nuclear genes. Int J Plant Sci 166: 815–842.

[26]. In addition to the three calibration points (used in Moore et al. [26]) of minimum ages of 131.8 mya for angiosperms [82–85], 125 mya for eudicots [83,86], and 85 mya for the most recent common ancestor of *Quercus* and *Cucumis* [26], we additionally constrained the stem lineage of Malpighiales using a minimum of 89.3 my [87] and the node uniting *Calycanthus* and *Liriodendron* using 98 my [88], and set the age of Proteales to a minimum of 98 my [89].

Acknowledgments

We thank the anonymous reviewers for their helpful comments on earlier versions of this manuscript.

Author Contributions

Conceived and designed the experiments: JQL HCW. Performed the experiments: YXS MJM APM. Analyzed the data: YXS MJM. Contributed reagents/materials/analysis tools: YXS MJM JQL HCW. Wrote the paper: YXS MJM PSS DES HCW.

- Qiu YL, Li L, Hendry TA, Li R, Taylor DW, et al. (2006) Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes. Taxon 55: 837–856.
- Worberg A, Quandt D, Barniske A-M, Löhne C, Hilu KW, et al. (2007) Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA. Org Divers Evol 7: 55–77.
- Soltis DE, Moore MJ, Burleigh JG, Bell CD, Soltis PS (2010) Assembling the Angiosperm Tree of Life: progress and future prospects. Ann Missouri Bot Gard 97: 514–526.
- Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 107: 4623–4628.
- Moore MJ, Hassan N, Gitzendanner MA, Bruenn RA, Croley M, et al. (2011) Phylogenetic analysis of the plastid inverted repeat for 244 species: insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region. Int J Plant Sci 172: 541–558.
- Soltis DE, Smith S, Cellinese N, Refulio-Rodriquez NF, Olmstead R, et al. (2011) Inferring angiosperm phylogeny: a 17-gene analysis. Am J Bot 98: 704– 730.
- Qiu YL, Li LB, Wang B, Chen Z, Knoop V et al. (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 103: 15511–15516.
- Barniske AM, Borsch T, Müller K, Krug M, Worberg A, et al. (2012) Phylogenetics of early branching eudicots: Comparing phylogenetic signal across plastid introns, spacers, and genes. J Syst Evol 50: 85–108.
- Hoot SB, Magallón S, Crane PR (1999) Phylogeny of basal eudicots based on three molecular data sets: *atpB*, *rbcL* and 18S nuclear ribosomal DNA sequences. Ann Mo Bot Gard 86: 1–32.
- Soltis DE, Soltis PS, Chase MW, Mort M, Albach D, et al. (2000) Angiosperm phylogeny inferred from a combined data set of 18S rDNA, *rbcL* AND *atpB* sequences. Bot J Linn Soc 133: 381–461.
- Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104: 19363–19368.
- Jansen RK, Cai Z, Raubeson LA, Daniell H, DcPamphilis CW, et al. (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104: 19369–19374.
- Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84: 9054–9058.
- Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ, eds. Molecular Systematics of Plants. New York: Chapman and Hall. 14–35.
- Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry R, ed. Diversity and Evolution of Plants-genotypic Variation in Higher Plants. Oxfordshire: CABI Publishing. 45–68.
- Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, et al. (2006) Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 6: 17.
- Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 7: 84.

- Diekmann K, Hodkinson TR, Wolfe KH, van den Bekerom R, Dix PJ, et al. (2009) Complete chloroplast genome sequence of a major allogamous forage species, perennial ryegrass (*Lolium perenne* L.). DNA Res 16: 165–76.
- 41. Kumar S, Hahn FM, McMahan CM, Cornish K, Whalen MC (2009) Comparative analysis of the complete sequence of the plastid genome of *Parthenium argentatum* and identification of DNA barcodes to differentiate *Parthenium* species and lines. BMC Plant Biol 9: 131.
- 42. Wu F-H, Chan M-T, Liao D-C, Hsu C-T, Lee Y-W, et al. (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae, BMC Plant Biol 10: 68.
- Whitall JB, Syring J, Parks M, Buenrostro J, Dick C, et al. (2010) Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pines. Mol Ecol 19: 100–114.
- Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26: 1135–1145.
- 45. Stull GW, Moore MJ, Mandala VS, Douglas N, Kates H-R, et al. (2013) A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes. App Plant Sci: in press.
- Zhang YJ, Ma PF, Li DZ (2011) High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae). PLoS ONE 6: e20596.
- Steele PR, Hertweck KL, Mayfield D, McKain MR, Leebens-Mack J, et al. (2012) Quality and quantity of data recovered from massively parallel sequencing: Examples in Asparagales and Poaceae. Am J Bot 99: 330–348.
- Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, et al. (2012) Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. Am J Bot 99: 349–364.
- McCauley DE, Stevens JE, Peroni PA, Raveill JA (1996) The spatial distribution of chloroplast DNA and allozyme polymorphisms within a population of *Silene alba* (Caryophyllaceae). Am J Bot 83: 727–31.
- Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17: 145–70.
- Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16: 142–147.
- Kim YK, Park CW, Kim KJ (2009) Complete chloroplast DNA sequence from a Korean endemic genus, *Megaleranthis saniculifolia*, and its evolutionary implications. Mol Cells 27: 365–381.
- Shinozaki K, Ohem M, Tanaka M, Wakasugi T, Hayashida N, et al. (1986) The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO Journal 5: 2043–2049.
- Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Vasil IK, Bogorad L, eds. Cell Culture and Somatic Cell Genetics in Plants, Vol. 7A, The Molecular Biology of Plastids. San Diego, USA: Academic Press. 5–53.
- Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, et al. (2006) The complete chloroplast genome sequence of *Pelargonium x hortorum*: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23: 2175–2190.
- Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of *Trachelium caeruleum* (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31: 419–429.
- Knox EB, Palmer JD (1999) The chloroplast genome arrangement of *Lobelia thuliniana* (Lobeliaceae): Expansion of the inverted repeat in an ancestor of the Campanulales. Plant Syst Evol 214: 49–64.
- Plunkett GM, Downie SR (2000) Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae. Syst Bot 25: 648–667.
- Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, et al. (2008) Complete sequence of the duckweed (*Lemna minor*) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms. J Mol Evol 66: 555–564.
- Ozaki K (1987) Tetracentron leaves from the Neogene of Japan. Transactions and Proceedings of the Palaeontological Society, Japan, NS 146: 77–87.
- Suzuki M, Joshi L, Noshira S (1991) *Tetracentron* wood from the Miocene of Noto Peninsula, Central Japan, with a short revision of homoxylic fossil woods. Bot Mag Tokyo 104: 34–48.
- Manchester SR, Chen I (2006) *Tetracentron* fruits from the Miocene of western North America. Int J Plant Sci 167: 601–605.

- 63. Pigg KB, Dillhoff RM, DeVore ML, Wehr WC (2007) New diversity among the Trochodendraceae from the Early/Middle Eocene Okanogan Highlands of British Columbia, Canada, and northeastern Washington State, United States. Int J Plant Sci 168: 521–532.
- Chelebaeva AI, Chigayeva GB (1988) The genus *Trochodendron* (Trochodendraceae) in Miocene of Kamchatka. Bot Zh 73: 315–318.
- Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperm re-revisited. Am J Bot 97: 1296–1303.
- Anderson CL, Bremer K, Friis EM (2005) Dating phylogenetically basal eudicots using *rbcL* sequences and multiple fossil reference points. Am J Bot 92: 1737– 1748.
- Powell W, Morgante M, Mcdevitt R, Vendramin GG, Rafaslki JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci USA 92: 7759– 7763.
- Grassi F, Labra M, Scienza A, Imazio S (2002) Chloroplast SSR markers to assess DNA diversity in wild and cultivated grapevines. Vitis 41: 157–158.
- Ebert D, Peakall R (2009) Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Res 9: 673–690.
- Yang Z, Lu R, Tao C, Chen S, Ji Y (2012) Microsatellites for *Tetracentron sinense* (Trochodendraceae), a Tertiary relict endemic to East Asia. Am J Bot 99: e320– e322.
- 71. Fu LG (1992) China Plant Red Data Book (Vol.1). Beijing: Science Press.
- Li R, Zhu H, Ruan J, Qian W, Fang X, et al. (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20: 265–272.
- Wyman SK, Jansen RK, Boore JL (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252–3255.
- Conant GC, Wolfe KH (2008) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24: 861–862.
- Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.
- Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32: W273– W279.
- 77. Thurston MI, Field D (2005) Msatfinder: detection and characterisation of microsatellites, version 1.6.8.
- Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772.
- Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.
- Felsenstein J (1985) Confidence limits on phylogeny: An approach using the bootstrap. Evolution 39: 783–791.
- Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973.
- Doyle JA (1992) Revised palynological correlations of the lower Potomac Group (USA) and the Cocobeach sequence of Gabon (Barremian-Aptian). Cretac Res 13: 337–349.
- Hughes NF (1994) The Enigma of Angiosperm Origins. Cambridge, UK: Cambridge Univ Press.
- Brenner GJ (1996) Flowering Plant Origin, Evolution and Phylogeny. New York: Chapman and Hall. 91–115.
- Friis EM, Pedersen KR, Crane PR (1999) Early angiosperm diversification: The diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann Mo Bot Gard 86: 259–296.
- Doyle JA, Hotton CL (1991) Pollen and Spores: Patterns of Diversification. Oxford: Clarendon. 169–195.
- Magallón S, Castillo A (2009) Angiosperm diversification through time. Am J Bot 96: 349–365.
- Friis EM, Eklund H, Pedersen KR, Crane PR (1994) Virginianthus calycanthoides gen. et sp. nov. – A calycanthaceous flower from the Potomac Group (Early Cretaceous) of eastern North America. Int J Plant Sci 155: 772–785.
- Crane PR, Pedersen KR, Friis EM, Drinnan AN (1993) Early Cretaceous (early to middle Albian) platanoid infl orescences associated with *Sapindopsis* leaves from the Potomac Group of North America. Syst Bot 18: 328–344.