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Abstract

The early-diverging eudicot order Trochodendrales contains only two monospecific genera, Tetracentron and
Trochodendron. Although an extensive fossil record indicates that the clade is perhaps 100 million years old and was
widespread throughout the Northern Hemisphere during the Paleogene and Neogene, the two extant genera are both
narrowly distributed in eastern Asia. Recent phylogenetic analyses strongly support a clade of Trochodendrales, Buxales,
and Gunneridae (core eudicots), but complete plastome analyses do not resolve the relationships among these groups with
strong support. However, plastid phylogenomic analyses have not included data for Tetracentron. To better resolve basal
eudicot relationships and to clarify when the two extant genera of Trochodendrales diverged, we sequenced the complete
plastid genome of Tetracentron sinense using Illumina technology. The Tetracentron and Trochodendron plastomes possess
the typical gene content and arrangement that characterize most angiosperm plastid genomes, but both genomes have the
same unusual ,4 kb expansion of the inverted repeat region to include five genes (rpl22, rps3, rpl16, rpl14, and rps8) that
are normally found in the large single-copy region. Maximum likelihood analyses of an 83-gene, 88 taxon angiosperm data
set yield an identical tree topology as previous plastid-based trees, and moderately support the sister relationship between
Buxaceae and Gunneridae. Molecular dating analyses suggest that Tetracentron and Trochodendron diverged between 44-30
million years ago, which is congruent with the fossil record of Trochodendrales and with previous estimates of the
divergence time of these two taxa. We also characterize 154 simple sequence repeat loci from the Tetracentron sinense and
Trochodendron aralioides plastomes that will be useful in future studies of population genetic structure for these relict
species, both of which are of conservation concern.
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Introduction

The eudicot order Trochodendrales [1] contains only two

extant genera, both of which are monotypic: Trochodendron Sieb. &

Zucc. and Tetracentron Oliver. Historically, these two genera have

been treated either as the separate families Trochodendraceae and

Tetracentraceae, or as the combined family Trochodendraceae

[1–7]. The Trochodendraceae sensu APG III [1] appear to have

been widespread in the Northern Hemisphere during the

Paleogene and Neogene [7–15]. However, the two extant species

of the family have small geographic ranges and are restricted to

eastern Asia [16]. Trochodendron aralioides Sieb. & Zucc. is a large,

evergreen shrub or small tree native to the mountains of Japan to

South Korea and Taiwan, and the Ryukyu Islands [2,17], whereas

Tetracentron sinense Oliver is a deciduous tree occurring in

southwestern and central China and the eastern Himalayan

regions. Both species are characterized by apetalous flowers

arranged in cymose inflorescences and by loculicidal capsules that

dehisce to release winged seeds [2,5,7,18]. Although earlier

researchers reported that wood of Trochodendrales wood lacked

vessels and thus suggested that Trochodendrales were among the

earliest-diverging angiosperms, recent research has documented

the presence of vessels in the wood of both genera [2,7,19].

Molecular phylogenetic studies, including analyses of complete

plastid genome sequences, have routinely recovered Trochoden-

drales as an early-diverging member of the clade Eudicotyledoneae

(sensu [20]; all italicized clade names follow this system), specifically

as part of a strongly supported clade with Buxales and Gunneridae,

or core eudicots [21–27]. However, the relationships among

Trochodendrales, Buxales, and Gunneridae have often been only
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weakly supported. In the 17-gene analysis of Soltis et al. [28],

which included data from all three plant genomes, Trochoden-

drales and Buxales were subsequent sisters to Gunneridae, with

100% and 98% BS support, respectively. However, other studies

have found Buxales to be sister to Gunneridae with only weak

support [24,26,29–30], whereas in other analyses Trochoden-

drales have appeared as sister to Gunneridae [27,31–32].

Complete plastid genome sequences have been used increas-

ingly over the past decade to resolve deep-level phylogenetic

relationships that have been unclear based on only a few genes.

For example, recent plastid phylogenomic studies have helped to

resolve key relationships among the earliest-diverging Mesangios-

permae [33] as well as early-diverging Eudicotyledoneae and

Pentapetalae [26,34]. Indeed, the plastid genome represents an

excellent source of characters for plant phylogenetics due to the

generally strong conservation of plastid genome structure and its

mix of sequence regions that vary tremendously in evolutionary

rate [35–37], which enable plastid genome sequence data to be

applied to phylogenetic problems at almost any taxonomic level in

plants [26,38–43]. It is now relatively inexpensive to generate

complete plastid genome sequence due to rapid improvements in

next-generation sequencing (NGS) technologies [25,44–45] and

due to the relatively small size of the plastid genome (,150 kb)

and its structural conservation, which enable dozens of plastomes

to be multiplexed per sequencing lane and facilitate relatively

straightforward genome assembly [45–48].

Figure 1. Map of the Tetracentron sinense plastid genome.
doi:10.1371/journal.pone.0060429.g001
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Despite the promise of NGS technology for plastid genomics,

the complete plastomes of only eight genera of early-diverging

eudicots have been reported: Ranunculus (Ranunculaceae, Ranun-

culales), Megaleranthis (Ranunculaceae, Ranunculales), Nandina

(Berberidaceae, Ranunculales), Nelumbo (Nelumbonaceae, Pro-

teales), Platanus (Platanaceae, Proteales), Meliosma (Sabiaceae,

Sabiales), Trochodendron (Trochodendraceae, Trochodendrales)

and Buxus (Buxaceae, Buxales). Previous phylogenetic analyses

based on some of these complete genomes have not fully resolved

the relationships among early-diverging eudicots, however; in

addition to the uncertainty surrounding relationships of Buxales,

Trochodendrales, and Gunneridae, the positions of Sabiales and

Proteales remain poorly supported [26–27]. Plastome taxon

sampling is still sparse in these clades, however, and additional

sampling may help elucidate these recalcitrant relationships.

Figure 2. Map of the Trochodendron aralioides plastid genome.
doi:10.1371/journal.pone.0060429.g002
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In addition to their important role in phylogenetics, plastid

genomes may be rich sources of population-level data. The non-

recombination and uniparental inheritance of most plastid

genomes can make plastid genomes extremely useful for popula-

tion genetics, particularly for tracing maternal lineages [49–50].

For example, chloroplast simple sequence repeats (cpSSR) have

been widely used in plant population genetics [51], including

within early-diverging eudicots, where numerous cpSSR loci have

been reported from the plastid genome of the endangered species

Megaleranthis saniculifolia (Ranunculaceae) [52].

Here we report the complete plastid genome sequences of

Tetracentron sinense and Trochodendron aralioides (the protein-coding

and rRNA genes of Trochodendron cp genome were used for

phylogenetic analyses in Moore et al. [26], but the cp genome

structure of this genus has never been reported), as well as the

results of new phylogenetic analyses based on adding Tetracentron

and Megaleranthis genomes [52] to the 83-gene data set of Moore

et al. [26]. We also compare the plastid genome structure of

Trochodendron and Tetracentron, including the characterization of a

significant expansion of the inverted repeat in both taxa, and we

estimate the divergence time between the two genera. Finally, we

characterize the distribution and location of cpSSRs in both

Tetracentron sinense and Trochodendron aralioides, which provided

further opportunity to study the population genetic structures of

these two ancient relict species.

Results

Sequencing and Genome Assembly
Illumina paired-end sequencing produced 892.11 Mb of data

for Tetracentron sinense. We obtained 9912310 raw reads of 90 bp in

length. The N50 of contigs was 13,981 bp and the summed length

of contigs was 143,709 bp. The mean coverage of this genome was

5424.26. After de novo and reference-guided assembly, we

obtained a cp genome containing nine gaps. PCR and Sanger

sequencing were used for filling the gaps. Four junction regions

between IRs and SSC/LSC were first determined based on de

novo contigs, and subsequently confirmed by PCR amplifications

and Sanger sequencing, sequenced results were compared with the

assembled genome directly and no mismatch or indel was

observed, which validated the accuracy of our assembly. The

genome sequences of Tetracentron sinense and Trochodendron aralioides

have been submitted to GenBank (GenBank IDs: KC608752 and

KC608753).

General Features of the Tetracentron and Trochodendron
Plastomes

The plastid genome size of Tetracentron sinense is 164,467 base

pairs (bp) (Figure 1), and that of Trochodendron aralioides is

165,945 bp (Figure 2). Both genomes show typical quadripartite

structure, consisting of two copies of an inverted repeat (IR)

separated by the large single-copy (LSC) and small single-copy

Figure 3. Comparison of the IR junctions in Tetracentron and Trochodendron.
doi:10.1371/journal.pone.0060429.g003

Table 1. Basic characteristic of the Tetracentron sinense and
Trochodendron aralioides plastid genomes.

Tetracentron Trochodendron

total genome length 164467 165945

IR length 30231 30744

SSC length 19539 18974

LSC length 84466 85483

total length of coding sequence 94699 95168

total length of noncoding sequence 69768 70777

overall G/C content 38.1% 38.0%

All values given are in base pairs (bp), unless otherwise noted.
doi:10.1371/journal.pone.0060429.t001

Table 2. The principal noncoding regions contributing to the
size difference between the Tetracentron and Trochodendron
plastid genomes.

Spacer region or intron
names Tetracentron Trochodendron

length
difference

trnK-UUU/rps16 spacer 870 1308 438

rps16/trnQ-UUG spacer 1529 1797 268

trnS-GCU/trnG-UCC spacer 505 658 153

trnE-UUC/trnT-GGU spacer 957 1316 359

trnT-UGU/trnL-UAA spacer 1199 1309 110

petA/psbJ spacer 1146 754 2392

ycf1/ndhF spacer 440 325 2115

*rpl16 intron 865 972 107

All sizes are in base pairs. The only locus residing in the IR is marked with an
asterisk (*).
doi:10.1371/journal.pone.0060429.t002
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Figure 4. Amount of sequence divergence between the protein-coding genes of Tetracentron and Trochodendron.
doi:10.1371/journal.pone.0060429.g004

Figure 5. Sequence identity plot between Trochodendron and Tetracentron.
doi:10.1371/journal.pone.0060429.g005

Complete cp Genome Sequencing of Trochodendraceae

PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e60429



(SSC) regions (Table 1). The IR exhibits a significant expansion

relative to most other angiosperms at the LSC/IR junction;

specifically, the IR in both Tetracentron and Trochodendron has

expanded to include the entirety of the rps19, rpl22, rps3, rpl16,

rpl14, and rps8 genes (Figures 1, 2). The SSC/IR boundary occurs

within the ycf1 gene, as is typical in angiosperms, but is slightly

expanded in the Trochodendron genome to include 1461 bp of the 59

end of ycf1 (versus 1083 bp in Tetracentron; Figure 3). This

expansion of the IR at the SSC junction contributes to the

difference in length between the two Trochodendrales plastomes;

the remainder of the difference is largely the result of length

differences among various noncoding regions (Table 2).

Both genomes contain 119 genes (79 protein-coding genes,

30 tRNA genes, and 4 rRNA genes) arranged in the same order,

of which 24 are duplicated in the IR regions (Table 3). Sequence

divergence between Tetracentron and Trochodendron in coding regions

is low (Table 4, Figures 4, 5). Only 7 genes (rps11, rpoA, rpl32,

rps16, ndhF, ycf1, and rpl36) exhibit divergences of more than 2%,

and 12 genes have an identical sequence (Table 4, Figure 4). The

genes ndhF, ycf1, and rpl36 have the highest sequence divergences

(2.7%, 3.5% and 4.4%, respectively). The coding regions account

for 57.5% and 57.3% of the Tetracentron and Trochodendron plastid

genomes, respectively. For both cp genomes, single introns are

present in 18 genes, whereas three genes (rps12, clpP, and ycf3) have

two introns (Table 5). The overall genomic G/C nucleotide

composition is 38.1% and 38.0% for Tetracentron and Trochodendron,

respectively; detailed A/T contents of different regions of the

plastome for both genomes are listed in Table 6. Due to the lower

A/T content of the four rRNA genes, the IR regions possess lower

A/T content than the single-copy regions.

Characterization of SSR Loci
In all, 154 SSR loci (77 each from Tetracentron sinense and

Trochodendron aralioides) were detected in the two plastid genomes, of

which 123 are mononucleotide repeats, 28 are dinucleotide

repeats, two are trinucleotide repeats, and one is a tetranucleotide

repeat (Table 7). Nearly all of the SSR loci are composed of A/T

repeats (Table 7), and these SSR loci are mostly present in

noncoding regions. The tetranucleotide locus identified in

Tetracentron is in the first intron of ycf3. The two trinucleotide loci

in Trochodendron are both located in the spacer region between trnK-

UUU and rps16. The unique C mononucleotide repeat from

Trochodendron is present in the trnV-ndhC intergenic spacer region.

Phylogenetic and Molecular Dating Analyses
ML analyses of the 83-gene, 88-taxon data set yielded a tree

with a similar topology and bootstrap support (BS) values (Figure 6)

as that of the plastid phylogenomic study of Moore et al. [26]. The

clades of Trochodendron+Tetracentron and Ranunculus+Megaleranthis

were supported with 100% ML BS support. Trochodendrales are

sister to the remaining angiosperms with high support

(BS = 100%), but Buxaceae are sister to Gunneridae with only

67% BS support.

Molecular dating analyses suggest that Trochodendron and

Tetracentron diverged between 44-30 million ago. The crown group

95% highest posterior density (HPD) age estimates for other major

lineages of Pentapetalae were as follows: Superasteridae (115-109 mya),

Dilleniaceae+Superrosidae (116-112 mya), Superrosidae (114-

111 mya), Santalales (98-75 mya), Caryophyllales (76-60 mya),

Asteridae (104-99 mya), Rosidae (111-108 mya), Vitaceae+Saxifra-

gales (114-110 mya), and Saxifragales (109-107 mya).

Table 3. List of genes present in the plastid genomes of Tetracentron sinense and Trochodendron aralioides.

Group of genes Name of genes

Protein synthesis and DNA
replication

Ribosomal RNAs rrn4.5 (62) rrn5 (62) rrn16 (62) rrn23 (62)

Transfer RNAs trnH-GUG trnK-UUU* trnQ-UUG trnS-GCU trnG-UCC* trnR-UCU trnC-GCA trnD-GUC
trnY-GUA trnE-UUC trnT-GGU trnS-UGA trnG-GCC trnfM-CAU trnS-GGA trnT-UGU trnL-
UAA*
trnF-GAA trnV-UAC* trnM-CAU trnW-CCA trnP-UGG trnI-GAU* (62) trnL-CAA (62) trnV-
GAC (62) trnI-GAU (62) trnA-UGC* (62) trnR-ACG (62) trnN-GUU (62) trnL-UAG

small subunit rps2 rps3 rps4 rps7 (62) rps8 rps11 rps12* (62) rps14 rps15 rps16* rps18 rps19

Ribosomal proteins large subunit rpl2* (62) rpl14 rpl16* rpl20 rpl22 rpl23 (62) rpl32 rpl33 rpl36

RNA polymerase rpoA rpoB rpoC1* rpoC2

Photosynthesis Photosystem I psaA psaB psaC psaI psaJ

Photosystem II psbA psbB psbC psbD psbE psbF psbH psbI psbJ psbK psbL psbM psbN psbT psbZ

Cytochrome b6/f petA petB* petD* petG petL petN

ATP synthase atpA atpB atpE atpF* atpH atpI

NADH dehydrogenase ndhA* ndhB*(62) ndhC ndhD ndhE ndhF ndhG ndhH ndhI ndhJ ndhK

Large subunit of Rubisco rbcL

Miscellaneous proteins Subunit of Acetyl-CoA-carboxylase accD

c-type cytochrome synthesis gene ccsA

Envelope membrane protein cemA

Protease clpP*

Translational initiation factor infA

Maturase matK

Genes of unknown function Hypothetical conserved coding frame ycf1 ycf2(62) ycf3* ycf4

Genes with introns are marked with asterisks (*).
doi:10.1371/journal.pone.0060429.t003
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Table 4. Comparisons of the protein-coding genes of Tetracentron and Trochodendron.

Gene
Length in
Tetracentron

Length in
Trochodendron

Number of
nucleotide
differences

Proportion of
nucleotide differences

Number of indel
differences

petL 102 102 0 0 0

psaI 111 111 0 0 0

psaJ 129 129 0 0 0

psbE 252 252 0 0 0

psbF 120 120 0 0 0

psbJ 123 123 0 0 0

psbL 117 117 0 0 0

psbT 108 108 0 0 0

rpl23 288 288 0 0 0

rps19 279 279 0 0 0

rps7 468 468 0 0 0

rps8 399 399 0 0 0

rpl2 825 825 1 0.00121 0

rps3 657 657 1 0.00152 0

petD 504 504 1 0.00198 0

rpl16 501 501 1 0.00249 0

rpl14 369 369 1 0.00271 0

ycf2 6879 6897 19 0.00276 1

ndhB 1533 1533 5 0.00326 0

ycf3 507 507 2 0.00394 0

rpl33 201 201 1 0.00498 0

psbZ 189 189 1 0.00529 0

psaA 2253 2253 12 0.00533 0

psbK 186 186 1 0.00538 0

rps12 372 372 2 0.00538 0

psbA 1062 1062 6 0.00565 0

rpl20 354 354 2 0.00565 0

rpoC1 2049 2070 12 0.00586 1

atpA 1524 1524 9 0.00591 0

rpl22 486 480 3 0.00625 1

ndhJ 477 477 3 0.00629 0

psbD 1062 1062 7 0.00659 0

petA 963 963 7 0.00727 0

rpoB 3213 3213 24 0.00747 0

psbN 132 132 1 0.00758 0

psaB 2205 2205 17 0.00771 0

psbC 1422 1422 11 0.00774 0

atpH 246 246 2 0.00813 0

psaC 246 246 2 0.00813 0

ndhA 1095 1095 9 0.00822 0

rps4 606 606 5 0.00825 0

infA 234 234 2 0.00855 0

atpB 1497 1497 13 0.00868 0

cemA 690 690 6 0.0087 0

petG 114 114 1 0.00877 0

psbI 111 111 1 0.00901 0

rbcL 1428 1428 13 0.0091 0

petB 648 648 6 0.00926 0

atpI 744 744 7 0.00941 0
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Discussion

Expansion of the IR Region in Trochodendrales Plastomes
The plastid genomes of Tetracentron and Trochodendron exhibit the

typical gene content and genome structure of angiosperms [37,53–

54], with the notable exception of a significantly expanded IR

region (Figures 1, 2, 3). This ,4 kb expansion is responsible for

the relatively large size of both Trochodendrales plastomes, which

are ,4–5 kb larger than the typical upper size range of

angiosperm plastid genomes, including those of nearly all other

early-diverging eudicots (Table 8). Significant expansion, contrac-

tion, and even loss of the IR appears to be an evolutionarily

uncommon phenomena but are nonetheless associated with much

of the more significant variation in plastome size in angiosperms.

For example, the largest known angiosperm plastome, that of

Pelargonium x hortorum, also possesses the largest known IR, at

,76 kb in length [55]. Other significant IR expansions and

contractions have been found in Campanulaceae [56–57],

Apiaceae [58], and Lemna (Araceae) [59].

Impact of Additional Taxon Sampling on Basal Eudicot
Phylogeny

The inclusion of Megaleranthis and Tetracentron in our analyses

had no effect on the relationships among the major early-diverging

eudicot lineages, and very little effect on support values. Of the

basal splits among the eudicots with BS values less than 100% in

both the current tree and that of Moore et al. [26], all were within

3% BS value. For example, the sister relationship of Buxales and

Gunneridae is 70% in Moore et al. [26] vs. 67% with the inclusion of

Megaleranthis and Tetracentron, and the sister relationship of Sabiales

and Proteales has BS support of 80% in Moore et al. [26] vs. 83%

in the current analyses. These similar values are unsurprising given

that Tetracentron and Trochodendron are found to be relatively closely

related in our analyses. Indeed, the relatively low sequence

divergence between the Tetracentron and Trochodendron plastid

genomes supports the taxonomic placement of Tetracentraceae

within Trochodenraceae, as advocated by APG III [1]. Although

it is possible that the addition of the noncoding regions of the

Table 4. Cont.

Gene
Length in
Tetracentron

Length in
Trochodendron

Number of
nucleotide
differences

Proportion of
nucleotide differences

Number of indel
differences

clpP 609 609 6 0.00985 0

rps14 303 303 3 0.0099 0

atpE 402 402 4 0.00995 0

ccsA 966 966 10 0.01035 0

psbB 1527 1527 16 0.01048 0

accD 1491 1491 16 0.01073 0

ndhK 822 858 9 0.01095 1

ndhC 363 363 4 0.01102 0

petN 90 90 1 0.01111 0

ndhG 531 531 6 0.0113 0

rpoC2 4137 4146 50 0.01209 1

ndhD 1503 1503 18 0.01264 0

rps2 711 711 9 0.01266 0

psbH 222 222 3 0.01351 0

ndhI 543 543 8 0.01473 0

atpF 555 555 9 0.01622 0

matK 1536 1536 25 0.01628 0

ndhE 306 303 5 0.0165 1

rps18 303 303 5 0.0165 0

ndhH 1182 1182 20 0.01692 0

ycf4 555 555 10 0.01805 0

rps15 273 273 5 0.01832 0

psbM 105 105 2 0.01905 0

rps11 417 417 9 0.02158 0

rpoA 1014 1014 24 0.02367 0

rpl32 162 162 4 0.02469 0

rps16 227 227 6 0.02622 0

ndhF 2223 2223 61 0.02744 0

ycf1 5688 5691 195 0.0345 6

rpl36 114 114 5 0.04386 0

Genes are ranked from lowest to highest proportion of nucleotide differences.
doi:10.1371/journal.pone.0060429.t004
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plastid genome (or at least those noncoding regions that can be

aligned) to our data set may improve support for these

relationships, we may have to look to the other plant genomes

for a confident resolution of relationships among the early-

diverging eudicots. In fact, the sister relationship of Buxales and

Gunneridae received high support (BS = 98%) in the 17-gene

analyses of Soltis et al. [28], which employed a combination of

11 plastid genes, 18S and 26S nuclear rDNA, and 4 mitochondrial

genes. However, the sister relationship of Sabiales and Proteales

were more poorly supported (BS = 59%) in Soltis et al. [28].

Divergence Time Between Tetracentron and
Trochodendron

Cenozoic Trochodendrales fossils are known throughout the

Northern Hemisphere, with the Paleocene Nordenskioldia the

earliest certain fossil of the order [7–15]. Both Tetracentron and

Trochodendron had wide distributions in the Northern Hemisphere

during the Paleogene and Neogene. Fossil remains of Tetracentron

have been found in Japan [60–61], Idaho [62], Princeton, British

Columbia and Republic, Washington [63], and Iceland [15];

Trochodendron fossil remains have been reported from Kamchatka

[64], Japan [11], Idaho and Oregon [11–12], Washington [7], and

British Columbia [63]. Our estimate of the divergence time

between the two genera of Trochodendraceae (44-30 mya)

encompasses the recent estimate of 37-31 mya from Bell et al.

[65], which was based on analysis of 567 taxa and three genes, as

well as the mid-Eocene estimate of ,45 mya derived from the rbcL

analysis of Anderson et al. [66], which employed numerous fossil

constraints from the early-diverging eudicots. The congruence

among these studies and with the fossil record suggests that a mid-

to late Eocene divergence for the two extant Trochodendraceae

lineages may be a reasonable estimate.

Analysis of Plastid SSR Loci in the Trochodendrales
Because microsatellite loci, including cpSSRs, often exhibit high

variation within species, they are considered valuable molecular

markers for population genetics [67–69]. A limited number of SSR

loci were recently characterized for Tetracentron [70], but no cpSSR

loci are available for Trochodendraceae. The 77 cpSSR loci that

were identified in both Tetracentron and Trochodendron represent

,42% more loci than the 54 loci reported in the plastid genome of

Megaleranthis (Ranunculaceae), the only other early-diverging

eudicot for which a comprehensive analysis of cpSSR loci is

available. The abundant and varied cpSSR loci identified in

Trochodendrales will be useful in characterizing the population

genetics of both extant species, which are of conservation interest

in the wild because of their relatively narrow, presumably relictual

distributions, and decreasing numbers [71]. Tetracentron is officially

afforded second-class protection in China.

Table 5. Exon and intron lengths (bp) in plastid genes containing introns in Tetracentron sinense and Trochodendron aralioides,
respectively.

Gene Exon 1 (Te/Tr) Intron 1 (Te/Tr) Exon 2 (Te/Tr) Intron 2 (Te/Tr) Exon 3 (Te/Tr)

trnK-UUU 37/37 35/35

trnG-UCC 24/24 698/698 48/48

trnL-UAA 35/35 444/442 50/50

trnV-UAC 39/39 583/585 37/37

trnI-GAU 42/42 954/954 35/35

trnA-UGC 38/38 794/794 35/35

petB 6/6 793/797 642/642

petD 8/8 704/709 496/496

atpF 145/145 727/724 410/410

ndhA 553/553 1106/1084 542/542

ndhB 777/777 700/700 756/756

rpl2 391/391 671/674 434/434

rpl16 9/9 865/972 402/402

rps12 114/114 232/232 538/536 26/26

rpoC1 432/432 728/714 1617/1638

clpP 71/71 682/710 292/292 659/650 246/246

ycf3 124/124 734/725 230/230 731/758 153/153

rps16 40/40 831/844 227/227

The rps12 gene is trans-spliced, and hence the length of intron 1 is unknown.
doi:10.1371/journal.pone.0060429.t005

Table 6. A/T content (%) of different regions in Tetracentron
and Trochodendron.

Region Tetracentron Trochodendron

overall 61.86 61.98

LSC 63.50 63.74

IR 57.63 57.83

SSC 67.84 67.48

Protein-coding regions 61.58 61.53

doi:10.1371/journal.pone.0060429.t006
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Materials and Methods

Sample Preparation, Sequencing, and Assembly
Fresh leaves of Tetracentron sinense were collected from the

Kunming Institute of Botany at the Chinese Academy of Sciences,

and a voucher was deposited at the Herbarium of Wuhan

Botanical Garden, Chinese Academy of Science (HIB). Chloro-

plast DNA was isolated following the protocol of Zhang et al. [45],

and an Illumina library was constructed following the manufac-

turer’s protocol (Illumina). The DNA was indexed by tag and

Table 7. Distribution of SSR loci in the plastid genomes of Tetracentron and Trochodendron.

Base Length Position in plastid genome

SSR loci in Tetracentron

A 10 2085–2094 7164–7173 9478–9487 17266–17275 39220–39229 47812–47821 58880–58889 69930–69939 124816–124825 136417–136426
141648–141657

11 9611–9621 46892–46902 47147–47157 50813–50823 75797–75807 80873–80883 82302–82312 133069–133079 160432–160442

12 217–228 49977–49988 50332–50343 118899–118910 162450–162461 163452–163463 163940–163951

14 65157–65170

15 38842–38856

17 39891–39907

18 74838–74855

22 72886–72907

T 10 5266–5275 6724–6733 9153–9162 19332–19341 54468–54477 63461–63470 67706–67715 107277–107286 112508–112517 117373–117382
118300–118309 121204–121213 126456–126465 130614–130623

11 7004–7014 7679–7689 13144–13154 31361–31371 37925–37935 47779–47789 67810–67820 76013–76023 88492–88502

12 55307–55318 71723–71734 84983–84994 85471–85482 86473–86484 118884–118895 119027–119038

13 13902–13914

14 72926–72939

AT 10 1734–1743 20833–20842 50404–50413–63181–63190

12 4862–4873 12996–13007 114822–114833

14 60686–60699

TA 10 34083–34092 34111–34120 114741–114750

14 49132–49145

TAAA 20 46875–46894

SSR loci in Trochodendron

A 10 118854–118863 126258–126267 142993–143002 163821–163830 18142–18151 40389–40398 41060– 41069 51091–51100 6136–6145 68969–
68978 76681–76690 86529–86538

11 134406–134416 16427–16437 30306–30316 39963–39973 51490–51500 70911–70921 81823–81833 9789–9799

12 10420–10431 48058–48069 48322–48333

13 164932–164944

16 161805–161820 73777–73792 75726–75741

15 46189–46203

17 214–230 83299–83315 9304–9320

T 10 108427–108436 120424–120433 121028–121037 122665–122674 131951–131960 164891–164900 20189–20198 40375–40387 48933–48942
53154–53163 53339–53348 5700–5709 6030–6039 68604–68613 72934–72943 83282–83291 87599–87608

11 127885–127895 14709–14719 55604–55614 57547–57557

12 50271–50282

13 73814–73826 86485–86497

14 76896–76909

15 48889–48903

16 89609–89624

AT 10 1724–1733 51556–51565 64459–64468

12 4921–4932 4943–4954 4984–4995 4998–5009 5044–5055 5085–5096 5099–5110 5145–5156 5186–5197 5200–5211

18 73275–73292

TA 10 1738–1747 21689–21698

TAA 18 5016–5033 5218–5235

C 10 55999–56008

doi:10.1371/journal.pone.0060429.t007
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sequenced together with eight other species in one lane of an

Illumina Genome Analyzer IIx at Beijing Genomics Institute

(BGI) in Shenzhen, China. Illumina Pipeline 1.3.2 was used

conducting image analysis and base calling. Raw sequence reads

produced by Illumina paired-end sequencing were filtered for high

quality reads which were subsequently assembled into contigs with

a minimum length of 100 bp using SOAPdenovo [72] with the

Kmer = 57. Contigs were aligned to the Trochodendron aralioides

plastid genome using BLAST (http://blast.ncbi.nlm.nih.gov/),

and aligned contigs were ordered according to the reference

genome.

Genome Annotation and Analysis
The Tetracentron and Trochodendron plastid genomes were

annotated with DOGMA [73] and BLAST tools from NCBI

(the National Center for Biotechnology Information). Physical

maps were generated using GenomeVx [74] with subsequent

manual editing. Sequence divergence between the Tetracentron and

Trochodendron plastid genomes was evaluated using DnaSP version

5.10 [75], and genome sequence identity plots were generated

using mVISTA [76] (http://genome.lbl.gov/vista/mvista/submit.

shtml). Msatfinder ver. 1.6.8 [77] was used to identify SSR loci by

manually setting repeat units.

Figure 6. A maximum likelihood tree determined by GARLI (2ln L = 21095466.026) for the 83-gene, 88-taxon data set. Numbers
associated with branches are ML bootstrap support values. Error bars around nodes correspond to 95% highest posterior distributions of divergence
times based on 6 fossils using the program BEAST. Eo = Eocene, Mi = Miocene, Ol. = Oligocene, Pa = Paleocene, Pl = Pliocene.
doi:10.1371/journal.pone.0060429.g006

Table 8. Numbers of genes (including genes that span IR/SC junctions) in the IR regions of early-diverging eudicots.

Basal eudicot lineages Species Genes in IR region cp genome size (bp)

Ranunculales Ranunculus macranthus 20 155129

Megaleranthis saniculifolia 19 159924

Nandina domestica 19 156599

Proteales Nelumbo lutea 18 163206

Platanus occidentalis 19 161791

Sabiales Meliosma aff. cuneifolia 18 160357

Buxales Buxus microphylla 18 159010

Trochodendrales Tetracentron sinense 24 164467

Trochodendron aralioides 24 165945

doi:10.1371/journal.pone.0060429.t008
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Phylogenetic and Divergence Time Analyses
All protein-coding sequences, as well as all rRNA sequences,

were extracted from the Tetracentron and Megaleranthis plastome [52]

and added manually to the 83-gene, 86-taxon alignment of Moore

et al. [26]. ML analyses were performed on the concatenated 83-

gene data set using the following partitioning strategy: (1) codon

positions 1 and 2 together; (2) codon position 3; and (3) rRNA

genes. The optimal nucleotide sequence model was selected for

each partition using jModelTest 2.1.1 using the Decision Theory

(DT) criterion [78]. The following models were selected:

TVM+I+C for codon positions 1+2 and for codon position 3,

and TIM1+ I+C for rRNA.

Partitioned ML analyses were conducted using GARLI 2.0 [79].

A total of ten search replicates were conducted to find the optimal

tree, and nonparametric bootstrap support was assessed with 100

replicates [80]. All ML searches used random taxon addition to

build starting trees.

Divergence times were estimated using BEAST version 1.7.4

[81], using the same dating strategies employed in Moore et al.

[26]. In addition to the three calibration points (used in Moore

et al. [26]) of minimum ages of 131.8 mya for angiosperms [82–

85], 125 mya for eudicots [83,86], and 85 mya for the most recent

common ancestor of Quercus and Cucumis [26], we additionally

constrained the stem lineage of Malpighiales using a minimum of

89.3 my [87] and the node uniting Calycanthus and Liriodendron

using 98 my [88], and set the age of Proteales to a minimum of

98 my [89].
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