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SUMMARY

We report a comprehensive molecular analysis of 34 cases of small cell carcinoma
(SCC) and 84 cases of conventional urothelial carcinoma (UC), with The Cancer
Genome Atlas cohort of 408 conventional UC bladder cancers used as the reference.
SCCs showed mutational landscapes characterized by nearly uniform inactivation of
TP53 and were dominated by Sanger mutation signature 3 associated with loss of
BRCA1/2 function. SCCs were characterized by downregulation of luminal and basal
markers and were referred to as double-negative. Transcriptome analyses indicated
that SCCs displayed lineage plasticity driven by a urothelial-to-neural phenotypic
switch with a dysregulated epithelial-to-mesenchymal transition network. SCCs
were depleted of immune cells, and expressed high levels of the immune checkpoint
receptor, adenosine receptor A2A (ADORA2A), which is a potentinhibitor ofimmune
infiltration. Our observations have important implications for the prognostication
and development of more effective therapies for this lethal bladder cancer variant.

INTRODUCTION

The ability of cells to acquire alternative differentiation-associated phenotypes, referred to as lineage plas-
ticity, is a common feature of embryogenesis and is also intrinsic to malignant transformation. Mild to mod-
erate deviation from the tissue-of-origin terminal differentiation profile as a consequence of either stem
celltransformation or dedifferentiation is a general feature of tumor initiation, but major changes in lineage
identity can occur in tumor progression (Yuan et al., 2019). Such changes are associated with dramatic,
microscopically evident phenotypic switches coupled with the acquisition of clinically aggressive behav-
iors. Here we show that the progression of urothelial bladder cancer to the clinically aggressive small
cell carcinoma (SCC) variant is driven by lineage plasticity signified by the loss of urothelial differentiation
and acquisition of neural phenotype and epithelial-to-mesenchymal transition (EMT).

Bladder cancer develops along two distinct tracks, referred to as papillary and non-papillary, that represent
clinically and molecularly different forms of the disease (Czerniak et al., 2016). The vast majority of papillary
tumors are of luminal molecular subtype characterized by gene expression patterns that are similar to
normal intermediate and terminal urothelial differentiation (Choi et al., 2014b). Papillary tumors frequently
recur but rarely progress to high-grade invasive carcinomas. On the other hand, non-papillary carcinomas
are clinically aggressive, exhibiting a high propensity for invasive growth. A large proportion of them are
lethal because of metastatic spread (Kamat et al., 2016). Many of them are of a basal molecular subtype
and express genes characteristic of the normal basal urothelial layer and EMT. In addition to conventional
urothelial carcinomas (UCs), many microscopically distinct bladder cancer variants have been described
and in general are thought to develop via progression of conventional disease (Amin, 2009)° The most
frequent of these variants are sarcomatoid, small cell, micropapillary, and plasmacytoid. These variants
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In this report we focus on SCC, which comprises less than 1% of all bladder cancer and often coexists with https://doi.org/10.1016/} isci.
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metastasis and shorter survival compared with conventional UC (Veskimae et al., 2019). We report on the
genome-wide characterization of bladder SCC, including microRNA (miRNA), gene expression, and whole-
exome mutational profiles of 34 paraffin-embedded SCC and 84 invasive conventional bladder UC samples
from an MD Anderson Cancer Center (MDACC) cohort. A cohort of 408 muscle-invasive bladder cancers in
The Cancer Genome Atlas (TCGA) was used as a reference (Table S1). These analyses revealed molecular
features associated with its aggressive nature that may be relevant for the early detection and treatment of
this highly lethal form of bladder cancer.

RESULTS
Mutational Signatures

The mutational profiles of conventional UC were characterized by the presence of statistically significant
recurrent somatic mutations in 30 genes (Figure 1A). The 10 most frequently mutated genes were TP53
(47%), ARID1A (25%), KDMO6A (22%), PIK3CA (22%), RB1 (17%), EP300 (15%), FGFR3 (14%), STAGZ2 (14%),
ELF3(12%), and CREBBP (11%). The overall mutational landscapes of luminal, basal, and double-negative
UC were similar, but several mutated genes were enriched in each molecular subtype. Mutations in FGFR3,
ELF3, CDKN1A, and TSC1 were enriched in luminal tumors, whereas mutations in TP53, RB1, and PIK3CA
were enriched in basal tumors (Figure 1A). The mutational landscape of the double-negative subtype was,
in general, similar to the basal tumors, which show increased p53 and RB1 mutations with a low frequency of
FGFR3 mutations. In fact, only one case in the double-negative subtype had FGFR3 mutation. The most
striking difference of double-negative tumors was enrichment for RB1 mutations (47%) and presence of
combined mutational inactivation of p53 and RB7 (35%). SCC exhibited high overall mutational rates (me-
dian mutational frequency = 259, interquartile range = 174), and their significantly mutated genes were
similar to those observed in conventional UC (Figure 1B; Table S2). However, the top two most frequently
mutated genes in SCCs (TP53[93%] and RB1[47%)]) were mutated at significantly higher frequencies in SCC
than they were in conventional UCs of the TCGA cohort (p < 0.01). This suggests that SCC evolved from
precursor conventional UC carrying these mutations, which may drive the progression process. Consistent
with this hypothesis, in the paired cases containing both SCC and conventional UC, nearly all mutations in
the conventional UCs were also present in SCCs, indicating that they were clonally related, e.g., the iden-
tical mutations of p53 (p.H179Y; p.C176F) and RB1 (p.R798fs) were present in both conventional and small
cell components of the same tumor further confirming their clonal evolution (Table S2). Several of the chro-
matin-remodeling genes that are frequently mutated in conventional UC, including KDM6A, EP300,
ARID1A, and CREBBP, were not mutated in SCC (Gui et al., 2011). Instead, SCCs carried mutations in
FSCN3(13%), BRD4 (13%), ISLR2 (13%), MAG (13%), MAMDC2 (13%), and TAF1D (13%), which are involved
in cellular extension, chromatin regulation, cell cycle, and signaling (Abudureyimu et al., 2018; Edwards and
Bryan, 1995; Filippakopoulos et al., 2012; Pijnappel et al., 2009; Wierer et al., 2018)' The functional signif-
icance of mutations in these genes for small cell progression remains unclear, but they are attractive can-
didates for future mechanistic studies. Interestingly, FGFR3 mutations, which were present in 14% of con-
ventional UCs, were not present in SCCs.

Mechanisms of Mutagenesis

To further characterize the mutational process associated with progression from conventional UC to SCC,
we examined six single-based substitutions (C>A, C>G, C>T, T>A, T>C, and T>G) in all cancer samples
(Alexandrov et al., 2013). The results revealed that SCCs were enriched with C>T mutations compared
with conventional UCs (Figures 1C-1E). Analyses of Sanger mutational signatures (Faltas et al., 2016) re-
vealed six dominant signatures in the conventional UCs in the TCGA cohorts: signatures 1, 2, 3 (BRCA1/
2 mutagenesis), 13 (APOBEC), 19, and 30 (Figures 1F and 1G). Clustering separated the conventional tu-
mors into two subsets (o and B) that were characterized by different levels of signature 13 (APOBEC) prev-
alence. In contrast, SCCs and the paired precursor conventional UCs were characterized by the uniform
dominance of signature 3 (Figure 1H). In addition, clustering segregated SCCs into two subsets that
were also characterized by different levels of APOBEC activity. Finally, mutagenesis signatures 16, 21,
and 22 were significantly enriched in SCCs compared with conventional UCs (Figure 11). Overall, these
data suggest that SCCs evolve from a distinct subset of conventional UCs.

RNA Expression

Whole-transcriptome expression profiling and unsupervised hierarchical clustering in a combined cohort
of SCCs and UCs separated the tumors into two clusters, one dominated by SCCs and the other by
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Figure 1. Mutational Landscape of SCC

(A) Mutational landscapes among the molecular subtypes of 408 muscle-invasive bladder cancers from the TCGA cohort
showing the frequency of mutations in individual tumors and somatic mutations for significantly mutated genes. The
frequencies of mutations of individual genes in the luminal, basal, and double-negative subtypes are shown on the left.
Bars on the right show the numbers of specific substitutions for individual genes.

(B) Mutational landscapes of 13 cases of SCC and 2 paired samples of precursor conventional UC showing the frequency
of mutations in individual genes and somatic mutations for significantly mutated genes. The frequencies of mutations of
individual genes are shown on the left. Bars on the right show the numbers of specific substitutions for individual genes.
(C) Composite bar graphs showing the distributions of all nucleotide substitutions in two sets of samples corresponding
to the TCGA cohort and SCC.

(D) Proportion of single-nucleotide variants (SNVs) in specific nucleotide motifs for each category of substitution in two
sets of samples as shown in (C).

(E) False discovery rate (FDR) for specific nucleotide motifs in two sets of samples as shown in (C).

(F) Average weight scores of mutagenesis patterns in three sets of samples corresponding to the TCGA cohort, paired
precursors conventional UC, and SCC.

(G) Weight scores of mutagenesis patterns in individual tumor samples of the TCGA cohort.

(H) Weight scores of mutagenesis patterns in SCCs and paired precursors conventional UCs.

(1) Statistical significance of mutagenesis patterns (p value) in SCC compared with conventional UC. For (E) and (1), p value
was calculated using Wilcoxon rank-sum and Kruskal-Wallis tests, respectively.

conventional UCs (Figure 2A). We recognized that 28% top upregulated and downregulated genes in SCCs
were involved in neural differentiation. Similarly, four of the top 10 upregulated genes in the SCC cluster
controlled neural development (Figure 2B).
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Figure 2. Whole-Genome mRNA Expression Profile of SCC and Conventional UC

(A) The top 50 upregulated and the top 50 downregulated genes in SCC (n = 22) compared with conventional UC (n = 84).
(B) Hierarchical cluster analysis of the cohort shown in (A) using the top 10 upregulated and top 10 downregulated genes

identified in SCC.

(C) Intrinsic molecular subtypes identified by the expression of luminal and basal markers in conventional UC (n = 84) and

SCC (n = 22).

(D) The top 10 canonical pathways dysregulated in SCC, as revealed by Ingenuity Pathway Analysis (IPA) and Gene Set

Enrichment Analysis (GSEA).

(E) Expression patterns of cancer metastasis pathway genes in molecular subtypes of conventional UC and SCC.
(F) GSEA of metastasis-related genes in SCC compared with conventional UC. A p value <0.05 was considered statistically

significant. A p value < 0.05 was considered statistically significant.

(G) The top 10 upstream regulators altered in SCC, as revealed by IPA and GSEA. Genes highlighted in red are involved in

neural differentiation.

4 iScience 23, 101201, June 26, 2020

Hepatic Fibrosis Q
Osteoarthritis Pathway 3
Granulocyte Adhesion S

Cancer Metastasis o

Atherosclerosis 8

= °
Tec Kinase 2
Macrophages in Arthritis a log(p) g
Agranulocyte Adhesion o Ratio ]
Actin Nucleation S
0 01020304 050607 08 09
Ratio ~log(p/a)
Conventional UC
E T 1
Double
Luminal Basal Neg SCC
T T T T 1
1 [} ||Il %”
IIIII II--IIII l? II 11 cf\\lN;
B1
il { i A
|I H2
".,." \ 'rl.jll:
SF6
it &
] 1 L1t
gl R 7
.I L10B
(B RINY N %E
Color scale (LR TR IR P
s p=0.002
0 =
I—1
-2
G c
TNF E
TP63 = =
PDGF BB = 3
TP53 = 2
SYVN1 1 = S
Estrogen Receptor =
IFNG - I 2
JUN = log(p) HogNoMp | ©
HIF1A 4 -Z score. @logFORq | &
4

1 2 3
~log(p/q)

iScience



iScience

Conventional UCs segregated into 3 subtypes (basal, luminal, and double-negative), whereas the SCCs
were uniformly double-negative for basal and luminal genes (Figure 2C). Ingenuity Pathway Analysis re-
vealed that SCCs were highly enriched for genes that promote cancer metastasis, and more than half of
the top activated canonical pathways were known to suppress adaptive (i.e., T-cell-mediated) immunity
(Figures 2D-2F). Finally, several of the top downregulated pathways promoted inflammation (TNF,
IFNG, JUN), stromal infiltration (TGFB1, PDGF BB), and basal bladder cancer biology (TP63, HIF1) (Figures
2D-2G, S1A, and S1B). Consistent with the presence of inactivating p53 mutations in virtually all SCCs, they
showed widespread inactivation of the p53 target genes (Figure S1A). Kaplan-Meier analysis has shown
that these phenotypic changes were associated with significantly shorter survival of patients with SCC
when compared with conventional UC (Figure S2).

More in-depth analyses revealed that these effects were associated with increased expression of transcrip-
tion factors that were also known to play important roles in neural crest development, pro-neural stem cell
differentiation, and cell proliferation, and the Musashi RNA-binding protein family (MSI1 and MSI2) that
functions as regulator of neural stem cell differentiation (Siddall et al., 2006) (Figures S3A and S3B). The
maintenance of an embryonic/stem cell-like neural phenotype was further reinforced by the upregulation
of two adhesion proteins, PROM1 and NCAM1 (Figures S3A and S3B) (Pruszak, 2015).

Comparative analyses of the miRNA expression profiles of conventional UC and SCC reinforced the conclu-
sion that SCC progression involves urothelial-to-neural plasticity. Differential expression analysis revealed
that over 200 miRNAs were selectively up- or downregulated in SCCs (Figure 3A), and in unsupervised clus-
tering a subset of the top 20 up- and downregulated miRNAs was sufficient to distinguish SCCs from con-
ventional UCs (Figure 3B). The upregulated miRNAs included the polycistronic miR-143/145 and miR-199a/
214 clusters, which control neural crest development and pluripotent neural stem cell maintenance (Celia-
Terrassa et al., 2017; Cordes et al., 2009). The downregulated miRNAs included three closely related poly-
cistronic clusters: miR-17/92, miR-106a/363, and miR-106b/25, comprising over 10 individual miRNA spe-
cies all involved in neural differentiation, including the regulation of neural stem cells (Rajman and Schratt,
2017) (Figure 3C). Interestingly, a subset of luminal miRNAs was downregulated in SCCs, whereas basal
miRNAs were upregulated (Figure 3D) (Ochoa et al., 2016).

Analysis of Regulons and EMT

The analysis of both mRNA and miRNA expression profiles suggested that progression to SCC was driven
by lineage plasticity characterized by the loss of urothelial differentiation and activation of neural transcrip-
tional programs. To explore this relationship further, we performed additional analyses of regulons impli-
cated in urothelial and neural differentiation (Tables S3 and S4). Most of 23 urothelial regulons displayed
reduced enrichment scores in progression to SCC (Figures 4A and 4B). On the other hand, all 15 neural reg-
ulons exhibited activation with increases in their enrichment scores (Figures 4C and 4D).

As the development of the central nervous system is a canonical EMT program that is activated during
embryogenesis, we hypothesized that dysregulation of EMT might represent an underlying mechanism
driving the progression to SCC. In embryogenesis, an EMT-permissive state is activated by the develop-
mental program. In solid tumors, at the core of this circuitry are TP53 and RB1, which negatively regulate
EMT and their target genes, and they were coordinately downregulated in virtually all SCCs (Figure 5A). As
the activation of EMT is driven by complex regulatory programs involving multiple pathways and their
respective genes, we assessed its activation by calculating a quantitative EMT score based on a 76-gene
signature developed by Byers et al. (Byers et al., 2013) (Figure 5B). We previously showed that TPé63 controls
the expression of basal high-molecular-weight keratins (KRT5, KRT6, and KRT14) and the EMT inhibitor,
miR-205, in urothelial cells (Choi et al., 2014b; Tran et al., 2013). The central role of TP43 in the regulation
of EMT was confirmed in several solid tumors (Stacy et al., 2017). Consistent with these observations SCCs
showed downregulation of TP53 and TPé3 target genes (Figure 5C). Correspondingly, E-cadherin (CDH1)
and other homotypic adhesion molecules, including claudin-1 (CLDN1) and tight junction protein 1 (TJP1),
were all downregulated in SCCs (Figure 5D). Surprisingly, none of the major transcriptional EMT regulators
of the SNAIL, TWIST, and ZEB families was overexpressed in SCC (Figure 5E). However, several families of
miRNAs typically involved in the activation of EMT such as miR-182, miR-183, and members of miR-200 fam-
ily were downregulated in SCC (Figure 5A). The luminal and basal subtypes of conventional UC were char-
acterized by positive EMT scores reflecting their epithelial phenotype (Figure 5F). The tumors in the dou-
ble-negative category had intermediate scores indicating their partial EMT, whereas SCCs had the lowest
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(A) Top 50 upregulated and downregulated miRNAs in SCC compared with molecular subtypes of conventional UC.
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Expression patterns of miRNAs involved in neural development in SCC and molecular subtypes of conventional UC.

Expression patterns of luminal and basal miRNAs in SCC compared with molecular subtypes of conventional UC.
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Figure 4. Enrichment Scores of Urothelial and Neural Regulons in Molecular Subtypes of Conventional UC (n = 84)
and SCC (n = 22)

(A) Enrichment scores of urothelial regulons.

(B) The expression pattern of selected target genes of PPARG and TP63 regulons.

(C) Enrichment scores of neural regulons.

(D) The expression pattern of selected target genes of NCAM1 and NEUROD1 regulons.

scores confirming their fully activated EMT state. Similar results were obtained by Gene Set Enrichment
Analysis using the 175 EMT gene signature developed by Yu et al. (Yu et al.,, 2013) (Figure 5G). These
data confirm that the activation of EMT combined with urothelial-to-neural phenotypic switch is the driving
mechanism of progression to SCC.

Immune Infiltrate

Immune checkpoint blockade is clinically active in approximately 20% patients with bladder cancer. The response
is positively associated with high mutational burden, infiltration with activated cytotoxic lymphocytes, and specific
molecular subtypes (van Dijk et al., 2019). Given the contradictory presence of high mutational rates and immu-
nosuppressive gene expression signatures observed in SCC, we characterized their expression of immune-
related genes. In general, conventional carcinomas in the basal subtype were characterized by increased immune
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Figure 5. Dysregulation of EMT Network in Molecular Subtypes of Conventional UC and SCC

(A) Expression patterns of representative genes of the EMT regulatory network in molecular subtypes of conventional UC
and SCC.

(B) EMT scores in molecular subtypes of conventional UC and SCC.

(C) Gene Set Enrichment Analysis (GSEA) analysis of TP53 (left) and TP43 (right) target genes in SCC compared with
conventional UC.

(D) Boxplot analysis of expression levels of CDH1, TJP1, and CLDN1 in molecular subtypes of conventional UC and SCC.
(E) Boxplot analysis of expression levels of SNAI2, SNAI3, TWIST1, ZEB1, and ZEB2 in molecular subtypes of conventional
UC and SCC.

(F) Boxplot analysis of EMT scores in molecular subtypes of conventional UC and SCC.

(G) GSEA analysis of 175 EMT target genes in SCC compared with conventional UC. Inpanels C, D, E, F, and G, a p value <
0.05 was considered statistically significant.
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Figure 6. Expression Pattern of Inmune Cell Infiltrate and Inmune Checkpoint Genes in Molecular Subtypes of
Conventional UC and SCC

(A) Expression pattern of immune cell infiltrate. Top to bottom: B cell, T cell, CD8, MacTH1, and dendritic cell expression
clusters.

(B) Boxplot of immune scores calculated using the gene expression profile shown in (A) for molecular subtypes of
conventional UC and SCC.

(C) Heatmap of CIBERSORT scores for 22 immune cell types in molecular subtypes of conventional UC and SCC. A p
value < 0.05 was considered statistically significant.

(D) Proportion of cases with significant CIBERSORT scores in conventional UC and SCC (left). Proportion of cases with
significant CIBERSORT scores in molecular subtypes of conventional UC and SCC (right).
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Figure 6. Continued

(E) Expression of immune checkpoint genes in conventional UC and SCC in relation to their molecular subtypes.

(F) Boxplot of ADORA2A mRNA expression levels in molecular subtypes of conventional UC and SCC. In panels B, D, and
F, a p value < 0.05 was considered statistically significant.

gene expression signatures (Figure 6A). In contrast, SCCs were characterized by decrease of immune gene
expression. The null immune signature of SCCs was confirmed by significantly reduced immune scores (Fig-
ure 6B). More in-depth analysis of immune infiltrate status was performed using the CIBERSORT algorithm, which
provided quantitative assessment of expression signatures related to 22 immune cell types (Newman et al., 2015).
CIBERSORT confirmed that SCCs were characterized by an immune-null signature when compared with conven-
tional UCs (Figures 6C and 6D). The analysis of the expression signature of immune checkpoint ligands and their
receptors (Sharma and Allison, 2015) included CD70 and CD27, CD80 and CTLA4, TNFSF9 and TNFRSF18, ADA
and ADORA2A, and PDCD1G2 and CD274 (Figure 4E). SCCs were also characterized by downregulation of nearly
all immune checkpoint ligands and their receptors with the exception of ADORA2A, a major suppressor of im-
mune infiltration, which was overexpressed (Figure 6F). This unique feature of SCC potentially explains their
null immune phenotype, and ADORA2A may therefore represent an unexplored therapeutic target.

Validation Studies

We verified the expression patterns of signature luminal markers (GATA3), basal markers (KRT5/6, KRT14),
and neural markers (Synaptophysin, Chromogranin, and INSM1) by immunohistochemistry (IHC). The SCCs
were all negative for GATA3, KRT5/6, and KRT14. In contrast, SCCs were IHC-positive for neural marker
such as Synaptophysin, Chromogranin, and INSM1, consistent with the RNA expression data (Figure 7A).
IHC stains for CD3 and CD8 T cells confirmed the immune-null phenotype of SCCs, which showed practi-
cally no T cell infiltrate (Figure 7B). In contrast, many double-negative conventional UCs showed pro-
nounced infiltrate of CD3 and CD8 T cells. On the other hand, only a sparse T cell infiltrate was present
in luminal and basal conventional UC subtypes. Overexpression of synpatophysin, MSI1, E2F1, and
ADORA2A with downregulation of E-cadherin in SCCs was confirmed on several fresh frozen tissues by
western blotting (Figure 7C).

As the miR17 family is considered to be a regulator of neural differentiation and was consistently downre-
gulated in SCC, we hypothesized that this downregulation played a role in neural switch (Mogilyansky and
Rigoutsos, 2013). To verify this hypothesis, we first analyzed the mRNA expression signatures of 30 UC cell
lines and found that, similar to patient samples, they could be separated into luminal and basal subtypes.
However, a large proportion (33%) of these cell lines was negative for the basal and luminal markers and
was considered to be double-negative. Consistent with our observation on patient samples, double-nega-
tive UC cell lines showed upregulation of neural markers. As SCCs appeared to be related to basal subtype,
we ablated miR17-5p by locked nucleic acid in the basal UC cell line UC6 and confirmed it by RT-gPCR (Fig-
ures 8A and S4). The ablation of miR17-5p caused dysregulation of multiple genes enriched for neural
markers (Figures 8B and 8C). This included activation of several regulons (TP63, FOXM1, EGFR, PROM1,
SOX2, and E2F1) implicated in neural differentiation (Figures 8D-8F). In summary, ablation of miR17 vali-
dated the functional role of the miRNA in the induction of neural phenotype.

DISCUSSION

Bladder cancer is the ninth most common cancer worldwide, affecting 430,000 people and resulting in
165,000 deaths per year (Antoni et al., 2017). In the United States it is the fourth most common cancer in
men with an estimated incidence of approximately 80,000 cases in 2019 (Siegel et al., 2019). More than
90% bladder cancers are UCs that originate from precursor lesions in the epithelial urothelial layer of the
bladder. Progression of conventional UC to the so-called variant UCs such as SCC, sarcomatoid, micropa-
pillary, or plasmacytoid is associated with increased clinical aggressiveness (Amin, 2009). In the following
we summarize the key findings concerning molecular characterization of SCCs and suggest how the find-
ings contribute to our understanding of its clinically aggressive behavior as well as how to open more effec-
tive therapeutic opportunities.

Similar to conventional UC, SCCs have high mutational rates comparable to those observed in mela-
nomas and non-small cell lung cancers (Hoadley et al., 2018). In SCC, these high mutational rates
are associated with mutation signature 3, characteristic of loss of BRCA1/2 function. SCCs can be sepa-
rated into two subgroups, i.e., with and without mutation signature of the endogenous mutagenic

10 iScience 23, 101201, June 26, 2020

iScience



iScience ¢? CellPress
OPEN ACCESS

A . .
Synaptophysin Chromogranin
— o E e B N‘-""!,.J--'»" V). 0y
o) ;
®©
£
IS
=}
ol
e e houm
5 S SR
= Sh SRR A
g w{%’”;'n‘?»
c W 4 |
(e} h
O|w
(2]
@
m
g !
Y, NTy oy
® R
R
W \A :
|
L M arattnet )

Double Neg

‘,@n SRR ¢

I iy

IR

ok AR
A

CD3T Cells

CD8 T Cells

c Conventional UC  SCC

12345 678
Synaptophysin . an>
MSI1 -
E2F1 ——

E-cadherin  ——smw- — a=
ADORA2A = e -——

B-actin “—

Figure 7. Immunohistochemical Validation Studies of Molecular Features of SCC when Compared with
Conventional UC

(A) The immunohistochemical expression signatures of luminal, basal, and neuroendocrine markers in representative
luminal and basal cases of conventional UC and SCC on a tissue microarray (TMA) composed of conventional UC (n = 76)
and SCC (n = 14). Scale bars, 40 pm.

(B) The immunohistochemical expression of CD3 and CD8 T cells in representative luminal, basal, and double-negative
cases of conventional UC and SCC on a TMA composed of conventional UC (n = 76) and SCC (n = 14). Scale bars, 40 pm.
(C) Western blot documenting the overexpression of synaptophysin, MSI1, E2F1, and ADORA2A with loss of E-cadherin in
fresh frozen tissue of conventional UC and SCC. All cases of conventional UC are of the basal subtype.
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Figure 8. Induction of Neural-like Phenotype by Locked Nucleic Acid (LNA) Ablation of miR-17-5p in UC6 Cell Line
(A) Detection of miR17-5p ablation by RT-qPCR induced by miR17-5p LNA with NegCtl LNA as control and miR-125a as an
external reference.

(B) Top 50 up- and downregulated genes induced by miR17-5p LNA by RNA sequencing (RNA-seq). Genes highlighted in
red are involved in neural differentiation.

(C) Representative miR17-5p target genes upregulated induced by miR17-5p LNA transfection revealed by RNA-seq.
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Figure 8. Continued

(D) Representative upregulated urothelial and neural regulons induced by miR17-5p LNA transfection revealed by RNA-
seq.

(E) Upregulation of E2F1 expression induced by miR17-5p LNA quantified by RT-qPCR.

(F) Representative upregulated E2F1 targets induced by miR17-5p LNA revealed by RNA-seq. In panels Aand E, a p value
< 0.05 was considered statistically significant.

enzyme, APOBEC cytidine deaminase. When compared with conventional UC, SCCs are enriched for
specific mutations. Practically all of them have inactivating mutations of p53 and many of them show
combined inactivation of p53 and RB1, resulting in the combined loss of TP53- and RB1-associated
transcriptional pathway activities seen in these tumors. Consistent with their basal origin, none of the
SCCs contained the mutations that are typically enriched in the luminal subset of conventional UCs.
Another feature of SCCs is the absence of mutations in chromatin-remodeling genes, which are common
in conventional UC (Gui et al., 2011), reinforcing the concept that SCCs evolve from a unique subset of
conventional UCs.

SCCs show a genome-wide change in their expression profiles affecting nearly 40% of the protein-encod-
ing genome. Much of this expressional change resulted in lineage plasticity, exhibited by global
downregulation of genes involved in urothelial differentiation and upregulation of neural differentiation
programs. The urothelial-to-neural phenotypic switch was further confirmed by the in-depth analysis
of the urothelial and neural regulons, which revealed widespread downregulation of practically all targets
controlled by master regulators of the urothelial phenotype and activation of genes in neural regulons.
This dramatic phenotypic switch occurred in a background of dysregulated EMT. Although the transcrip-
tion factors that serve as master regulators of EMT (i.e., the SNAIL, TWIST, and ZEB families) were not
activated, SCCs showed downregulation of epithelial micro RNAs (i.e., the miR-200 family and miR-182/
183) and homotypic epithelial adhesion molecules such as E-cadherin (CDH1), claudin-1 (CLDN1), and
tight junction protein 1 (TJP1). Our quantitative assessment of EMT showed that SCC had the lowest
EMT scores, whereas the double-negative subtype of conventional UC had intermediate EMT scores
corresponding to their respective complete and partial EMT states. At the core of EMT circuitry was the
combined loss of p53 and RB complemented by the downregulation of p63, which positively regulates
basal markers and negatively regulates EMT. These features not only activate EMT but also correspond
to the essential component of lineage plasticity representing the fundamental biologic feature of
progression to SCC.

The neural signature based on limited number of markers was originally identified by the TCGA and
Lund groups and was further confirmed on several multi-institutional cohorts (Batista da Costa et al.,
2019; Marzouka et al., 2018; Robertson et al., 2017; Sjodahl et al., 2017; Tan et al., 2019). The neural expres-
sion profile of these tumors overlap with those of SCC, but the coexpression of urothelial markers and
the retention or loss of urothelial phenotype varies in different cohorts. Therefore, it is uncertain whether
the tumors in these cohorts represent conventional UCs with upregulation of neural/neuroendocrine
genes or they are SCC neuroendocrine variants exhibiting loss of urothelial features with gain of neural
differentiation.

Several groups of investigators proposed various classification schemes of bladder cancer based on their mo-
lecular profile (Choi et al., 2014b; Damrauer et al., 2014; Robertson et al., 2017; Sjodahl et al., 2012). The original
classification proposed by the Lund group divided bladder cancers into five categories (Sjodahl et al., 2012).
Similarly the TCGA group identified five molecularly distinct classes of bladder cancer as luminal-papillary,
luminal-infiltrated, luminal, basal/squamous, and neuronal (Robertson et al., 2017). Damrauer et al. and our
group proposed classifiers dividing bladder cancer into major groups referred to as luminal and basal with a
third small subset referred to as double-negative (Choi et al., 2014b; Dadhania et al., 2016; Damrauer et al.,
2014). Additional meta- and consensus analyses of bladder cancer were recently published (Kamoun et al.,
2020; Tan et al.,, 2019). Although various groups of investigators propose a different terminology, the set of
markers used to classify bladder cancers among the groups is overlapping, and it appears that the top level
of dichotomy is between luminal and basal categories. These two major subsets of bladder cancer show features
of undifferentiated basal and more differentiated intermediate luminal urothelial cell layers (Choi et al., 2014a,
2014b). A small subset of tumors, referred to as double-negative, appears to be negative for both luminal
and basal markers (Dadhania et al., 2016). They can be perceived as a poorly differentiated variant of the basal
subtype as they retain the expression of a signature basal marker, CD44. They also show overlapping mutational
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signature with the basal subtype (Dadhania et al., 2016). Several animal model studies confirmed the distinct
cellular origin of basal and luminal tumors. These studies suggest that basal tumors originate from undifferen-
tiated uroprogenitor cells (Shin et al., 2014; Van Batavia et al., 2014). In contrast, luminal tumors are derived
from intermediate uroplakin-expressing cells (Saito et al., 2018). Our combined analyses of the mutational
landscape and expression signatures suggest that SCC evolves from basal subtype with double-negative tumors
representing an intermediate step in the progression.

We found that SCCs are depleted of immune cell infiltration and are characterized by the so-called
immune desert phenotype. In contrast to closely related sarcomatoid carcinomas of the bladder, which
show overexpression of the immune checkpoint receptor ligand PD-L1, SCCs express a unique im-
mune checkpoint receptor adenosine receptor A2A (ADORA2A) that has been shown to be a potent
inhibitor of immune infiltration and especially of CD8+ cytotoxic lymphocytes (Ma et al., 2017). The
overexpression of ADORA2A in the majority of SCCs may explain their overall immune-null phenotype
but most importantly represents as of yet unexplored therapeutic target for patients affected by this
highly lethal variant of bladder cancer. A phase | clinical trial of A2AR antagonists (PBF-509 and CPI-
444) alone or in combination with the immune checkpoint inhibitor atezolizumab is currently recruiting
participants to study the efficiency of A2AR blockade for solid tumor including bladder cancer
(NCT02655822).

Limitations of the Study
e The number of SCCs analyzed in our study is a limiting factor, and our observations should be vali-

dated on larger numbers of cases possibly from the inter-institutional cohorts.

® Immune desert phenotype of SCC and the putative role of ADORA2A may represent therapeutic tar-
gets and should be validated in preclinical models.

Resource Availability
Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-
tact, B. Czerniak (bczernia@mdanderson.org).

Materials Availability
Requests for materials related to this study should be directed to the Lead Contact of this study.

Data and Code Availability

Data were deposited on SRA (SRA SUB6960718) and GEO (GEO: GSE128192, GSE145260, GSE145259, and
GSE128277).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1: Expression patterns of TP53 and TGFBI1 target genes in SCC and conventional

UC, Related to Figure 2.
(A) Expression patterns of TP53 target genes in SCC and molecular subtypes of conventional UC.

(B) Expression patterns of TGFBI1 target genes in SCC and molecular subtypes of conventional
UC.
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Figure S2: Survival analysis in SCC and conventional UC, Related to Figure 2.
Kaplan Meier analysis of survival in SCC and conventional UC and log-rank testing. A p-value
<0.05 was considered statistically significant.
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Figure S3: Expression patterns of genes involved in the regulation of neural phenotype,
Related to Figure 4.

(A) Expression patterns of neural phenotype-related genes in SCC and molecular subtypes of
conventional UC. (B) Expression patterns of transcription factors involved in neural progenitors
development in SCC and molecular subtypes of conventional UC.
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Figure S4. Molecular subtypes in 30 bladder cancer cell lines, Related to Figure 8.

Expression pattern of luminal, basal and neural markers in 30 bladder cancer cell lines revealed by
RNASeq analysis.



Table S1: Summary of Clinical and Pathological Data for MD Anderson and TCGA Cohorts
MDACC Small Cell Carcinoma FFPE Cohort, Related to Figure 1.

Stage Subtype Gender F/M Nsuarrrrllt;elresof Age, yr, mean = SD

Invasive

T1 Double negative 1/0 1 N/A

(T2 and higher) Double negative 2/31 33 67.1 +£10.8

Total 3/31 34 67.4+10.8

CONVENTIONAL UROTHELIAL CARCINOMA COHORTS

MDACC FFPE Cohort

Invasive Luminal 7/36 43 702 +£11.7

(T2 and higher) Basal 10/18 28 68.7+10.9
Double Negative 2/11 13 67.9+8.8

Total 19/65 84 69.3+11.0

MDACC Tissue Microarray FFPE Cohort

Invasive Luminal 7/33 40 69.1 £11.5

(T2 and higher) Basal 10/17 27 70+10.3
Double Negative 1/8 9 63.7+6.1

Total 18/58 76 68.8=10.6

TCGA Cohort

Invasive Luminal 48/164 212 68.3£11.0

(T2 and higher) Basal 56/123 179 68.0 £10.1
Double Negative 3/14 17 65.6 +10.2

Total 107/301 408 68.1 +10.6

F, female; M, male; yr, year; SD, standard deviation



Table S2: List of Mutations Identified in SCC (n=13) and Paired Samples of Conventional UC, Related to Figure 1.

| Paired Conventional UC/SCC | |
Conventional UC SCC

ScC

| 1 2 | | 1 2 | | 3
ucl1 uc2 scci scc2 Scc3

TP53 p.H179Y p.C176F p.H179Y p.C176F p.E271K

RB1 p.R798fs p.R798fs
FSCN3

PRAMEF1  p.P456LT

BRD4

ISLR2
MAG
MAMDC2
TAF1D

CIAPIN1

ARID1A p.YP809fs
PKNOX1

Cleorf6l

CcDC23 p.S311fs

PCDH18

NEUROG1

SLC9A3R2

AR

TPX2
CCDC158
ADCYS
LYZLA
MYST2
TEF
SERPINB12
RABEP1
HOXB5 p.Y19*
COG1
CRTAM
PIGN

DLX2
RNF212

SCC4

p.E285K

p.E77Q

p.E256%*

p.G367A

p.S121*

p.Q488*

p.S3*

p.K703K
p.Ql32*
p.S216*

Splice Site

p.Q139*
p.S326*

SCC5 SCC6 scc7 sccs scco
p.N2471;p.A15
9fs p.E286K p.N210fs p.E285K p.R337C

p.Y325N;
p.1369fs p.R579%;p.M708K p.E398fs
p.L259P

p.Q30E
p.D148N
p.E178K p.E572Q
p.FDSVLA35fs
p.E139del

p.I6N
p.E1297*

p.Q744*

p.Q296*

Splice Site

p.D13E
p.DAPFCLN228fs

p.Y227*

p.P147S

10
SCC10

p.R213*

p.S462*

p.D131Y

p.Q195P

11

SCC11

12 13

SCC12 SCC13

p.P85fs p.R248W

p.R787* p.S567L

Splice Site
p.225_226L
P>LKRWP

p.P164Q;p.
K163K

p.V28G

* Stop codon; fs, Frame shift; ¥, mutations present in the Conventional UC sample but not in the SCC paired sample



TRANSPARENT METHODS

Clinical information and tissue samples

The use of human tissue samples for this study was approved by the Institutional Review
Board of the UT MD Anderson Cancer Center. Thirty-four archival paraffin-embedded SCC and
84 invasive conventional bladder UC samples from the MD Anderson Cancer Center cohort were
analyzed (Table S1). UCs were classified according to the histologic tumor grading system of the
World Health Organization. Levels of invasion were defined according to the TNM staging
system. All conventional UCs were invasive T2 and above high-grade tumors. The SCC and UC
cohorts had similar age distributions with a male predominance. The mean age of the SCC cohort
(31 men and 3 women) was 67 years (range, 34-90 years). The mean age of the conventional UC
cohort (65 men and 19 women) was 69 years (range, 33-91 years). The median follow-up
durations for the SCC and UC cohorts were 14 and 23 months, respectively. Sufficient high-quality
DNA was available for 13 SCC cases and 2 paired SCC coexisting with conventional UC cases
for whole-exome sequencing. Gene expression profiling was performed on 22 of the cases using
[llumina’s DASL platform and the data were merged with those obtained from a cohort of 84
conventional UCs. Quantitative RT-PCR was used to analyze the miRNA expression levels in 22
SCC samples and 80 conventional UC samples. To perform immunohistochemical validation
studies of selected markers, we created a tissue microarray from the genomic profiling cohort
comprising 14 of the cases of SCCs and 76 of the cases of conventional UC. Genomic, clinical,
and pathological data from The Cancer Genome Atlas (TCGA) Bladder Cancer (BLCA) cohort of

408 muscle-invasive bladder cancers were used for reference.



DNA and RNA extraction

Genomic DNA and total RNA were extracted from FFPE tissue samples for DNA sequencing
and microarray experiments using the MasterPure Complete DNA and RNA Purification Kit
(Epicenter Biotechnologies, Madison, WI) according to the manufacturer's instructions as
previously described(Guo et al., 2019). In brief, FFPE tissue cylinders were minced,
deparaffinized, and digested with 300 ul Proteinase K digestion buffer with 10 ul Proteinase K
(50ug/ul, Roche Diagnostics, Mannheim, Germany) at 55°C overnight. DNA and RNA
concentrations and quality were determined using the ND-1000 spectrophotometer (NanoDrop
Technologies Inc., Wilmington, DE) and the Quant-iT PicoGreen Kit (Life Technologies,
Carlsbad, CA). Sufficient amounts of total RNA for gene expression analysis were extracted from
all 47 SCC and 84 conventional UC samples. In addition, sufficient amount of genomic DNA were
extracted from 13 cases of SCC, including 2 cases which also contained coexistent conventional
precursor UC in the same specimens. DNA extracted from the peripheral blood lymphocytes or

normal tissue of the resection specimen from the same patient was used as a control.

Whole-exome sequencing and processing pipeline

Genomic DNA from 13 cases of SCC and two cases of paired conventional UC were used for
whole exome sequencing, which was performed on the HiSeq 2000 platform (Illumina, San Diego,
CA, USA) at MD Anderson Cancer Center’s Genomic Core. The TCGA data on 408 muscle-
invasive conventional UC of the bladder were used as a reference set for mutational analyses.
BWA-MEM (version 0.7.12) was used to align reads to the hgl9 reference genome. Samtools
(version 1.4) and Picard (version 2.5.0) were used to sort and convert between formats and remove
duplicate reads(Etherington et al., 2015; Li et al., 2009). The Genome Analysis Toolkit

(version3.4-46) was used to generate realigned and recalibrated BAM files(McKenna et al., 2010;

2



Van der Auwera et al., 2013). Somatic variants relative to the normal reference sample were
detected by MuTect2(Cai et al., 2016; Callari et al., 2017). Oncotator (version 1.8.0.0) was used
to produce gene-based and function-based annotations of the single nucleotide variants (SNVs)
and insertions/deletions(Ramos et al., 2015). Similar analyses were performed for the genome-
wide expression data from the TCGA cohort (n=408), and tumors were assigned to specific
molecular subtypes by applying the sets of luminal and basal markers as described previously(Choi
et al., 2014) Mutational data were downloaded from the TCGA portal (https://tcga-

data.nci.nih.gov/tcga/). MutSigCV (versionl.4; https://www.broadinstitute.org/cancer/cga/mutsig

) and used to identify genes that were mutated more often than expected by chance given the
background mutation processes(Lawrence et al., 2013) The significant gene list was obtained
using a false discovery rate (FDR) cutoff 0.05. The statistical significance of associations between

the mutations and the molecular subtypes was assessed by the Fisher's exact test.

Mutagenesis signatures

We used 432 SNVs identified in at least one sample and segregated them into six types of
mutations corresponding to the following base pair substitutions: C>A, C>G, C>T, T>A, T>C,
T>G. The Fischer’s exact test was used to determine the distribution of these mutations in the three
groups of samples corresponding to conventional UC in the TCGA cohort, paired UC and SCC
cohort. The genomic context of SNV, referred to as fingerprints which included the two flanking
bases on 5’ and 3’ sides to each position for a total of 96 possible mutational fingerprints, was
assembled. Wilcoxon Rank Sum tests were used to test the hypothesis of no difference in the
frequency of any fingerprint between any two groups of mucosal samples. The Benjamini and
Hochberg method was applied to control the FDR. For each sample, we used its mutational

fingerprints (¥) and the quadratic programming method to compute a weight score (H) for each of
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30 canonical mutational signatures (W) available from the Sanger Institute

(http://cancer.sanger.ac.uk/cosmic/signatures). We applied the 96-by-30 matrix of canonical

signatures (W) and given the 96-by-1 mutational profile of a sample (V), we computed the 30-by-
1 vector (H) for each of the canonical signatures’ relative contributions to the sample profile by

solving the following optimization formula:
miny (WH — V)T(WH — V) such that h; > 0 and Z; hi = 1.

The optimization problems were solved using “quadprog” (version 1.5-5). Kruskal-Wallis test
was used to test against the null hypothesis of no difference in weight scores among three groups

of samples: conventional UC, paired UC and SCC.
mRNA expressions and data processing

RNAs from SCCs (n=22), and conventional UCs (n=84) were assessed using Illumina
HumanHT-12 DASL Expression BeadChips as per the manufacturer’s instructions, and Illumina
BeadStudio v3.1.3 (Gene Expression Module V3.3.8) was used for transformation and
normalization of the data. Comparisons were carried out using Welch’s t-tests and Benjamini-
Hochberg -controlled FDR-adjusted p values (<0.05) and fold changes. Unsupervised hierarchical
clustering of log ratios was performed in R (Version 3.5.2), and the results were visualized with R
package ComplexHeatmap. Pearson's correlation, mean centering, and average linkage were
applied in all clustering applications. Genes within 0.5 standard deviations of the log-transformed
ratios were discarded. To select specific and robust gene sets associated with SCC, we used the
combination analysis with Welch's t-test and fold-change; genes having FDR-adjusted p-values
<0.05 and showing fold-change >2.0 were selected. IPA software (Ingenuity Systems, Redwood

City, CA) was used to determine dysregulated canonical pathways and predicted upstream


http://cancer.sanger.ac.uk/cosmic/signatures)

regulators by calculating z-scores and —logio p values(Jimenez-Marin et al., 2009; Kramer et al.,
2014). GSEA was used to evaluate the enrichment probability of the top canonical pathways and
upstream regulators identified by IPA(Subramanian et al., 2005). Both SCC and UC samples were
classified into luminal, and basal intrinsic molecular subtypes using an algorithm described

previously.(Ochoa et al., 2016)

Immune gene expression signatures for SCC and conventional UC were established using
unsupervised hierarchical clustering (Pan et al., 2019). Gene dendrogram nodes corresponding to
genes characteristically expressed in specific immune cell types were identified and validated
through DAVID functional annotation clustering and Ingenuity Systems Analysis
(www.ingenuity.com). Immune gene signatures were used as previously reported (De Simone et
al., 2016; Iglesia et al., 2014; Sherman et al., 2007; Torri et al., 2010). The immune expression
signature was quantitatively assessed by calculating the immune scores for the expression profile
of 128 genes shown in Figure 4. Specifically, the immune score for the ith sample was defined as

mi-(1/n) Y-, m;, where mi is the median expression level across the ith sample’s immune
expression profile and (1/n) ¥, m; is the grand mean of medians across all n samples. Additional

analysis of 1immune infiltrate was performed by the CIBERSORT algorithm

(http://cibersort.standford.edu/runcibersort.php). The expression profile of 547 genes using
normalized mRNA levels with absolute mode and default parameters was used to assess the
presence of 22 immune cell types in the conventional UC and SCCs.(Chen et al., 2018; Gentles et
al., 2015) An empirical p-value was calculated using 500 permutations to test against the null
hypothesis that no cell type is enriched in each sample. Then a Fisher’s exact test was used to test
against the null hypothesis of no association between sample types and their statistical

significance.


http://cibersort.standford.edu/runcibersort.php

To quantitatively assess the level of EMT (Garg and Singh, 2019; Mak et al., 2016), we
calculated the EMT score based on a 76-gene expression signature reported in Byers et al. For
each tumor sample, the score was calculated a weighted sum of 76 gene expression levels:

7€ w; G;;, where w; is the correlation coefficient between the ith gene expression in the signature

'E
and that of E-cadherin and G;; is the ith gene’s normalized expression in the jth tumor sample. We

centered the scores by subtracting the mean across all tumor samples so that the grand mean of the

score was Zero.
miRNA analysis

miRNA analysis was performed on 22 SCC samples and 80 conventional UC samples (Dong et
al., 2017). For miRNA cDNA synthesis, 400 ng of total RNA was reverse-transcribed using a
miRNA reverse transcription kit (Applied Biosystems; catalogue No. 4366596) in combination
with the stem-loop Megaplex primer pool (Applied Biosystems). For each cDNA sample, 381
small RNAs were profiled using TagMan Human MicroRNA A Cards (Applied Biosystems;
catalogue No. 4398965). Fold-change for each microRNA was determined using the ACt method
and examined using Welch’s t-test. An adjusted p value with FDR <0.05 was considered

significant.
Regulon analysis

We performed regulon analysis to infer the relative activity of two sets of candidate
transcription factors (TFs)(Castro et al., 2016). For a given TF, the set of its putative target genes
is defined as a regulon. The first set of TFs were previously reported to be associated with bladder
cancer and analyzed for the gene regulatory network: FOXA1, RXRA, FGFR3, RXRB, ERBB3,

AR, GATA3, ESR2, ERBB2,PPARG, RARA, FGFR1, PGR, RARB, TP63, ESR1, GATAS®,



STAT3, FOXMI1, KLF4, EGFR, and HIF1A(Robertson et al., 2017). The second set of TFs were
those reported to be related to neuronal phenotyping and manually curated based on the literature,
including ASCL1, PROM1, NR2F1, MSX1, SOX2, SOX9, SOX11, NCAM1, NEURODI1, CHD7,

MSI1, MSI2, E2F1, E2F2, and SOX4.

To construct the regulons for the TFs of interest, we employed the method developed and
implemented in R package RTN1(Castro et al., 2016; Fletcher et al., 2013). In addition, we utilized
the IPA to supplement the list of target genes of a TF if the number of target genes identified by

the RTN method was too small to allow reliable downstream analyses.

We analyzed each regulon using the two-tailed GSEA(Castro et al., 2016; Subramanian et al.,
2005). This method first divided the set of target genes for each TF into positive and negative
targets associated with the phenotype of interest (for example, conventional UC vs SCC) using
Spearman’s correlation coefficient. The distribution of the positive and negative targets was tested
respectively, producing enrichment scores (ES) for each sample. The difference between positive
ES and negative ES resulted in the differential enrichment score (dES). For further analysis of the
difference between the conventional UC and SCC, we extracted the dES for each sample. We
assessed how the regulons were associated with bladder cancer subtypes by analyzing the dES

with heatmaps and two-tailed GSEA.

Validation studies

Tissue microarrays, immunohistochemistry, and western blotting. The expression levels of
selected genes were validated on parallel tissue microarrays (TMAs) comprising FFPE samples
from 76 UCs and 14 SCCs. The TMAs were designed and prepared as described previously and

profiled by genomic platforms(Sanfrancesco et al., 2016). In brief, TMAs (two 1-mm cores per



case) were constructed with a manual tissue arrayer (Beecher Instruments, Silver Spring, MD).
Tissue sections from the TMAs were stained with hematoxylin and eosin to confirm the presence
of tumor tissue. Immunohistochemical staining was performed with mouse monoclonal antibodies
against human GATA3 (HG3-31 clone, 1:100 dilution; Santa Cruz Biotechnology Inc., Santa
Cruz, CA), cytokeratin 5/6 (clone D5/16B4, 1:50 dilution, Dako, Carpinteria, CA), cytokeratin 14
(LLO02 clone, 1:50 dilution; BioGenex, Fremont, CA), Synaptophysin, (clone 27G12, 1:600
dilution, Novocastra), Chromogranin (clone LK2H10, 1:600 dilution, Chemicon), and
INSM1(clone A-8, 1:300 dilution, Santa Cruz Biotechnology Inc., Santa Cruz, CA). TMAs were
also stained with antibodies specific for CD3 (rabbit polyclonal, 1:100 dilution, Dako, Carpinteria,
CA), and CD8 Ab-1 (mouse clone C8/144B, 1:50 dilution, Thermo Scientific, Kalamazoo, MI).
Immunostaining was performed using the Bond-Max Autostainer (Leica Biosystems, Buffalo
Grove, IL). The staining intensities were scored by two pathologists (CCG and BAC) as negative
and mildly, moderately, or strongly positive. In addition, the levels of Synaptophysin (D8F6H
clone, 1:1000 dilution, Cell Signaling Technology), MSI1 (D46A8 clone, 1:1000 dilution, Cell
Signaling Technology), E2F1 (Polyclone, 1:1000 dilution, Cell Signaling Technology), E-
Cadherin (4A2 clone, 1:1000 dilution, Cell Signaling Technology), and ADORA2A (7F6-G5-A2
clone, 1:200 dilution, Santa Cruz Biotechnology Inc., Santa Cruz, CA) in SCC were confirmed on

selected frozen tumor samples by western blotting.

Locked Nucleic Acid Ablation of miR-17-5p. We first analyzed genomic mRNA profile from 30
bladder cancer cell lines. In brief, total RNA was isolated using the mirVana miRNA isolation kit
(Ambion, Inc). RNA purity and integrity were measured by NanoDrop ND-1000 and Agilent
Bioanalyzer and only high-quality RNA was used for the cRNA amplification. Direct

hybridization assays were performed using the Illumina RNA amplification kit (Ambion, Inc,



Austin, TX) and Illumina HT12 V4 chips (Illumina, Inc., San Diego, CA). Slides were scanned
with Bead Station 500X and signal intensities were quantified with GenomeStudio (Illumina, Inc.).
Quantile normalization in the Linear Models for Microarray Data (LIMMA) package in the R
language environment was used to normalize the data. For the purpose of locked nucleic acid
ablation of miR-17-5p experiment we focused our analysis on the expression pattern of luminal,
basal, and neural markers. The basal urothelial carcinoma cell line UC6 was seclected for the
ablation of miR-17-5p. UC6 cells were grown to 70% confluency and were transfected using
Lipofectamine 2000 (Thermo Fisher) in triplicates with 20 nM LNA for miR-17-5p (assay ID
YI04100215-ADA) and negative control A-LNA (assay ID YI00199006-ADA) (Qiagen). After
24 hours, the cells were washed with PBS and RNA was isolated using Trizol (ThermoFisher).
Gene expression profiles of the miR17-5p-LNA and negative control A-LNA in transfected and
control UC6 cells were analyzed by RNASeq on an Illumina HiSeq2000. RNA was extracted as
before then 76 bp libraries were constructed. mRNA expression profiles were mapped to the hg19
genome using MapSplice (de Matos Simoes et al., 2015). Gene expression was determined by
RSEM and normalized with to the upper quartile.

For selected RNAs, expression levels after miR17-5p-LNA transfection were measured by
quantitative PCR on an ABI 7900. For miRNA, each sample was reverse transcribed using
TagMan microRNA Reverse Transcription kit with the target specific primer. PCR was then
performed to quantify miR-17-5p with miR-125a-3p as control and RNU48 as reference. To
determine fold-changes in E2F1, RNA from miR17-5p-LNA and negative control A-LNA
transfected UC6 cells were reverse transcribed. PCR was performed for E2F1 and human B actin

was used as a reference (Applied Biosystems, Foster City, CA). Software defaults were used to



compute the relative change in expression by the ACt method. GraphPad 8.0.0 Prism was used to

plot RQ and calculate p value using an unpaired t-test.
General statistical analysis

Survival analyses were performed by Kaplan—Meier analysis and log-rank testing. For genome-
wide mRNA and miRNA differential expression analysis, the Benjamini and Hochberg(BH)
method was applied to control the false discovery rate(FDR). An adjusted p value with FDR <0.05

was considered statistically significant.
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