
Genome analysis

MetaSanity: an integrated microbial genome evaluation

and annotation pipeline

Christopher J. Neely1,*, Elaina D. Graham1 and Benjamin J. Tully 1,2,*

1Department of Biological Sciences and 2Center for Dark Energy Biospheres Investigation, University of Southern California,

Los Angeles, CA 90089, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on October 18, 2019; revised on April 25, 2020; editorial decision on May 9, 2020; accepted on May 13, 2020

Abstract

Summary: As the importance of microbiome research continues to become more prevalent and essential to under-
standing a wide variety of ecosystems (e.g. marine, built, host associated, etc.), there is a need for researchers to be
able to perform highly reproducible and quality analysis of microbial genomes. MetaSanity incorporates analyses
from 11 existing and widely used genome evaluation and annotation suites into a single, distributable workflow,
thereby decreasing the workload of microbiologists by allowing for a flexible, expansive data analysis pipeline.
MetaSanity has been designed to provide separate, reproducible workflows that (i) can determine the overall quality
of a microbial genome, while providing a putative phylogenetic assignment, and (ii) can assign structural and func-
tional gene annotations with varying degrees of specificity to suit the needs of the researcher. The software suite
combines the results from several tools to provide broad insights into overall metabolic function. Importantly, this
software provides built-in optimization for ‘big data’ analysis by storing all relevant outputs in an SQL database,
allowing users to query all the results for the elements that will most impact their research.

Availability and implementation: MetaSanity is provided under the GNU General Public License v.3.0 and is avail-
able for download at https://github.com/cjneely10/MetaSanity. This application is distributed as a Docker image.
MetaSanity is implemented in Python3/Cython and Cþþ. Instructions for its installation and use are available within
the GitHub wiki page at https://github.com/cjneely10/MetaSanity/wiki, and additional instructions are available at
https://cjneely10.github.io/year-archive/. MetaSanity is optimized for users with limited programing experience.

Contact: cjneely10@gmail.com or tully.bj@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The analysis of microbial genomes has become an increasingly com-
mon task for many fields of biology and geochemistry. Researchers
can routinely generate hundreds/thousands of environmentally
derived microbial genomes using methodologies, such as metage-
nomics (Tully et al., 2018), high-throughput culturing (Thrash et al.,
2015) and single-cell sorting (Stepanauskas et al., 2017). However,
analyzing the data can be problematic, as data analysis is computa-
tionally intensive and requires a knowledge of software that is con-
stantly changing and may be difficult to install or execute. For the
average researcher, the task of evaluating and annotating a set of mi-
crobial genomes may be time intensive and computationally rigor-
ous. Here, we present MetaSanity, a comprehensive solution for
generating evaluation and annotation pipelines for bacterial and
archaeal isolate genomes, metagenome-assembled genomes (MAGs)
and single-amplified genomes (SAGs). MetaSanity provides genome

quality evaluation, phylogenetic assignment, as well as structural
and functional annotation through a variety of integrated programs
based on the procedure described in Tully (2019). By providing
users with the ability to create annotation pipelines using multiple
annotation suites, MetaSanity achieves a broad level of functional
annotation that may be missed by implementing a single annotation
program. MetaSanity provides a workflow that combines all outputs
into a single queryable database that operates easily from the com-
mand line. Installation can be performed at the user level, limiting
the need for intervention by system administrators, and, except for
certain memory intensive programs, can be run locally on high-end
personal computers.

2 Materials and methods

MetaSanity consists of two smaller workflows (Fig. 1): (i)
PhyloSanity, to evaluate the completion, contamination, redundancy

VC The Author(s) 2020. Published by Oxford University Press. 4341

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 36(15), 2020, 4341–4344

doi: 10.1093/bioinformatics/btaa512

Advance Access Publication Date: 19 May 2020

Applications Note

http://orcid.org/0000-0002-9384-7635
https://github.com/cjneely10/MetaSanity
https://github.com/cjneely10/MetaSanity/wiki
https://cjneely10.github.io/year-archive/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa512#supplementary-data
https://academic.oup.com/


and phylogeny of each genome in a dataset, and (ii) FuncSanity, to
provide structural and functional annotations of each genome. Each
component consists of several optional applications that can be
modified to specific research needs. While each component con-
tained within the two pipelines runs independently and generates
component-specific outputs, MetaSanity combines all outputs into a
single queryable SQL database that allows fast and easy retrieval of
data—in this case, gene annotations and other related genomic data.
MetaSanity focuses on allowing users the ability to fine tune and ad-
just their data analysis pipelines with minimal effort and maximize
computational and storage efficiency (Supplementary Table S1).
MetaSanity is distributed as a Docker image (Merkel, 2014) and is
implemented using a combination of Python3 (Python Software
Foundation (2014)/Cython (Bradshaw et al., 2011) and Cþþ (ISO/
IEC 2014). MetaSanity is also available as a source code installation
for systems that do not support Docker.

2.1 Phylosanity
PhyloSanity is designed to provide metrics of genome quality and to
filter genomes for downstream analysis based on user-defined qual-
ity metrics. The workflow integrates CheckM v1.0.18 (Parks et al.,
2015), GTDB-Tk v.0.3.2 (Parks et al., 2018) and FastANI (Jain
et al., 2018) as part of its evaluation pipeline. CheckM estimates the
completion and contamination of each genome (Parks et al., 2015).
Next, FastANI compares each genome in a pairwise fashion against
all other genomes to determine the average nucleotide identify
(ANI) for each genome pair (Jain et al., 2018). For any set of
genomes that shares an ANI above a user-defined value, a non-
redundant genome representative will be selected from the set that is
the most complete and least contaminated. This allows users the op-
tion to exclude redundant genomes from further analysis.
Differentiating genomes as non-redundant versus redundant can be
useful for researchers working with MAGs or SAGs that are gener-
ated from replicate samples and may not have biological meaning
when working with isolates or strain level differences. All genomes
can undergo phylogenetic assignment based on relative evolutionary
distance (Parks et al., 2018) through GTDB-Tk (Pierre-Alain et al.,
2020), which will replace the CheckM-returned taxonomic
assignment.

2.2 Funcsanity
FuncSanity provides structural and functional annotation of micro-
bial genomes. The workflow incorporates annotation suites from
eight existing and widely used programs. The use of multiple anno-
tation programs has the advantage of capturing functional predic-
tions that may not have been detected due to database or search
limitations. Specialized annotation programs, such as VirSorter
v1.0.5 (Roux et al., 2015), use custom tools and/or databases to re-
turn relevant annotations that are not captured by other programs
in MetaSanity. Open reading frames (ORFs) are predicted using
Prodigal v2.6.3 (Hyatt et al., 2010); however, users may opt to use
the putative coding DNA sequences (CDS) generated by Prokka

v1.13.3 (Seemann, 2014). From here, putative ORFs are processed
by a set of annotation tools that can be selected by the user with
user-defined filtering and cut-off values.

2.2.1 Kyoto Encyclopedia of Genes and Genomes annotation

Putative ORFs can be searched against the KofamKOALA database
using KofamScan v.1.1.0 (Aramaki et al., 2019). Default parameters
are used, and the ‘mapper’ tab-delimited output option is generated,
linking ORF IDs to Kyoto Encyclopedia of Genes and Genomes
(KEGG) Ontology (KO) IDs. Users can query any KO ID to generate
specific functional search results in BioMetaDB.

2.2.2 KEGG-Decoder

KEGG annotations can be used to estimate the completeness of vari-
ous biogeochemically relevant metabolic pathways in a genome
using KEGG-Decoder v.1.0.10 (Graham et al., 2018; https://github.
com/bjtully/BioData/tree/master/KEGGDecoder). Users can search
genomes based on completeness of a pathway or function of interest.
An additional heatmap summary visualization is generated.

2.2.3 Virsorter

VirSorter v1.0.5 (Roux et al., 2015) can be implemented to identify
phage and prophage signatures in each genome using default param-
eters. Users can search for matches to each of the phage and pro-
phage categories returned by VirSorter and generate lists of contigs
and/or genomes with the assignments (Supplementary Table S1).

2.2.4 Interproscan

InterProScan 5.36-75.0 (Jones et al., 2014) is an optional installa-
tion and can be used for domain prediction on putative ORFs. Users
have the option of downloading all of the InterProScan databases,
including TIGRfam (Haft et al., 2003), Pfam (Finn et al., 2016),
CDD (Marchler-Bauer et al., 2010, Zhang et al., 2017) and
PANTHER (Mi et al., 2019). Each InterProScan database result is
indexed separately in BioMetaDB and can be used to return match-
ing genomes using database specific IDs (e.g. PF01036 would return
putative rhodopsin ORFs from a Pfam result).

2.2.5 Prokka annotation

If not chosen as the option for structural annotation, genomes can
be annotated using Prokka and its associated databases with the
parameters –addgenes (adds the ‘gene’ feature to each CDS in the
GenBank output format), –addmrna (adds the ‘mRNA’ feature to
each CDS in the GenBank output format), –usegenus (use the genus-
specific databases), –metagenome (improve gene predictions for
fragmented genomes) and –rnammer [sets RNAmmer as the pre-
ferred rRNA prediction tool instead of Barrnap (http://www.vic
bioinformatics.com/software.barrnap.shtml)]. rRNA identification
with RNAmmer v.1.2 (Lagesen et al., 2007) and signal peptide de-
tection with SignalP v.4.1 (Nielsen, 2017) are optional installations.
Users are given the option to use Prokka-derived putative CDS,
which take into consideration the locations of RNA gene sequences
(tRNA, rRNA, tmRNA and ncRNA) in their downstream analysis.
These putative proteins are used in further analysis instead of the
Prodigal-derived CDS, which are not aware of RNA boundaries.

2.2.6 Carbohydrate-active enzyme annotation

Putative ORFs can be assigned a putative carbohydrate-active en-
zyme (CAZy) functionality (Cantarel et al., 2009) based on the
dbCANv2 database (Zhang et al., 2018). ORFs are searched against
dbCANv2 using HMMER v3.1b2 (Eddy, 2011) with the minimum
score threshold set to 75 (-T parameter).

2.2.7 Peptidase annotation

Putative ORFs can be assigned to a peptidase family using a set of
HMMs that represent the MEROPS database (Rawlings et al., 2014).
PSORTb v.3.0 (Yu et al., 2010) and SignalP can be optionally

Fig. 1. MetaSanity pipeline schema. Programs and databases that are part of the

MetaSanity installation are in blue boxes. Programs in the dotted orange boxes

must be installed separately by the user due to licensing agreements. DB, database.

(Color version of this figure is available at Bioinformatics online.)

4342 C.J.Neely et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa512#supplementary-data
https://github.com/bjtully/BioData/tree/master/KEGGDecoder
https://github.com/bjtully/BioData/tree/master/KEGGDecoder
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa512#supplementary-data
http://www.vicbioinformatics.com/software.barrnap.shtml
http://www.vicbioinformatics.com/software.barrnap.shtml


performed on MEROPS matches to determine if a putative enzyme is
predicted to be extracellular. An extracellular assignment is made if
PSORTb predicts ‘extracellular’ or ‘outer membrane’ localization or
if PSORTb returns ‘unknown’ localization and SignalP predicts the
presence of a signal peptide. Users can search for genes and genomes
based on overall MEROPS annotations or by searching for specific
designations (e.g. GT41 for glycosyl transferase family 41).

InterProScan, SignalP and RNAmmer are not automatically dis-
tributed with MetaSanity and require users to download their binaries
separately and agree to their individual license requirements.

2.2.8 Configuration adjustments

Each run of MetaSanity can be adjusted to the needs of the
genome(s) being analyzed. One of the required parameters for
MetaSanity if a configuration (config) file that sets which analyses
will be performed on a genome or set of genomes, including optional
settings (e.g. number of CPU threads, etc.). Config files allow users
to determine specific pipelines of analyses, as needed, and provide a
record which can be used for future genome sets for rapid re-
deployment of analyses.

2.3 Biometadb
MetaSanity outputs consist of tab-delimited descriptions of genomic
data, which can easily be analyzed by a variety of external tools. We
additionally provide BioMetaDB, a specialized relational database
management system tool that integrates modularized storage and re-
trieval of FASTA records with the metadata describing them. This ap-
plication uses tab-delimited data files to generate table relation
schemas via Python3. Based on SQLAlchemy v.1.3.7 (Bayer, 2012),
BioMetaDB allows researchers to efficiently manage data from the
command line by providing operations that include: (i) the ability to
store information from any valid tab-delimited data file and to quick-
ly retrieve FASTA records or annotations related to these datasets by
using SQL-optimized command-line queries; and, (ii) the ability to
run all CRUD operations (create, read, update, delete) from the com-
mand line and from python scripts. Output from both workflows is
stored into a BioMetaDB project, providing users a simple interface
to comprehensively examine their data (Supplementary Table S2).
Users can query application results used across the entire genome set
for specific information that is relevant to their research, allowing the
potential to screen genomes based on returned taxonomy, quality, an-
notation, putative metabolic function or any combination thereof.
More information on using BioMetaDB is available via the
BioMetaDB GitHub (https://github.com/cjneely10/BioMetaDB).

3 Results

MetaSanity was tested on two separate systems—a personal computer
with an Intel core i5-4570 CPU @ 3.20 GHz processor with 4 cores
and 32 GB of RAM operating the Ubuntu 18.04.3 LTS Linux distribu-
tion, and an academic server with an Intel Xeon E7-4850 v2 @
2.30 GHz processor with 96 cores and 1 TB of RAM operating the
Ubuntu 18.04.3 LTS Linux distribution. Reduced options were calcu-
lated on the personal computer using all four available threads and pre-
set parameter flags that skip memory-intensive processes. Complete
options were calculated on the academic server using 10 threads and
no parameters to reduce memory usage. Runtime results are available
in Supplementary Table S3. The current architecture relies on sequen-
tial completion of time intensive processes, several of which are option-
al for users. Ongoing modifications that take advantage of parallelizing
these processes should decrease the overall computation time.

Acknowledgements

We would like to thank Taylor Reiter, Roth Conrad, Jay Osvatic and Luiz

Irber for providing code contributions to KEGG-Decoder as part of the

Moore Foundation funded ‘Speeding Up Science’ hackathon. This is C-DEBI

Contribution 533 .

Funding

This work was supported by the National Science Foundation Science and

Technology Center, the Center for Dark Energy Biosphere Investigations (C-

DEBI) [OCE-0939654 to B.J.T.].

Conflict of Interest: none declared.

References

Aramaki,T. et al. (2019) KofamKOALA: KEGG ortholog assignment based

on profile HMM and adaptive score threshold. Bioinformatics, 36,

2251–2252,

Bayer,M. (2012) SQLAlchemy. In: Brown,A. and Wilson,G. (eds) The

Architecture of Open Source Applications Volume II: Structure, Scale, and a

Few More Fearless Hacks. http://aosabook.org.

Bradshaw,R. et al. (2011) The Cython Compiler. http://cython.org. (October

2019, date last accessed).

Camacho,C. et al. (2009) BLASTþ: architecture and applications. BMC

Bioinformatics, 10, 421.

Cantarel,B.L. et al. (2009) The carbohydrate-active EnZymes database

(CAZy): an expert resource for glycogenomics. Nucleic Acids Res., 37,

D233–D238.

Eddy,S.R. (2011) Accelerated profile HMM searches. PLoS Comput. Biol., 7,

e1002195.

Finn,R.D. et al. (2016) The Pfam protein families database: towards a more

sustainable future. Nucleic Acids Res., 44, D279–D285.

Graham,E.D. et al. (2018) Potential for primary productivity in a

globally-distributed bacterial phototroph. Isme J., 12, 1861–1866.

Haft,D.H. et al. (2003) The TIGRFAMs database of protein families. Nucleic

Acids Res., 31, 371–373.

Hyatt,D. et al. (2010) Prodigal: prokaryotic gene recognition and translation

initiation site identification. BMC Bioinformatics, 11, 119.

ISO/IEC. (2014) ISO International Standard ISO/IEC 14882:2014(E) –

Programming Language Cþþ. [Working Draft]. International

Organization for Standardization (ISO), Geneva, Switzerland. https://

isocpp.org/std/the-standard.

Jain,C. et al. (2018) High-throughput ANI analysis of 90K prokaryotic

genomes reveals clear species boundaries. Nat. Commun., 9, 1–8.

Jones,P. et al. (2014) InterProScan 5: genome-scale protein function classifica-

tion. Bioinformatics, 30, 1236–1240.

Lagesen,K. et al. (2007) RNAmmer: consistent and rapid annotation of ribo-

somal RNA genes. Nucleic Acids Res., 35, 3100–3108.

Marchler-Bauer,A. et al. (2010) pplacer: linear time maximum-likelihood and

Bayesian phylogenetic placement of sequences onto a fixed reference tree.

BMC Bioinformatics, 11, 1–16.

Merkel,D. (2014) Docker: lightweight Linux containers for consistent devel-

opment and deployment. Linux J.

Mi,H. et al. (2019) Protocol Update for large-scale genome and gene function

analysis with the PANTHER classification system (v.14.0). Nat. Protoc.,

14, 703–721.

Nielsen,H. (2017) Predicting secretory proteins with signalP. In: Kihara, D.

(ed.) Protein Function Prediction. Methods in Molecular Biology. Vol.

1611. Humana Press, New York, NY, pp. 59–73.

Parks,D.H. et al. (2015) CheckM: assessing the quality of microbial genomes

recovered from isolates, single cells, and metagenomes. Genome Res., 25,

1043–1055.

Parks,D.H. et al. (2018) A standardized bacterial taxonomy based on genome

phylogeny substantially revises the tree of life. Nat. Biotechnol., 36,

996–914.

Pierre-Alain,C. et al. (2020) GTDB-Tk: a toolkit to classify genomes with the

Genome Taxonomy Database. Bioinformatics., 36, 1925–1927.

Python Software Foundation. (2014) Python Language Reference, Version 3.

http://www.python.org.

Rawlings,N.D. et al. (2014) MEROPS: the database of proteolytic

enzymes, their substrates and inhibitors. Nucleic Acids Res., 42,

D503–D509.

Roux,S. et al. (2015) VirSorter: mining viral signal from microbial genomic

data. PeerJ., 3, e985.

Seemann,T. (2014) Prokka: rapid prokaryotic genome annotation.

Bioinformatics, 30, 2068–2069.

Stepanauskas,R. et al. (2017) Improved genome recovery and integrated

cell-size analyses of individual uncultured microbial cells and viral particles.

Nat. Commun., 8, 1–10.

MetaSanity: an integrated microbial genome pipeline 4343

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa512#supplementary-data
https://github.com/cjneely10/BioMetaDB
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa512#supplementary-data
http://aosabook.org
http://cython.org
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
http://www.python.org


Thrash,J.C. et al. (2015). Cultivating fastidious microbes. In: Hydrocarbon

and Lipid Microbiology Protocols. Vol. 39. Springer, Berlin, Heidelberg,

pp. 57–78. doi: 10.1007/8623_2015_67.

Tully,B.J. (2019) Metabolic diversity within the globally abundant Marine

Group II Euryarchaea offers insight into ecological patterns. Nat.

Commun., 10, 1–12.

Tully,B.J. et al. (2018) The reconstruction of 2,631 draft metagenome-assembled

genomes from the global oceans. Sci. Data, 5, 170203.

Yu,N.Y. et al. (2010) PSORTb 3.0: improved protein subcellular localization

prediction with refined localization subcategories and predictive capabilities

for all prokaryotes. Bioinformatics, 26, 1608–1615.

Zhang,D. et al. (2017) CDD/SPARCLE: functional classification of proteins

via subfamily domain architectures. Nucleic Acids Res., 45, D200–D203.

Zhang,H. et al. (2018) dbCAN2: a meta server for automated

carbohydrate-active enzyme annotation. Nucleic Acids Res., 46,

W95–W101.

4344 C.J.Neely et al.

http://10.1007/8623_2015_67

