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ABSTRACT The draft genome sequence of Malassezia restricta KCTC 27527, a clini-
cal isolate from a patient with dandruff, was previously reported. Using the PacBio
Sequel platform, we completed and reannotated the genome of M. restricta KCTC
27527 for a better understanding of the genome of this fungus.

Malassezia species are recognized to be involved in skin diseases, including dan-
druff, seborrheic dermatitis, and atopic dermatitis. Among the 17 identified

Malassezia species, M. restricta is the predominant species on human skin and is
particularly associated with dandruff, as suggested by recent microbiome analyses
(1–4).

We previously sequenced and analyzed the genome of M. restricta KCTC 27527, a
clinical isolate from a patient with dandruff, in South Korea (5). The previous assembly
generated 51 contigs that were assembled into 18 scaffolds containing 3,580 coding
sequences (CDSs), representing an overall completeness of 89.7% with Core Eukaryotic
Genes Mapping Approach (CEGMA) analysis (5, 6). To address the incompleteness of
the previous genome sequencing, we resequenced and completed the genome of M.
restricta KCTC 27527 in the current study.

M. restricta KCTC 27527 cells were grown in Leeming and Notman agar (LNA)
medium (0.5% glucose, 1% peptone, 0.01% yeast extract, 0.8% bile salt, 0.1%
glycerol, 0.05% glycerol monostearate, 0.05% Tween 60, 1.2% agar, 0.5% whole-fat
cow milk, and 170 �g/ml chloramphenicol) at 34°C for 3 days (7), and genomic DNA
was extracted and a SMRTbell library was prepared according to the manufacturer’s
instructions (8). Genome sequencing was performed using P6-C4 chemistry on one
cell of a PacBio Sequel platform (Pacific Biosciences). Raw reads were de novo
assembled using the Canu v. 1.7 assembler with the parameter “genomeSize �

7.3m,” and the assembled contigs were polished with the Arrow consensus caller in
PacBio SMRT Link v. 5.0.1 (9). Telomeric motifs in chromosomal ends and mitochon-
drial contigs were manually curated. Discrepancies between contigs from the
previously reported assembly and assembly of PacBio Sequel reads were corrected
through the analysis using the CodonCode Aligner software package (CodonCode
Corporation). The first round of gene prediction was performed with BRAKER v. 2.1.0
with the parameter “minimum intron length � 20” (10). In this process, de novo
assembly of existing transcriptome sequencing (RNA-Seq) data on the Gene Expres-
sion Omnibus (GEO) database (accession number GSE112036) was used to reflect the
exon-intron structure. RNA-Seq raw reads were cleaned by Trimmomatic v. 0.36 and
mapped using Hierarchical Indexing for Spliced Alignment of Transcripts (HISAT) v. 2.1.0
(11, 12). After the first round, the BRAKER config file was modified by setting the
normal penalty parameter for introns to 0 and the bonus for RNA-Seq data to 1e �

100 to reflect only introns derived from actual data. The final gene prediction was
performed using AUGUSTUS v. 3.2.3 with the parameter “min_intron_len � 15” and
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the hints and config files generated in the processes discussed above (13). We
corrected the gene structure where the splicing site differed from the actual
transcript with the RNA-Seq mapping results in the Integrative Genomics Viewer (IGV)
genome browser. Genome annotation was carried out with the NCBI RefSeq data-
base release 88, eggNOG v. 4.5, and the KEGG database (14–16). Mitochondrial gene
prediction and annotation were performed using MITOS2 (17).

As a result of the resequencing, all gaps were filled and the assembly was com-
pleted. A total of 9 chromosomes and a mitochondrion of 7,330,907 bp (GC content,
55.79%) and 38,720 bp (GC content, 31.4%), respectively, were estimated with a read
coverage of 38.8�. Further, 4,390 CDSs, 29 rRNAs, 74 tRNAs, and 9 noncoding RNAs
(ncRNAs) were identified in the annotated assemblies of the chromosomes. The anno-
tated mitochondrial genome contained 16 CDSs, 2 rRNAs, and 24 tRNAs. The genome
statistics are summarized in Table 1. The new assembly contained an additional 810 and
3 predicted CDSs in the chromosomes and mitochondrion, respectively, compared to
our previous assembly.

Data availability. This whole-genome sequence has been deposited in GenBank
under the accession numbers CP030251 to CP030260 from BioProject PRJNA477735.
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