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Distribution of 45S rDNA sites in chromosomes of
plants: Structural and evolutionary implications
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Abstract

Background: 45S rDNA sites are the most widely documented chromosomal regions in eukaryotes. The analysis of
the distribution of these sites along the chromosome in several genera has suggested some bias in their
distribution. In order to evaluate if these loci are in fact non-randomly distributed and what is the influence of
some chromosomal and karyotypic features on the distribution of these sites, a database was built with the
position and number of 45S rDNA sites obtained by FISH together with other karyotypic data from 846 plant
species.

Results: In angiosperms the most frequent numbers of sites per diploid karyotype were two and four, suggesting
that in spite of the wide dispersion capacity of these sequences the number of rDNA sites tends to be restricted.
The sites showed a preferential distribution on the short arms, mainly in the terminal regions. Curiously, these sites
were frequently found on the short arms of acrocentric chromosomes where they usually occupy the whole arm.
The trend to occupy the terminal region is especially evident in holokinetic chromosomes, where all of them were
terminally located. In polyploids there is a trend towards reduction in the number of sites per monoploid
complement. In gymnosperms, however, the distribution of rDNA sites varied strongly among the sampled families.

Conclusions: The location of 45S rDNA sites do not vary randomly, occurring preferentially on the short arm and in
the terminal region of chromosomes in angiosperms. The meaning of this preferential location is not known, but
some hypotheses are considered and the observed trends are discussed.
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Background
When observed under an optical or electronic micro-
scope, the chromosomes of plants and other eukaryotes
seem to be uniform structures, except for the primary
and secondary constrictions. However, based on some
functional and molecular characteristics, at least five dis-
tinct regions can be recognized along each chromosome
arm: telomere, subtelomeric region, interstitial region,
proximal region and centromere. The distribution of genes,
retrotransposons, satellite DNA and other sequences
within these regions seems to follow general trends related
to the frequency of recombination and the functional role
of these sequences [1-4]. Therefore, the structural regular-
ity does not reflect the different selection pressures that
different regions of the chromosome arm suffer, creating
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sub-regions more permissive or more prohibitive for the
establishment of a specific sequence [4-6].
Lima-de-Faria [7] showed that the secondary constric-

tions of mitotic chromosomes, which bear the 18S-5.8S-
25S ribosomal RNA genes transcribed in the previous
interphase, also called the nucleolus organizer regions
(NORs) or 45S rDNA sites, were preferentially distri-
buted on the short arms and in the subterminal region in
most species of plants and animals. The author com-
pared the frequency of secondary constrictions in the
proximal, interstitial and terminal regions of the chromo-
some arm, taking into account the size of the arms (arm
frame method). Currently, by using the fluorescence in
situ hybridization (FISH) technique, it is known that the
secondary constrictions represent only the expression of
rRNA genes which were active during the last interphase
and that other functional sites may not form secondary
constrictions, especially if located too close to the ter-
minal end of the chromosomes [8]. In Vigna unguiculata,
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for example, three pairs of rDNA sites not previously
detected as secondary constrictions were revealed by
FISH [9]. The fact that the 18S-5.8S-25S rRNA genes are
arranged in hundreds or thousands of tandem repeats
and are highly conserved between species made of this
chromosome region the most widely investigated by
FISH, being the position of these sites known in hun-
dreds of plant species, especially in angiosperms.
In this study, the general pattern of distribution of rDNA

sites in plant chromosomes was addressed to establish
whether these genes are randomly distributed or occupy
preferred regions on chromosome and whether certain
chromosomal or karyotypic characteristics influence this
distribution. Karyotypic data including information about
rDNA sites of 846 species of angiosperms and gymnos-
perms were compiled from the literature. Other groups of
plants have few representatives studied and do not allow
generalizations. In pteridophytes, the rDNA sites have
been observed only in four genera (Osmunda, Ceratopteris,
Acrostichum [10] and Selaginella [11]), all of them with
terminal or subterminal sites. In bryophytes, data were
found only for Marchantia polymorpha [12] and species of
Pellia [13], all of them with rDNA sites in terminal pos-
ition. In a recent paper, a rDNA database containing crude
data from a similar sample of plant species has been devel-
oped allowing easy access to a large amount of data [14].
In some cases, the analysis was done separately in kar-

yotypes containing only one pair of sites and karyotypes
with more than one pair of sites, considering that in
those with only one pair of sites they should always be
functionally active. In karyotypes with multiple sites the
assumption that they had a tendency to equilocal distri-
bution [15-17] was evaluated. As polyploid plants tend
to diploidize reducing the original monoploid genome
size [18,19], the effect of polyploidy in the number and
position of rDNA sites in the intraspecific and intra-
generic levels was also evaluated.

Results and discussion
Number of rDNA sites in angiosperms and gymnosperms
In this paper we compiled all the information about
number and position of rDNA sites we had access until
Table 1 Number of rDNA sites per somatic chromosome comp

Angiosperms

Monocentrics H

Number of karyotypes 856

Mean of sites (s.d.) 5.1 (3.6)

Median 4

Mode 2

Range 2 - 32

Karyotypes with single site* 265 (31.0%)

* Karyotypes with a single pair of sites.
early 2011. A total of 846 species and 198 genera were
included, representing 51 families of angiosperms and
six families of gymnosperms. Among angiosperms, 42
species stand out for having holokinetic or holocentric
chromosomes, i.e., chromosomes with a large kineto-
chore plate extended along almost their whole length
[20], which will be treated in a separate topic. Since
some species were polymorphic or had different cyto-
types, a total sample of 984 karyotypes was analyzed,
921 and 63 of them having monocentric or holokinetic
chromosomes, respectively.
The results obtained here seem to represent well the

diversity in plants, because of the wide diversity of taxa
and karyotypic variations sampled. The number of
rDNA sites observed was very variable, ranging from just
one pair of sites per chromosome complement in most
angiosperms up to 45 sites in Kyllinga brevifolia [21]. In
angiosperms with monocentric chromosomes, the aver-
age number of sites per somatic chromosome comple-
ment was 5.1 (3.6) (mean and standard deviation)
ranging from two to 32, with mode equal to two and a
median of four (Table 1). Figure 1a shows that there was
a high frequency of diploid karyotypes with two or four
sites and a progressive reduction in the number of kar-
yotypes with higher numbers of sites. When plolyploids
were included in the sample the modal number of sites
per karyotype (2) differed from the second more com-
mon number (4) by a very small difference: 265 out of
the 856 karyotypes had two sites per somatic chromo-
some complement, whereas 263 karyotypes had four and
328 had three or more rDNA sites. The modal number
of rDNA sites in angiosperms can easily oscillate be-
tween two and four depending on the sampling.
In gymnosperms, the average number of sites 10.4

(7.1) was more than twice that in angiosperms, although
the modal number of sites was two, as in angiosperms
(Table 1, Figure 1b). The presence of multiple sites in
some genera as Picea [22], Pinus [23,24] and Zamia
[25], upraised the median of this group to 10. In general,
gymnosperms have a larger number of copies of these
genes [26] and a larger average genomic size than
angiosperms, probably meaning that they are more
lement (2n) in species of angiosperms and gymnosperms

Gymnosperms Total

olokinetics

63 65 984

6.6 (6.6) 10.4 (7.1) 5.5 (4.4)

4 10 4

4 2 4

2 - 45 2 - 34 2 – 45

6 (9.5%) 11 (16.9%) 282 (28.7%)



Figure 1 Variation in the number of rDNA sites per karyotype in a sample of 665 angiosperm (a) and 64 gymnosperm (b) karyotypes.
Polyploid cytotypes and species with holokinetic chromosomes were not included. The median is underlined and the modal number is indicated
by #. Sample size: 729 karyotypes.

Roa and Guerra BMC Evolutionary Biology 2012, 12:225 Page 3 of 13
http://www.biomedcentral.com/1471-2148/12/225
tolerant to amplifications [27]. However, a larger number
of 45S rDNA sites does not mean more functional cop-
ies of these genes, either because the size of the sites is
very variable or because the rDNA probe can also detect
non-functional or permanently blocked copies of these
genes [28,29]. In karyotypes with a single pair of 45S
rDNA sites, here referred as single site karyotypes, both
sites are necessarily functional whereas karyotypes with
multiple sites may eventually include some non-
functional or inactive sites. Therefore, in some cases it is
important to visualize the distribution of single site and
multiple sites karytotypes separately.
rDNA sites often display intraspecific heteromorphism

in number and size (see e.g. [30,31]). For example, in the
common bean Phaseolus vulgaris, we found that the
number of 45S rDNA sites varied from six to 18 per ac-
cession and their size varied widely within chromosome
pairs [32]. Some sites may be below the limit of
detection by FISH and their eventual amplification in
different populations may account for the numerical
polymorphism. It is also possible that inactive rDNA
sites are more likely to show intraspecific polymorph-
isms and eventually be eliminated [33]. This dynamics of
inactivation and subsequent deletion of rDNA sites seem
to counteract the mechanisms of duplication and disper-
sion of 45S rDNA repeats, leading to the observation of
only a small number of sites in most of the species.

Distribution of rDNA sites along the chromosome
729 karyotypes of angiosperms and gymnosperms have
been used for determining the number of rDNA sites
per chromosomal arm, 509 of them displaying multiple
sites (Table 2, Figure 2). The total number of rDNA sites
included in this sample was 3,966. In some karyotypes
the position of the site was just between the two
chromosome arms and the signal seemed to coincide



Table 2 Frequency of rDNA sites in the short and long chromosome arms

Sites Number of karyotypes Short arms Centromeric sitesa Long arms Total p-valueb

Singlec 220 342 (77.7%) 4 (0.9%) 90 (20.9%) 440 0.000001

Multiple 509 2,430 (68.9%) 132 (3.7%) 964 (27.3%) 3,526 0.000001

Total 729 2,772 (69.9%) 138 (3.5%) 1,056 (26.6%) 3,966 0.000001
a Sites between the short and long arms whose exact position was not identified.
b Chi-square comparison against an equal distribution of sites per arm.
c Karyotypes with a single pair of sites.
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exactly with the position of the centromere. In these
cases, the sites were referred to as "centromeric" (cen),
without implying that they were really located in the
functional region of the centromere. In general, 69.9% of
the rDNA sites were located on the short arm. The fre-
quency of rDNA sites in the short arm was higher
among karyotypes with single sites (77.7%) than in those
with multiple sites (68.9%), suggesting that when the
number of sites increases, the trend to be preferentially
positioned on the short arm decreases. According to
Lima-de-Faria [7] 86.6% of secondary constrictions of
animal and plant species occur on the short arms, a
value higher than that observed here (p <0.01). This di-
vergence is at least partially due to the techniques
employed. In the case of Lima-de-Faria, he detected only
secondary constrictions, that is, rDNA sites which were
active in the last interphase, whereas in the present re-
port, using FISH, all kind of 45S rDNA cluster, including
non-active and very small ones, were detected.
In angiosperms, we observed that rDNA sites occupied

preferentially (50.1%) the terminal position of the chro-
mosomes, both in karyotypes with single site (36.8%)
and in karyotypes with multiple sites (52.0%) (Figure 2
and Additional file 1: Table S1). It is worth mentioning
that 23.0% of the single sites and 15.5% of multiple sites
were represented by signals that occupied the whole
chromosome arm (wa sites) and these sites were not
computed as terminal ones. In many karyotypes, whole
arm sites should represent a technical artifact generated
by over-exposition of the signal during image acquire-
ment whereas in other karyotypes they seem to corres-
pond to the whole visible chromatin of the short arm, as
in species of Nothoscordum and Ipheion [34]. If they
were included as terminal sites, the frequency of rDNA
sites in the terminal region would be more similar for
single (59.8%) and multiples sites (67.5%). A higher per-
centage of terminal secondary constrictions (85.2%) was
observed by Lima-de-Faria in a sample of 189 species of
eukaryotes (p<0.01) including two families of plants [35].
One of them (Asteraceae) showed also a higher percent-
age of terminal rDNA sites in the present study. Whole
arm sites were always located on the short arm
(Figure 2), except in Solanum pennellii, where it spanned
the entire slightly longer arm [36]. Therefore, consider-
ing that the chromosome arm was divided into four
regions of equal size (p, ip, it, t), there seems to be a
strong positive selection favoring the location of 45S
rDNA sites in the terminal region. On the other hand, in
gymnosperms the rDNA sites were located mainly in the
interstitial-terminal (52.4%) or proximal (21.8%) regions.
These frequencies were strongly influenced by members
of Pinaceae and Zamiaceae families which had a large
number of species investigated, each one displaying mul-
tiple sites. The terminal position of rDNA sites (18.9%)
was largely dominant in the less sampled families of
gymnosperms.
The location of rDNA sites in the terminal chromo-

some region in most angiosperms may be the result of
homologous recombination constrains. Due to its repeti-
tive organization in tandem, rDNA sites may be subject
to a higher rate of allelic and non-allelic homologous
recombinations, which play a fundamental role in the
homogenization of intralocus and interloci repeats [37].
Homogenization is an essential process to reduce the
nuclear variability of this key molecule, ensuring the re-
moval of non-functional units from the clusters [38].
The terminal or subterminal position of rDNA sites
allows the occurrence of rearrangements without dele-
terious effects related to gene balance and meiotic segre-
gation [32,39]. Nonetheless, various genera of plants and
animals have interstitial or proximal 45S rDNA sites [40]
and display at least partial inter-loci homogenization
[41,42]. In addition, repetitive sequences of 45S rDNA
can also protect the telomere, in a way similar to subtelo-
meric DNA [43-45]. In Allium cepa, 45S rDNA acts as a
substitute of telomeric DNA at some chromosomal ter-
mini [43].

The particular case of acrocentric chromosomes
During the compilation of the data, it was often observed
that acrocentric chromosomes had rDNA sites on
the short arm, as for example in species of Ipheion
[35], Nothoscordum [34,46], Rumex [47], and Alstroe-
meria [48]. To assess whether the short arm of acro-
centric chromosomes is a especially preferred region
for rDNA cluster location, 266 species with single
site or multiple sites having at least one acrocentric
chromosome per karyotype were analyzed. In this
sample, 36.2% of the chromosomes were acrocentrics
and 53.6% of the sites occurred on the long or short



Figure 2 Percentage frequency of rDNA sites along chromosomes of angiosperms (a) and gymnosperms (b). Total number of sites: 3.287
in a and 679 in b. In b, the only eleven karyotypes with single sites, were represented together with multiples sites. To stress that some
distributions are particular for some gymnosperm families, they were shown distinctly (cen, centromeric region; p, proximal; ip, interstitial-
proximal; it, interstitial-terminal; t, terminal; wa, whole arm sites).
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arm of these chromosomes. Considering only the acro-
centric chromosomes, 64.7% of the sites occurred on the
short arm and most of them (70.1%) occupied the entire
short arm (wa sites). Therefore, considering that the
short arm corresponds to no more than 25% of the
length of the acrocentric chromosome [49], there is in-
deed a very high frequency of rDNA sites in the short
arms of acrocentrics.
The rationale for this association is not clear. In some

karyotypes the occurrence of a whole-arm site seems to
be associated with a centric fission event, as observed in
a rearranged karyotype of Hypochaeris radicata [50] and
in species of Ipheion [35] and Nothoscordum [34,51].
Strong evidence for the association of rDNA with fission
was also reported for hymenoptera and mice [42,52]. In
these cases, the centric fission may have been preceded
by insertion of 45S rDNA repeats in the centromeric re-
gion of a bi-armed chromosome, or both telocentrics
may have acquired rDNA sequences in the new terminal
regions after fission [50]. However, not all karyotypes
with centric fission have extra rDNA sites and in some
cases they may have the number of rDNA sites reduced



Figure 4 Relative distribution of rDNA sites along the
chromosome arm in 397 angiosperm (+) and 38 gymnosperm
(o) karyotypes. The distance from the site to the centromere was
represented as a percentage value in relation to the centromere-
telomere length of the arm bearing the rDNA site. Whole arm (wa)
sites were not included in this sample.
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[53]. In addition, though 45S rDNA are found on the
short arms of acro/telocentric chromosomes in several
plant and animal species, usually they are not associated
with centric fissions [40]. Alternatively, the very short
arms of acrocentric chromosomes may be a more access-
ible site for rDNA transposition and may allow a quicker
interloci homogenization of rDNA sequences than the
proximal region of metacentric chromosomes [54].

Distribution of rDNA sites in different taxa
An analysis of the distribution of rDNA sites by the arm
frame method was carried out both in the whole sample
and separately by family, aiming to identify specific
trends (details of the arm frame construction are indi-
cated in Material and Methods). 1201 rDNA bearing
chromosomes from 457 karyotypes (420 species) with
single site or multiple sites were included in this ana-
lysis. The graph of the arm frame revealed a higher con-
centration of sites in the terminal region while the
proximal half of arms was particularly poor in sites
(Figure 3), as described for the distribution of secondary
constrictions in chromosomal arms [7]. Because the
resolution of sites in the smaller arms was not very clear,
the data of absolute distances of the sites to the centro-
meres were converted to relative distances (considering
the centromere-telomere distance as 100% of the arm).
Since angiosperms and gymnosperms have different
distribution patterns of rDNA sites (Figures 1 and 2),
these two groups of plants were distinctly represented
in Figure 4. In this figure we can see that the higher oc-
currence of interstitial sites may be associated to gym-
nosperms, as previously stated, but it is also influenced
by the different chromosome arm sizes. The interstitial
distribution of sites on chromosome arms larger than 2
or 3 μm is characteristic of the largely sampled Poaceae
[55,56] while in shorter arms the site position is more
variable (Figure 4, Additional file 2: Figures S1, S2). The
statement of Lima-de-Faria [7] that as the distance be-
tween centromere and telomere increases the ribosomal
Figure 3 Distribution of 45S rDNA sites in the arm frame.
Chromosomes are represented as grey lines aligned by centromeres
(0) and sites as short bold lines. 46 chromosomes with sites in both
arms were drawn twice in opposite directions. Sample size: 419
angiosperms and 38 gymnosperms karyotypes (383 and 37 species,
respectively).
genes are successively displaced maintaining a relative
distance to centromere and telomere seems to apply for
most genera but not for every family. This is especially
apparent when the position of sites is visualized in
terms of percentages (Additional file 2: Figures S1, S2).
The distribution of rDNA sites may also be related to

karyotype characteristics or chromosomal organization
of specific taxa. For example, during the interphase, cen-
tromeres are often clustered in one pole of the cell and
telomeres in the opposite pole, as a consequence of the
anaphase movement. This kind of chromosome distribu-
tion in the nucleus, named Rabl orientation, seems to be
more common in species with large chromosomes than
in those with small ones [57,58]. In wheat, for example,
with large chromosomes and large genome, telomeres
are associated with the nuclear envelope in one pole of
the nucleus whereas in Arabidopsis species, with much
smaller chromosomes and genomes, telomeres are orga-
nized around nucleolus [57,59,60].
The distribution of sites by sub-regions of the chromo-

some arm (p, ip, it, t) is also not the same in different taxa.
In Amaryllidaceae, Asteraceae, Cycadaceae, Ginkgoaceae,
Poaceae, Podocarpaceae and Solanaceae the sites were pre-
dominantly terminal, while in Asparagaceae, Cupressaceae,
Fabaceae, Pinaceae and Zamiaceae, the most common
position was proximal to interstitial (Figure 5). Within
some families, such as Solanaceae, the distribution of



Figure 5 Percentage frequency of rDNA sites along the chromosome arm in the most sampled families of angiosperms (a) and
gymnosperms (b). The sites were positioned in one of four equal-sized regions of the arm or spanning the whole arm. p, proximal; ip,
interstitial-proximal; it, interstitial-terminal; t, terminal; wa, whole arm. The number of karyotypes analyzed in each family appears in brackets.
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sites was similar in most genera (Additional file 2:
Figure S3), while in others, such as Fabaceae, the
sites were predominantly or exclusively proximal in
some genera, such as Arachis [61-64] and Lens [65],
and mainly terminal in others, as Phaseolus [66,67]
and Vicia [68-71] (Additional file 2: Figure S3). The
stability of sites in Solanaceae may be related to the
karyotype stability of this group [72] although con-
servation in chromosome number and morphology is
not enough to ensure stability of rDNA site position
as observed in other taxa with apparently stable
karyotype, as Citrus [73] and Pinus [74].

Distribution of rDNA sites in holokinetic chromosomes
A special case of rDNA distribution was observed in
species with holokinetic chromosomes. This group is
characterized by absence of a localized centromere (pri-
mary constriction) and the occurrence of a large kineto-
chore plate along almost its entire length [75]. Among
63 karyotypes with holokinetic chromosomes (42 species
of 7 genera), the average number of sites per karyotype
was 6.6 (6.6) and the mode and median were equal to
4.0, therefore, quite similar to those of angiosperms with
monocentric chromosomes (Table 1). Although the
number of sites was quite variable, 100% of them were
located in the terminal region. In the genus Rhynchos-
pora, for example, the number of sites ranged from 2 to
~30, but the position was always terminal [21,76]. Also
in Caenorhabditis elegans and several species of insects
with holokinetic chromosomes the 45S rDNA site is
located terminally [77-79]. This suggests that in organ-
isms with holokinetic chromosomes there are tighter
constraints on the establishment of non-terminal sites.
A possible explanation is that a secondary constriction
in the interstitial region would interrupt the kinetochore
plate along the holokinetic chromosome establishing a
condition similar to a dicentric chromosome, with con-
sequent errors in mitotic segregation [75]. However, this
assumption has yet to be demonstrated and at least in
Lepidoptera it does not seems to apply [80].

Equilocality of rDNA in karyotypes with multiple sites
The equilocality or equal positioning of rDNA sites in
relation to centromere or telomere has been previously
observed in several genera [15,17,25,31,34]. To assess
the frequency of equilocality of rDNA sites per chromo-
some complement, 243 diploid karyotypes with multiple
sites were analyzed and the distance of each site to



Figure 6 Representation of chromosomes in the arm frame.
Chromosomes represented by lines were aligned in the vertical axis
by centromeres. The arm with rDNA site (gray) was located at right
side of the centromere, according to its size in μm (based on Lima-
de-Faria [9]).
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centromere and telomere were measured. Two sites
were considered equilocated when they were at the same
distance from the centromere or telomere, or at a dis-
tance less than 1/10 of the length of the largest chromo-
some arm bearing rDNA site. In relation to the
centromere, 67.7% of karyotypes had at least two sites
equilocalized and only 38.7% of karyotypes had all sites
equally located. Regarding the telomere, the frequency of
equilocality was significantly higher (89.9% and 73.8%,
respectively - p<0.01).
Equilocality of rDNA sites seems to be promoted by

ectopic recombination between regions of different
chromosomes located in close proximity during pro-
phase or interphase [39]. This spatial distribution could
be facilitated by Rabl configuration in mitosis [15] or the
bouquet configuration during meiotic prophase, where
all telomeres attach to one pole of the nuclear envelope
[81]. However, in species in which Rabl configuration
does not occur, as Arabidopsis and human [82,83], as
well as in those with holokinetic chromosomes [21,84],
all rDNA sites are also terminal and equilocal, suggest-
ing that Rabl orientation during interphase is not neces-
sary to maintain the regularity in the position of rDNA.
The bouquet configuration, on the other hand, is a more
universal phenomenon [85] and could better explain the
Table 3 Distribution of multiple rDNA sites in genera having
chromosome region

Position of single sites Number of genera with single sitesa

Proximal 11

Interstitial 11

Terminal 34
a Genera having species with single sites in one position and other species with sin
b Comparisons with terminal region (Fisher’s exact test), n.s. non-significant.
equilocality since it promotes the confluence of all telo-
meres to a limited region of the nuclear envelope. In this
case, the dispersion of rDNA sites would occur mainly
among chromosome regions that are equidistant from
the telomere, while centromeres are not directly co-
oriented in the bouquet (see also [42]). This may explain
the high frequency of karyotypes with all sites equilo-
cated in relation to telomeres (73.8%) and a relatively
low frequency of equilocality in relation to centromeres
(38.7%).

Changes in the number of rDNA sites in relation to its
position on chromosomes
During early meiotic prophase nuclei exhibit a highly
polarized and clustered arrangement of chromosome
ends, called ‘bouquet’. Assuming that the dispersion of
sites is mediated mainly by the bouquet configuration,
the variation in the number of rDNA sites should be
higher when the sites are located in the terminal region,
since only these regions are clustered by the bouquet.
To evaluate the role of the site position on the variation
in number of sites, a sample of 56 genera was analyzed,
each one having species with single sites restricted to a
sinlge position. Among 34 genera having terminal single
sites, 20 (58.8%) presented also species with multiple
sites and in 14 of them all sites were terminal. On the
other hand, 11 genera had species with proximal single
sites but only two out of these 11 genera (18.2%) had
species with multiple sites and in both cases the sites
were not proximal (Table 3). Therefore, terminal rDNA
sites seem to have higher mobility than proximal ones.
The tight proximity of the telomeres in the bouquet

and the highest rate of recombination in the terminal re-
gion seem to contribute to the higher rate of changes in
the number rDNA sites on this region. Certainly, other
chromosomal features should also influence the disper-
sion of these sites, leading to species with similar karyo-
types and different distribution of sites. A clear example
of divergent patterns in very similar karyotypes was
observed in species of Phaseolus. Among 37 accessions
of P. vulgaris analyzed there was a variation of six to 18
sites of 45S rDNA per diploid complement [32] while in
17 accessions of P. lunatus the number of sites was
species with single sites restricted to only one

Number of genera with multiple sites

In any region In the same region p-valueb

2 0 0.008

4 3 n.s.

20 14

gle sites in a different position were excluded from this sample.
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stable - only one pair of sites [66]. This extreme contrast
in two species with very similar chromosome size and
morphology, geographical distribution and cultivation
history, suggests that other factors, such as association
with mobile elements [86,87], may play a decisive role in
site dispersion.

Variability between diploids and polyploids
The variability between diploids and polyploids was ana-
lyzed at the intra-specific and intra-generic levels. In 19
out of 26 species (59 karyotypes) that had one or more
polyploidy cytotypes, the number of sites per monoploid
complement (SMC) was constant (Additional file 1:
Table S2). In four of these 19 species there was variation
in the number of sites per karyotype in different diploid
cytotypes, but the tetraploid cytotype exhibited the same
number found in one of the diploids. The position of the
sites could be determined in only 18 out of 26 species.
In 14 of them the position of the sites remained un-
changed in diploids and polyploids (Additional file 1:
Table S3).
To investigate the variability at the intrageneric level,

40 genera with two or more species were analyzed (spe-
cies with intraspecific variability were not included). The
number of SMC between different ploidy levels was
stable in only 6 genera (15%). Among the remaining 34
genera the number of SMC in polyploidy species was
lower than in diploids in 29 cases, and higher in only
seven (Additional file 1: Table S4).
In general, polyploidy results in doubling of sites when

it is of recent origin (intraspecific polyploidy), but when
comparing different diploid and polyploid species of the
same genus there was a clear trend to reduce the num-
ber of SMC in the latter. Considering that the period of
time of evolutionary divergence is usually larger between
species of the same genus than between cytotypes of the
same species, it is reasonable to assume that older poly-
ploids more often display "diploidized" numbers of
rDNA sites, as observed in Aristolochia [88], Nicotiana
[38], and Avena [89].

The distribution of 45S rDNA sites in animals
The number and location of rDNA sites in other eukar-
yotes seem to follow some of the trends observed here,
although we are not aware of such a similar compilation
in other large groups of organisms. A quick look at
the literature showed that the modal number of rDNA
sites was 2 or 4 per cell in each one of the following
samples: 49 species of Orthoptera [40], 31 Scarabaei-
nae bettles [90], 18 Lepidoptera [80], 38 triatomine
(Heteroptera) [91], 13 representatives of five tribes of
cichlid fishes [92], 61 rodents [42,93], 50 bats [93],
and 56 species of reptiles [94]. The number of rDNA
sites in this sample was quite variable within some
groups, as rodents and grasshoppers, but much more
conserved in others, as triatomine and bats.
The distribution of 45S rDNA sites per arm was dis-

tinct for different taxa. For example, in bats the sites
were restricted to the short arm in all 7 families and 38
genera [93] whereas in reptiles they were largely con-
centrated on large arms or on microchromosomes [94].
The site distribution per chromosome arm region was
more difficult to assess. However, most sites were
located very close to the centromere of acrocentric
chromosomes or at the terminal/subterminal region of
the short or long arms, but only rarely they were found
in the interstitial region. Curiously, in holokinetic chro-
mosomes of Lepidoptera the rDNA sites were not
restricted to the terminal position [80], as observed in
plants. All together, these data suggest that the non-
random distribution of rDNA sites observed in most
taxa may be influenced by other important aspects of
the chromosomal structure and organization, such as
the amount of active mobile elements [87], nuclear
DNA amount [26], and dynamics of interphase chro-
mosomes [57].

Conclusions
All these data together, indicate that: i, in angiosperms
45S rRNA genes occur preferentially on the short
arms, concentrated on one or two clusters per haploid
set, and in the terminal region of chromosomes; ii, in
gymnosperms there are two different patterns: mainly
interstitial sites in Pinaceae and mainly terminal or
proximal sites in all other families; iii, the preference
for the short arm is especially evident in very short
arms of acrocentric chromosomes, where they often
seem to span the whole arm; iiii, the location is more
strictly controlled in holokinetic chromosomes where
all 45S rDNA sites have been reported in the terminal
position; iiiii, when the number of rDNA sites per
karyotype increases, either by dispersion of repetitive
units or by polyploidy, they tend to maintain the rela-
tive position of the original site. Although single rDNA
loci are able to change its number and position in the
genome, the establishment and dispersion of new sites
appear to be constrained along the chromosome arms.
Despite some general trends concerning the number
and position of rDNA sites in plants, some species
and even large taxonomic groups of plants deviate
completely from these trends. Although there may be
selection pressures favoring the terminal location, data
of some groups indicate that there are no restrictions
to the functioning of rDNA clusters in other positions
or in higher number of sites and the forces driving the
observed trends may be related to the chromosome
architecture, nuclear organization and the dynamics of
allelic and non-allelic recombinations.
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Methods
Information on the karyotype and the number and pos-
ition of the 45S rDNA signals in mitotic metaphase cells
of 253 original studies were used to build a database.
The complete list of these articles and genera/families to
which they refer is indicated in Additional file 1: Table
S5. For the analysis of different aspects of the distri-
bution of these sites, only part of the total sample was
used since not all of the available karyotypes displayed
all necessary information. Statistical analysis included
Chi-square, Fisher’s exact test and proportion tests
implemented in the software Epicalc (Brixton Health).

Estimating the chromosomal morphology, size and the
position of rDNA sites
The definition of metacentric, submetacentric and acro-
centric chromosomes types was based on the arm ratio
(ar) values, considering only metacentric chromosomes
(ar < 1.5), submetacentric (ar ≥ 1.5 < 3.0) and acrocentric
(ar ≥ 3.0, including those apparently telocentric [49]. The
size in micrometers of the chromosomes bearing the
rDNA sites was found in only 28 of 253 articles con-
sulted. In other 194 articles there was a scale bar in
micrometers, which allowed estimating the size of chro-
mosomes by carefully measuring the size of the bar and
the chromosomes. In 31 original works, where FISH data
were presented without any information on chromosome
size, this measurement was based on the size of the NOR
bearing chromosome found in other publications for the
same species. For example, for Allium fistulosum the
number and relative position of rDNA sites were
obtained from the work of Ricroch et al. [95] and the size
of the chromosome bearing the NOR was based on mea-
surements reported by Gernand et al. [96].
The position of the rDNA site was determined by two

distinct approaches. First, based on metaphase photo-
graphs, the chromosome arm was divided into four
regions of equal size [proximal (p), interstitial-proximal
(ip), interstitial-terminal (it) and terminal (t)] and the
site was positioned in one of them. When the rDNA sig-
nal seemed to coincide with the position of the centro-
mere, it was referred to as "centromeric" (cen). Some
sites appeared to span the entire chromosome arm, from
the proximal to the terminal region, being named
"whole-arm" sites (Additional file 1: Table S5). In the sec-
ond approach, considering only idiograms, the absolute
distance in micrometers from the site to the centromere
was evaluated. In this case, the lengths from the centro-
mere to the beginning of the site and from the end of the
site to the telomere were estimated, as well as the size of
the other chromosome arm. Whenever available, mea-
surements provided in the original paper were used,
otherwise they were estimated from the available idio-
grams or metaphases. All measurements were performed
with Adobe Professional 9.0 (Adobe Inc.) in the digital
version of the papers (Additional file 1: Table S6).

Analysis of the distribution of rDNA sites by the arm
frame method
The method proposed by Lima-de-Faria [7] was used
aiming primarily to compare the distribution of rDNA
sites with his data for secondary constrictions. Graphic-
ally, the chromosomes were represented by parallel lines,
with centromeres aligned at the vertical axis and the
rDNA bearing arm at the right side of this axis (Figure 6).
The exact position of this arm in the graphic was given
by its size, in both vertical and horizontal axes. Chromo-
somes with rDNA sites on both arms were represented
twice in the graphic. In addition, the regions of higher
and lower occurrence of these sites along the chromo-
some were identified by means of a graph of density of
sites in the arm frame. Another analysis, similar to the
arm frame, considered the size of the chromosome arm
in micrometers in the Y axis and the relative distance of
the site to the centromere in percentage on the X axis.

Additional files
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karyotypes and analyses.
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