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 Background: The therapeutic potential of endothelial colony-forming cells (ECFCs) may be impaired in an ischemic environ-
ment. Direct injection of ECFCs is not an effective method of rescuing the ischemic heart, but exosomes de-
rived from these cells may be a promising therapeutic tool. However, exosomes produced under normoxia and 
hypoxia may not be identical. Therefore, the purpose of this study was to investigate alterations in the anti-fi-
brotic effects of hypoxia-treated ECFC-derived exosomes and the underlying mechanism involved.

 Material/Methods: ECFCs were isolated from peripheral blood and exosomes were collected from ECFCs treated with normox-
ia (nor-exo) or hypoxia (hyp-exo). Effects of exosomes on cardiac fibroblast activation were evaluated in vitro. 
MicroRNAs (miRNAs) inside the exosomes were extracted and compared using next-generation RNA sequenc-
ing. Predicted target mRNAs of miR-10b-5p were validated using a dual-luciferase reporter gene assay method.

 Results: Nor-exo significantly ameliorated cardiac fibroblast activation in vitro. These effects were attenuated in the hyp-
exo-treated group. miR-10b-5p was enriched in nor-exo but not in hyp-exo. Dual-luciferase reporter gene as-
say found that both SMAD-specific E3 ubiquitin protein ligase 1 (Smurf1) and histone deacetylase 4 (HDAC4) 
mRNAs were inhibited by miR-10b-5p. The expression of neutral sphingomyelinase 2 (N-SMase2) was decreased 
in hypoxia ECFCs, and this result was consistent with the changes in miR-10b-5p in hyp-exo.

 Conclusions: Due to a reduction of miR-10b-5p, which targets the fibrotic genes Smurf1 and HDAC4, the anti-fibrotic effects 
of hyp-exo were abolished.
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Background

Cardiovascular disease is one of the leading causes of morbid-
ity and mortality worldwide. Acute myocardial infarction (AMI) 
is a major contributor to poor outcomes, particularly in devel-
oped countries [1,2]. Cardiac fibrosis, which can occur second-
ary to AMI, has drawn increasing attention because it induc-
es a wide range of chronic adverse events (e.g., heart failure 
and arrhythmia).

During the past decade, cell-based therapies have grown to be 
one of the most promising methods to treat cardiac fibrosis. 
In particular, the injection of stem cells derived from various 
sources has been a focus of scientific interest [3,4]. Several 
studies have reported that endothelial colony-forming cells 
(ECFCs), known as progenitor cells of endothelial cells, reduce 
fibrosis in the post-infarct heart due to their high prolifera-
tive potential [4–6]. In addition to the direct effects of ECFCs, 
an increasing number of researchers have reported that ex-
tracellular vesicles derived from ECFCs, specifically exosomes, 
play a key role in mediating therapeutic effects against fibro-
sis [7,8]. Exosomes are small membrane-bound vesicles that 
have a diameter of approximately 30–150 nm. They are pres-
ent in all body fluids and have recently received attention be-
cause of their potential role as communication vehicles be-
tween cells [9].

The direct usage of ECFCs is associated with certain prob-
lems. Importantly, the extracellular environment required to 
support ECFC growth and function is destroyed due to cardiac 
ischemia [10,11]. For example, previous studies have shown 
that less than 10% of injected stem cells are detected in the 
infarcted myocardium [12,13]. Furthermore, several studies 
have found that the proliferation, migration, and tube-forma-
tion abilities of ECFCs are decreased under long-term hypox-
ic conditions [14–16]. On the contrast, use of ECFC-derived 
exosomes is quite promising. Burger first reported that ECFCs 
protect against acute kidney injury by exosomes [17]. Vinas et 
al. subsequently reported that ECFC-derived exosomes reduce 
ischemic kidney injury by transferring miRNAs [7].

Because of the research progress made in use of exosomes, 
many believe that ECFCs can benefit ischemic organs, as in car-
diac ischemia. However, it remains unclear whether the ther-
apeutic effects of ECFC-derived exosomes are mitigated un-
der ischemic conditions. Therefore, determining the effects of 
ECFC-derived exosomes produced under ischemic conditions 
is very important. Moreover, if ischemia/hypoxia attenuates 
the effects of ECFC-derived exosomes, it may support use of 
exosomes therapy in clinical practice instead of ECFCs thera-
py. Since hypoxia is one of the most important pathophysio-
logic changes in the ischemic heart, we examined the respons-
es of ECFC-derived exosome fractions to low oxygen in vitro. 

In this study, we focused on the anti-fibrotic effects of ECFC-
derived exosomes.

Material and Methods

ECFC isolation and characterization

ECFCs were isolated, cultured, and characterized as we previous-
ly described (see Supplementary Materials and Supplementary 
Figure 1) [18]. The peripheral blood used in the experiment was 
donated by healthy volunteers. All volunteers signed informed 
consent and this program was approved by the Clinical Ethics 
Committee of Sun Yat-sen Memorial Hospital.

Hypoxia treatment, exosome isolation and analysis

Prior to exosome isolation, ECFCs were cultured in EGM-2 
medium with 2% serum replacement (15950-017, PALL Life 
Science, USA) [19,20] to avoid exosomes from fetal bovine 
serum [21] and then were divided into normoxia and hypoxia 
groups. A humidified, temperature-controlled hypoxia cham-
ber (Galaxy® 48 R incubator, Eppendorf/Galaxy Corporation, 
USA) was used to maintain cells in 1% O2. We collected con-
ditioned media after 72 h.

Conditioned media were subjected to sequential centrifuga-
tion (Optima L 100XP ultracentrifuge, Beckman Coulter SW 41 
Ti rotor, USA) at 10 000 rpm for 30 min to remove micropar-
ticles and 100 000 rpm for 70 min followed by washing once 
with PBS [22,23]. Pellets were resuspended with PBS and then 
filtered using a 0.22-μm sterile filter. Next, the samples were 
centrifuged at 100 000 rpm for 70 min. Normoxia-treated ECFC-
derived exosomes (nor-exo) and hypoxia-treated ECFC-derived 
exosomes (hyp-exo) were obtained. The exosome pellets were 
suspended, and the protein contents of the pellets were analyzed 
using a Micro BCA Protein Assay Kit (P0012S, Beyotime, China).

The ultrastructures of the exosomes were detected by trans-
mission electron microscopy (TEM) (JEOL JEM-1400, Japan) [24]. 
Exosome sizing was performed via nanoparticle tracking analy-
sis with a NanoSight LM10 instrument (NanoSight, Ltd., Malvern, 
UK) [23,24]. Protein markers, such as CD63, CD9, Alix and cal-
nexin, were examined by immunoblotting [23]. In brief, exo-
somes were resolved by sodium dodecyl sulfate–polyacrylamide 
gel electrophoresis (SDS-PAGE) and then transferred onto poly-
vinylidene difluoride (PVDF) membranes (IPVH00010, Millipore, 
USA) before incubating with primary antibodies (CD9, catalog 
no. ab92726, UK; CD81, catalog no. ab109201, UK; Alix, catalog 
no. ab186728, UK; CD63, catalog no. sc-15363). After washing 
with TBST, membranes were incubated with anti-IgG horserad-
ish peroxidase-conjugated secondary antibody (anti-rabbit IgG, 
catalog CST no. 7074, USA) for 60 min at room temperature. 
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After extensive washing, bands were detected by enhanced 
chemiluminescence. Band intensities were quantified using 
imaging software (ImageJ, version 1.50i).

Cardiac fibroblast cultivation and activation

Human cardiac fibroblasts from adult ventricles were pur-
chased from ScienCell Research Laboratories (catalog no. 6310, 
lot no. 9617, USA). Cells were cultured in Fibroblast Medium-2 
(FM-2, catalog no. 2331, ScienCell, USA), and cells at passage 
5 were used in a fibroblast activation assay. After the initia-
tion of TGF-b (catalog no. 100-21, PeproTech, USA) stimulation 
(15 ng/ml), cardiac fibroblasts were cultured in basal medium 
with 0.1% fetal bovine serum for 48 h. Next, 75 μg/ml nor-exo 
or hyp-exo were added, and the effects of the exosomes were 
tested in vitro (see Supplemental Figure 2 for dose testing).

Western blotting analysis

Protein levels were measured by Western blot analysis as pre-
viously reported [25]. Cells were washed 3 times with PBS be-
fore collection and lysed with modified RIPA buffer. Cells were 
completely lysed after repeated vortexing, and supernatants 
were acquired through centrifugation at 14 000 rpm for 30 
min. Proteins were resolved by sodium dodecyl sulfate–poly-
acrylamide gel electrophoresis (SDS-PAGE) and then transferred 
onto polyvinylidene difluoride (PVDF) membranes (IPVH00010, 
Millipore, USA) before incubating with primary antibodies (a 
smooth muscle actin (a-SMA), catalog no. ab5694, UK; colla-
gen I (Col-1a), catalog no. ab138492, UK; and GAPDH, cata-
log CST no. 2118, USA). After washing with TBST, membranes 
were incubated with anti-IgG horseradish peroxidase-conju-
gated secondary antibody (anti-rabbit IgG, catalog CST no. 
7074, USA) for 60 min at room temperature. After extensive 
washing, bands were detected by enhanced chemilumines-
cence. Band intensities were quantified using imaging soft-
ware (ImageJ, version 1.50i).

Immunocytochemistry

Cells were fixed in 4% (w/v) paraformaldehyde for 20 min at 
room temperature. Following PBS washes, cells were incubat-
ed with 0.1% Triton X-100 for 10 min at RT and then blocked 
in 1% bovine serum albumin (BSA) for 2 h in PBS before over-
night incubation in primary antibody at 4°C. After washing with 
PBS, the cells were incubated with the appropriate secondary 
antibody for 1 h at RT and imaged by a fluorescence micro-
scope (Leica, German) equipped with a CCD camera (Tokyo, 
Japan). Primary antibodies, such as anti-collagen I (catalog no. 
ab138492, UK), were used to stain Col-1a in fibroblasts. Goat 
anti-rabbit Alexa Fluor488 IgG (catalog no. ab150077, UK) was 
used as the secondary antibody. Mounting medium contained 
the nuclear stain DAPI (D1306, Invitrogen, USA).

Next-generation sequencing and bioinformatics

Template libraries were prepared from total RNA obtained from 
the ECFC exosomes. Two independent libraries were generat-
ed from nor-exo and hyp-exo, respectively. Each group con-
sisted of 3 independent cultures. RNA segments of different 
sizes were separated by PAGE, and an 18- to 30-nt band was 
selected and recycled. Adapters specifically targeting miR-
NAs and other small RNAs were ligated to each end of the 
RNA molecule, and an RT reaction was performed to create 
single-stranded cDNA. Next, adapter-ligated fragments were 
amplified by PCR. We recovered the purified PCR construct 
by PAGE, dissolved the recycled products in EB solution, and 
completed library construction. Data cleaning analysis was 
performed on the 49-nt sequence tags obtained from HiSeq 
sequencing, and standard analysis annotated the clean tags 
into different categories. After obtaining the miRNA results, 
miRNA target prediction and KEGG pathway analysis for tar-
get genes were performed.

miRNA isolation and real-time PCR

Total RNA was isolated from exosomes using a SeraMir™ 
Exosome RNA Amplification Kit (Catalog RA800A-1, SBI, 
USA) [26]. A PrimeScript™ RT Reagent Kit (RR037A, TAKARA, 
Japan) was used for cDNA preparation. Real-time PCR was 
performed in a Roche LightCycler® 480 Real-Time PCR System 
(Roche, Switzerland). Mamm-U6 RNA was used to normalize 
differences in RNA levels in each sample. The relative amount 
of miRNA to U6 RNA was expressed using the 2–DDCt method.

The primers were: hsa-miR-10b-5p, reverse transcrip-
tase sequence 5’-GTCGTATCCAGTGCAGGGTCCGAG 
GTATTCGCACTGGATACGACCACAAA-3’, forward sequence 
5’-GCGCGGTACCCTGTAGAA-3’, reverse sequence 5’-CCA 
GTGCAGGGTCCG AGGTA-3’. has-U6, reverse transcriptase se-
quence 5’-AAAATATGGAACGCTTCACG-3’, forward sequence 
5’-CGCTTCGGCAGCACATATACTA-3’, reverse sequence 5’-GCGAGC 
ACAGAATTAATACGAC-3’.

Dual-luciferase reporter gene assay

The 3’UTRs of histone deacetylase 4 (HDAC4), inhibitor of DNA 
binding 2 (ID2), neuroblastoma 1 (NBL1), and SMAD-specific 
E3 ubiquitin protein ligase 1 (SMURF1) were cloned into the 
pMIR-REPORT vector immediately downstream of the stop co-
don of the luciferase gene using standard procedures to gen-
erate the HDAC4-3’UTR, ID2-3’UTR, NBL1-3’UTR, and SMURF1-
3’UTR luciferase reporter plasmids, respectively.

HEK293T cells were seeded onto 12-well plates the day be-
fore transfection and then transfected with either miR-10b-
5p mimics or miR-NC using Lipofectamine® RNAiMAX Reagent 
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(Thermo Fisher Scientific). After 24 h, the cells were transfect-
ed with either HDAC4-3’UTR, ID2-3’UTR, NBL1-3’UTR, SMURF1-
3’UTR, or pMIR-REPORT vector together with a Renilla lucif-
erase-expressing vector using Lipofectamine® 3000 Reagent 
(Thermo Fisher Scientific, USA). After 36 h, cells were har-
vested, and luciferase activities were detected using a Dual-
Luciferase Reporter System (Promega, USA). Three indepen-
dent experiments were performed, and the calculated means 
and standard deviations are presented.

Statistical analysis

All quantitative data were described as the mean±SD. Statistical 
analyses were performed using GraphPad Prism 7.0 (GraphPad 
Software, Inc., USA). Unpaired t tests were used to compare 2 
groups when appropriate. In the case of multiple groups, one-
way ANOVA was employed with Tukey’s post-test. P<0.05 was 
considered significant.

Results

Characteristics of nor-exo and hyp-exo

To examine the characteristics of nor-exo and hyp-exo, the exo-
somes were recovered from ECFC conditioned media (ECFC-
CM), followed by TEM, NTA, and Western blot analysis. TEM 
of ECFC-derived exosomes revealed the presence of spheri-
cal structures with a typical size of 30–150 nm in diameter 
(Figure 1A). Furthermore, the expression of the exosome mark-
ers Alix, CD9, and CD63 was confirmed by Western blot anal-
ysis (Figure 1B). To test exosome purity, calnexin, which has 
been proposed as a negative marker of exosomes, was also 
detected. To further investigate the size-distribution profiles 
of ECFC-derived exosomes, we performed size detection using 
NTA, which revealed size peaks of 110 nm (nor-exo group) and 
114 nm (hyp-exo group), respectively (Figure 1C). Size peak 
particles concentrations in the nor-exo group were higher than 
in the hyp-exo group (5.49×106 particles/ml vs. 3.33×106 parti-
cles/ml). These results indicated that we had obtained typical 
exosomes from ECFC-CM in both the normoxia and hypoxia 
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Figure 1.  Characteristics of exosomes. (A) Arrowheads indicate ultrastructures of nor-exo and hyp-exo using TEM, bar size 100 nm. 
(B) CD63, CD9, Alix, and calnexin expression in exosomes. A total of 20 µg of protein from lysed ECFCs and 20 mg of protein 
from lysed exosomes was loaded into each lane (representative image, n=3). (C) Size distribution profiles of nor-exo and 
hyp-exo by NanoSight tracking analysis.
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treatment groups. There were no significant differences be-
tween the 2 groups of exosomes with regard to their charac-
teristics, except for particles concentration.

Hypoxia attenuated the anti-fibrotic effects of ECFC-
derived exosomes in vitro

Hypoxia reportedly impairs the repair capacity of ECFCs [14,15], 
although its effects on exosome functions remain unknown. 
Therefore, we assessed the different therapeutic potencies of 
nor-exo and hyp-exo.

Collagen I

α-SMA

GAPDH

TGF-β – + +
Nor-exo

+GW4869

+
Nor-exo

–TGF-β + +
Nor
-exo

+GW4869

+
Nor
-exo

n.s.
*

Co
lla

ge
n/

GA
PD

H

1.5

1.0

0.5

0.0
–TGF-β + +

Nor
-exo

+GW4869

+
Nor
-exo

n.s.
*

α-
SM

A/
GA

PD
H

1.5

1.0

0.5

0.0

Collagen I

α-SMA

GAPDH

TGF-β – +
Nor-exo

+ +
Hyp-exo

+
Nor-exo

+ATA

+
Nor
-exo

+
Hyp
-exo

+
Nor
-exo

+ATA

–TGF-β

Control

Collagen I

DAPI

Merge

TGF-β
TGF-β

Nor-exo Hyp-exo Nor-exo+ATA

+

**

+
Nor
-exo

+
Hyp
-exo

+
Nor
-exo

+ATA

– +

*
*

Co
lla

ge
n/

GA
PD

H
2.0

1.5

1.0

0.5

0.0
TGF-β

α-
SM

A/
GA

PD
H

1.5

1.0

0.5

0.0

A

C

B

Figure 2.  In vitro effects of nor-exo and hyp-exo on Col-1a and a-SMA expression in cardiac fibroblasts. Cardiac fibroblasts were 
incubated with nor-exo (75 µg/ml) or GW4869-treated nor-exo (75 mg/ml) and then stimulated with TGF-b1 (15 ng/ml) for 48 
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(C). Mean ±SD, n=3, ANOVA followed by Tukey’s post-test. * P<0.05; ** P<0.01.
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Figure 3.  Characterization of miRNAs in ECFC-derived exosomes and the role of miR-10b-5p in protecting fibroblasts from activation. 
Next-generation RNA sequencing results (A, B). RT-qPCR results of the most highly differential miRNAs between nor-exo 
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To investigate the potential effects of exosomes on fibrosis ac-
tivation, we first treated cardiac fibroblasts with nor-exo before 
stimulation with TGF-b. TGF-b stimulation significantly increased 
Col-1a and a-SMA expression levels, which were significantly 
attenuated by nor-exo (Figure 2A, Supplementary Figure 3). To 
validate the role of exosomes, we treated ECFCs with a neutral 
sphingomyelinase 2 (N-SMase2) inhibitor, GW4869, which in-
hibited exosome secretion [27], followed by a sequential cen-
trifugation process. Next, the centrifugation products were add-
ed to fibroblasts, and Col-1a and a-SMA expression profiles 
were examined. The results showed that GW4869 dramatically 
reversed the nor-exo-induced reduction in Col-1a and a-SMA 
(Figure 2A). These results clearly demonstrated that normoxia-
ECFC-derived exosomes, but not other components from cul-
ture medium, reduced fibroblast activation.

We further examined the anti-fibrotic effects of hyp-exo in car-
diac fibroblasts in vitro. As indicated in Figure 2B, nor-exo sig-
nificantly suppressed both Col-1a and a-SMA expression, while 
the effects of hyp-exo were similar to TGF-b alone (Figure 2B). 
However, it remained unclear whether the attenuated effects 
of hyp-exo were altered by the change of exosomes-carried 
miRNAs (miRs), although such a relationship has been docu-
mented in a wide range of studies [7,27,28]. Therefore, we in-
cubated nor-exo combined with aurintricarboxylic acid (ATA), 
an RNA-induced silencing complex inhibitor that has been used 
to suppress the effects of miRs [29]. As shown in Figure 2B, ATA 
nearly completely abolished the therapeutic effects conferred 
by nor-exo. Immunofluorescence cytochemistry results were 
consistent with the observed expression (Figure 2C). Taken to-
gether, these data show that exosomes carrying miRs play a 
protective role in the reduction of cardiac fibroblast activation.

Characterization of miRNAs in ECFC-derived exosomes 
and the role of miR-10b-5p in protecting fibroblasts from 
activation

Our results indicated that miRNAs play a role in the anti-fibrot-
ic effects of exosomes, but the underlying mechanism of miR 
function is unknown. Therefore, we used next-generation se-
quencing to identify relevant miRs. A total of 721 miRs were 
upregulated, and 1140 miRs were downregulated in hyp-exo 
(see Supplementary Figure 4). Based on the read number of 
each miRNA in nor-exo, which represents the abundance of 
miRNA expression, we selected the top 20 miRNAs for further 
investigation. Figure 3A shows the relative changes in these 
miRNAs in hyp-exo compared with those in nor-exo. Among 
these miRs, miR-10b-5p showed the highest expression in nor-
moxia exosomes, as indicated by its relatively large read num-
ber, which was greater than the sum of the other top 19 miR-
NAs. However, its expression was dramatically decreased in 
the hypoxia group (Figure 3B), which was confirmed by sub-
sequent RT-PCR results (Figure 3C).

Next, we examined the role of miR-10b-5p in fibroblast acti-
vation. As expected, these results showed that when the miR-
10b-5p concentration reached 100 nM, the reduction in Col-
1a and a-SMA expression was similar to that in the normoxia 
exosome group (Figure 3D–3F). Taken together, these results 
showed that miR-10b-5p induced anti-fibrotic effects.

Targeting of HDAC4 and Smurf1 mRNAs by miR-10b-5p

Considering that miRNAs are responsible for the differing ef-
fects of hyp-exo and nor-exo on fibroblast activation, and TGF-b 
is one of the major classical factors inducing fibroblast activa-
tion, we next sought to identify whether miR-10b-5p affects 
TGF-b-associated fibroblast activation. The RNAhybrid, miRan-
da, and TargetScan databases were used to predict targets of 
miR-10b-5p, and 100 potential targets are shown (Figure 4A). 
Additionally, 255 genes involved in the TGF-b signaling path-
way were identified from the KEGG database, and 4 genes were 
found in both datasets (SMURF1, mRNA ID: NM_001199847; 
NBL1, mRNA ID: NM_001204086; ID2, mRNA ID: NM_002166; 
HDAC4, mRNA ID: NM_006037; Figure 4A, 4B).

To validate the results of the bioinformatics predictions, a du-
al-luciferase reporter gene assay was performed. A miR-10b-
5p mimic significantly reduced the relative luciferase activity 
of the Smurf1-3’-UTR and HDAC4-3’-UTR vectors (Figure 4C). 
However, luciferase activity from the ID2-3’-UTR and NBL2-3’-
UTR vectors remained unchanged in the presence of miR-10b-
5p. Taken together, these results confirmed that Smurf1 and 
HDAC4 mRNAs are direct targets of miR-10b-5p.

We also aimed to understand whether miR-10b-5p downregu-
lated the expression of HDAC4 and Smurf1, similar to our ob-
servations with nor-exo (Figure 4D–4F). Our results indicated 
that miR-10b-5p regulated the TGF-b signaling pathway via 
the decreased expression of HDAC4 and Smurf1.

Expression of N-SMase2 was consistent with changes in 
miR-10b-5p in hyp-exo

When we compared miR-10b-5p levels between normoxia-
treated ECFCs and hypoxia-treated ECFCs, no difference was 
observed, which was inconsistent with the change in miR-10b-
5p in hyp-exo (Figure 5A). Furthermore, N-SMase 2 is well ac-
cepted to play an important role in exosome biogenesis [30,31]. 
Thus, we examined N-SMase 2 expression during hypoxia. The 
results showed that N-SMase 2 expression was decreased in 
hypoxia-treated ECFCs (Figure 5B). The results indicated an 
impairment of miR-10b-5p packaging in ECFCs during hypox-
ia. In addition, N-SMase 2 mRNA levels in ECFCs significant-
ly increased during hypoxia, suggesting that hypoxia reduces 
N-SMase post-transcriptionally (Figure 5C).
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Figure 4.  Targeting of HDAC4 and Smurf1 mRNAs by miR-10b-5p. Predicted mRNA targets of miR-10b-5p that overlapped with the 
TGF-b signaling pathway (A, B). Validation of mRNA targets of miR-10b-5p using a dual-luciferase reporter gene assay (C). 
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test. * P<0.05; ** P<0.01.
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Discussion

ECFCs may be a promising stem cell therapy for treating isch-
emic diseases, particularly MI. However, the micro-environ-
ment around infarcted zones is deleterious to ECFC growth 
and proper function. Exosomes have emerged as a promising 
therapeutic alternative, and the effects of hypoxia on ECFC-
derived exosomes are currently not conclusive. Our study con-
firmed that the anti-fibrotic effects of exosomes from ECFCs 
are ameliorated under hypoxic conditions. Moreover, using 
high-throughput methods, we found that decreased levels of 
miR-10b-5p, which targets HDAC4 and SMURF1 mRNA, may 
account for the attenuated therapeutic potency of hyp-exo. 
Taken together, the results of our study may deepen our un-
derstanding of the reparative limitations of ECFCs after MI.

Hypoxia-impaired ECFC function has been described. For exam-
ple, several studies have reported decreased ECFC proliferation, 
migration, angiogenesis, and vessel formation under hypoxic con-
ditions [12–14]. However, to the best of our knowledge, this is 
the first study to directly demonstrate that exosomes from ECFCs 
ameliorate cardiac fibrosis. Indeed, although previous studies 
have reported that microvesicles from ECFCs protect cardiomyo-
cytes from hypertrophy and apoptosis, and exosomes from these 
cell reduce ischemic kidney injury [7,32], no study has directly 
assessed the effects of exosomes or microvesicles on the isch-
emic heart. However, the injection of ECFC-derived exosomes 
has been shown to be safe, and thus, our study may provide 
the first description of a feasible clinical therapeutic treatment.
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The mechanism underlying how exosomes exert their pro-
tective effects is also important. Classical effects of ECFCs, 
such as the promotion of angiogenesis, have been validated. 
Consistent with such a finding, angiogenic effects of ECFC-
derived exosomes have also been reported. Li et al. found that 
ECFC-derived exosomes accelerated re-endothelialization [33]. 
Similarly, a recent study showed that exosomes from ECFCs in-
duced mesenchymal-endothelial transition and promoted an-
giogenesis via a reduction in high-mobility group box-1 protein 
B1 expression [34]. In addition to angiogenesis, ECFC-derived 
exosomes also reduced renal cell apoptosis in ischemic kid-
ney injury [17]. Our study showed that ECFC-derived exosomes 
antagonized fibrosis by inhibiting cardiac fibroblast activation 
and the secretion of extracellular matrix. The non-angiogene-
sis effects of ECFC-derived exosomes described in the present 
study widen the known mechanisms of ECFC exosomes and 
provide additional clues for subsequent studies in this field.

Most importantly, we revealed a mechanism underlying de-
creased therapeutic potency of hyp-exo: upon hypoxia, altera-
tions in exosome cargo are responsible for the decreased protec-
tive effects of ECFC-derived exosomes, manifesting as reduced 
fibroblast activation. miRNAs carried by exosomes are the most 
well-studied, but the differences between nor-exo and hyp-exo 
have remained uncharacterized. In addition, it is unclear wheth-
er alterations to miRNAs explain the distinct effects of the 2 
exosome populations. We used RNA sequencing to compare all 
the miRNA expression profiles and found that miR-10b-5p was 

abundantly expressed in both ECFCs and their exosome. miR-
10b-5p expression was also downregulated to the greatest ex-
tent in hyp-exo, which might contribute to the potential mech-
anism underlying the reduced therapeutic effects observed with 
these exosomes. Although no study has directly demonstrated 
an association between miR-10b-5p and fibrosis, both human 
and animal studies investigating cardiac fibrosis with different 
etiologies have consistently shown that miR-10b-5p is inverse-
ly correlated with fibrosis [35,36]. Moreover, the Smad/HDAC 
pathway, which is the classical and primary mechanism leading 
to fibrosis, has been confirmed as a target of miR-10b-5p. Thus, 
our study suggests that decreased miR-10b-5p may be responsi-
ble for the attenuated therapeutic effects of hyp-exo (Figure 6).

Despite our findings, some limitations of the present study 
should be acknowledged. First, although we demonstrated 
that hyp-exo is less effective at reducing fibrosis, we did not 
provide direct evidence to demonstrate alterations to miR-
10b-5p in ECFC-derived exosomes in the infarcted heart mod-
el; therefore, there is a lack of evidence directly showing the 
role of miR-10b-5p. In addition, although our data indicated 
that a change in N-SMase2 might be involved in the altera-
tions to miR-10b-5p in hypoxia-derived exosomes, we did not 
determine how hypoxia affects the expression of N-SMase2 or 
how N-SMase2 affects the packaging of miR-10b-5p in exo-
somes. Thus, additional studies to explore how hypoxia affects 
the packaging of miR-10b-5p in exosomes will be meaningful.

Conclusions

In summary, despite these limitations, the present study dem-
onstrated that human ECFC-derived exosomes reduce cardiac 
fibroblast activation, which was greatly attenuated when these 
exosomes were exposed to hypoxia. RNA sequencing revealed 
that miR-10-5p was abundantly enriched in ECFC-derived exo-
somes and was dramatically decreased in hypoxia-cultured ECFC-
derived exosomes. Moreover, bioinformatics analyses and dual-
luciferase reporter gene assays demonstrated that HDAC4 and 
Smurf1, which play important roles in the TGF-b signaling path-
way, are targets of miR-10b-5p. Taken together, these results 
suggest that the use of miR-10b-5p-enriched exosomes may 
be a viable strategy for reducing fibroblast activation after MI.
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Supplementary Figure 1.  ECFCs characterization. ECFCs immunolabeled with a control antibody are presented with blue line and 
specific antibody are presented with red line.
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