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INTRODUCTION

In recent years, significant advances in the understanding of 
the molecular biology in breast cancer development have led 
to the identification of new molecular target and the develop-
ment of targeted therapy. Much more efforts are also being made 
in the development of better molecular targets which are crucial 
for tumorigenesis and metastasis. In this context, heat shock 
proteins (HSPs) has gained interest as a promising anticancer 
drug target due to its involvement at the crossroads of multi-
ple signaling pathways associated with cell proliferation and 
cell survival [1-3].

HSPs were first discovered in Drosophilia melanogaster in 1962 
as a set of proteins that was rapidly induced in response to ther-
mal stress [4]. Thereafter, many studies demonstrated that HSPs 
are a highly conserved family of proteins either expressed con-
stitutively or regulated inductively by various cellular stresses 
such as inflammation, toxins, hypoxia, and radiation in all living 

organisms [5,6]. 
HSPs are highly abundant proteins in eukaryotic cells, con-

stituting about 1-2% of total proteins in unstressed cells and 
increasing to 4-6% of cellular proteins under stress [7,8]. Under 
stress conditions, HSPs are rapidly induced through transcrip-
tion and translation mechanisms. The transcription of HSP 
genes is regulated by a family of heat shock transcription fac-
tors (HSFs). The HSF family includes HSF1, main regulator of 
the short-term induction of HSPs. Under unstressed conditions, 
HSF1 exists as a inactive cytosolic monomer, bound to HSPs. 
However, in stressed cell, HSF1 dissociates from HSPs and is 
transported to the nucleus where it subsequently forms phos-
phorylated homotrimer. Then it binds to the promoter site of 
HSPs gene, leading to HSPs production. If HSPs are over-ex-
pressed in the absence of stress it binds directly to the HSF1 
trans-activation domain resulting in its suppression [9,10]. In-
terestingly, HSF1 has been proposed to affect tumor initiation 
and progression. Recent reports demonstrated that HSF1 plays 
a key role in the development of tumors associated with activa-
tion of Ras or inactivation of p53 and HSF1 inactivation inhibits 
the progression of a wide spectrum of cancers [11,12]. Meng 
et al. [13] reported HSF1 is critical for proliferation of HER2-
expressing cells, most likely because it maintains the level of 
HSPs, which in turn control regulators of senescence p21 and 
survivin. 
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Recent advances in the understanding of the molecular mech-
anisms involved in the breast cancer development and progres-
sion have led to the identification of numerous novel molecular 
targets. Among these, heat shock proteins (HSPs) are being 
emerging molecular target due to its diverse function in cancer 
cells. HSPs are highly conserved molecular chaperone that are 
synthesized by cell in response to various stress conditions. 
Mammalian HSPs have been classified into several families ac-
cording to their molecular weight: HSP100, HSP90, HSP72, and 
small molecular HSPs (including HSP27). They are essential pro-
teins that play a key role in cell survival through the cytoprotec-
tive mechanisms. In addition, HSPs are often overexpressed in a 

rage of cancers including breast cancer, and its overexpression 
seems to be associated with poor clinical outcomes. Also, HSP90 
play a role in facilitating transformation by stabilizing the mutated 
and overexpressed oncoproteins found in breast cancer cell. 
Pharmacological targeting of HSP is therefore indicated and in 
the case of HSP90, numerous inhibitory drugs are undergoing 
clinical trial for treatment of breast cancer and other cancers. In this 
review, we describe the roles of HSPs in cancer cell and introduce 
the HSPs inhibitor as molecular target in cancer therapy and its 
recent clinical trials in breast cancer.
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HSPs form multimolecular complexes and act as molecular 
chaperones, binding other proteins named client proteins. Their 
principal function as chaperones is the maintenance of protein 
stability under normal conditions and prevention of stress-in-
duced cellular damage which can be accomplished in several 
ways, including protein folding, prevention of protein aggre-
gation, stability or proteasomal degradation of selected proteins 
and transport of proteins [14-16]. Most HSPs are also known 
to play an important and complex role in apoptosis, interact-
ing with components of apoptosis pathway or activating anti-
apoptotic mediators [17,18]. Mammalian HSPs have been clas-
sified into five main families according to their molecular weight: 
HSP100, HSP90, HSP70, HSP60 and small HSPs (15-30 kDa) 
including HSP27 [14,19]. High molecular weight HSPs are ATP-
dependent chaperones, while small HSPs act in an ATP-inde-
pendent manner [20,21].

Interestingly, recent data showed essential roles of HSPs in 
malignant process. Expression of high levels of HSPs has been 
observed in a wide range of human cancers including gastric, 
breast, endometrial, ovarian, colon, lung, and prostate [22]. The 
expression of several HSPs has also been shown to be correlated 
with tumor cell proliferation, differentiation and apoptosis in 
several types of cancer. More specifically, high expression of 
HSP90 and HSP70 has been correlated with poor prognosis in 
breast cancer [23].

This article reviews the physical roles of HSPs in malignant 
cell, especially breast cancer and the mechanisms by which 
inhibition of HSPs may be useful in targeted cancer therapy.

THE FAMILY OF HSPs IN CANCER

Small HSPs (HSP27)
HSP27 is a member of the small HSPs family that acts as an 

ATP-independent chaperone and mainly localized in the cytosol. 
They are potent mediator of protein folding and also involved 
in architecture of cytoskeleton, cell migration, cell growth/dif-
ferentiation, and tumor progression [15,21,24,25]. HSP27 also 
has antiapoptotic property [26].

High levels of HSP27 have been observed in many cancer 
cells including breast carcinoma [27,28], compared to normal 
cells in which expression is undetectable or relatively low [15]. 
Moreover, its aberrant expression in cancer is associated with 
aggressive tumor behavior, increased resistance to chemother-
apy, and poor prognosis for the patients. 

HSP27 is activated in various stress conditions both by tran-
scriptional activation and posttranslational modification (phos-
phorylation). HSP27 can be phosphorylated at three serine 
residues 15, 78, and 82, and its phosphorylation is mediated 
by the p38 MAPK stress kinase pathway [29]. This phosphor-

ylation is a reversible event that modulates the oligomeriza-
tion of HSP27. Different cellular functions of HSP27 seem to 
be related to its oligomerization state. Moreover, various differ-
ent phosphorylation patterns of HSP27 have been found to be 
associated with the aggressiveness of different tumor types. A 
recent report demonstrated a twofold increased phophoryla-
tion of HSP27 at serine 78, but not serine 15 and 82, in HER2 
positive breast cancer samples compared to HER2 negative 
tumors. However, the exact role of HSP27 phosphorylation in 
the physiology of cancer remains incompletely understood. 

Recently, several studies demonstrated that the overexpres-
sion of HSP27 seems to be correlated with increased resistance 
to chemotherapeutic drug-induced apoptosis in cancer cells 
[30,31]. Hansen et al. [32] reported the inhibition of doxorubi-
cin induced apoptosis in the HSP27 overexpressing breast can-
cer cell, demonstrating a protective role of HSP27 against apop-
tosis. In addition, a recent report presented that upregulation 
of HSP27 in breast cancer cells reduces trastuzumab suscepti-
bility by increasing HER2 protein stability [33]. These recent 
studies suggest possibility of HSP27 inhibition as molecular 
target for cancer therapy. However, unlike other HSPs, the small 
HSPs do not bind ATP, and it makes this molecule problematic 
for targeting with small compounds.

HSP70
Human cells contain several HSP70 family members includ-

ing the stress-inducible HSP70 (also called HSP72 or HSPA1) 
and the constitutively expressed heat shock cognate 70 (HSC70, 
HSP73 or HSPA8) in the cytosol and nucleus, mitochondrial 
HSP70 (Grp75, Mortalin or HSPA9), and glucose regulated 
protein 78 (Grp78, HSPA5) in the endoplasmic reticulum [34-
36]. HSP70, like other HSPs, is a molecular chaperone expressed 
in response to stress. Under normal conditions, HSP70 also 
plays multiple roles, including the folding of newly synthesized 
proteins [37,38], the transport of proteins and vesicles [39], the 
assembly and dissociation of multi-protein complexes [40], 
and the degradation of denature proteins [41,42].

HSP70 is also powerful anti-apoptotic protein that acts at 
different key points, affecting both the extrinsic and intrinsic 
pathway of apoptosis. For example, HSP70 was reported to 
inhibit the important apoptotic mediator, Bax translocation, 
thus preventing mitochondrial membrane permeabilization. 
Together with its co-chaperone HSP40, HSP70 also blocks TNF-
induced apoptosis. Moreover, HSP70 directly interacts with 
apoptosis protease activating factor-1 (Apaf-1), thereby inhibit- 
ing recruitment of procaspase-9 to the apoptosome and the 
consequent caspase-3 activation. HSP70 can also block caspase-
independent signaling through inhibition of apoptosis-induc-
ing factor (AIF)-induced chromatin condensation and cathep-
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sins release. In conclusion, HSP70 regulates apoptosis by inhibit- 
ing stress-induced signals, by preventing mitochondrial mem-
brane permeabilization, and by suppressing caspase activation 
and DNA fragmentation [26,43]. HSP70 also plays role in senes-
cence through effects on the p53-p21 pathway [44]. 

HSP70 is expressed at high levels in a wide spectrum of can-
cer cells and HSP 70 expression has been routinely associated 
with poor prognosis [43]. The exact role of the HSP70 in can-
cer remains to be elucidated. However, in cancer cell, HSP70 
overexpression is thought to provide a survival advantage due 
to its ability to inhibit apoptosis and senescence [26,45]. More-
over, the HSP70 also acts as co-chaperones for HSP90 by its 
essential role in the substrate-loading phase of the HSP90 molec-
ular chaperone cycle, key to the stability and function of mul-
tiple oncoproteins.

Many studies reported that HSP70 overexpression has also 
been correlated with therapeutic resistance [46]. Although the 
detailed mechanisms of resistance remain to be elucidated, re-
cent evidence suggests that reduced activation of ERK, NF-κB, 
and JNK pathways may be responsible [47]. Moreover, pharma- 
cological inhibition of HSP90 has been found to induce a 
compensatory expression of HSP70 [48]. This might be because 
HSP70 is a highly protective protein that may strongly reduce 
the cell death effect induced by HSP90 inhibition. In this view, 
the potential therapeutic benefit of modulating HSP70 activity 
has become attractive, especially dual therapy against both HSP90 
and HSP90 [49]. The search for inhibitors of HSP70 has dra-
matically increased over the last 2 years; however, there are 
limited small molecule inhibitors of HSP 70 available.

HSP90
HSP90 is a highly abundant and evolutionarily conserved 

protein in the all eukaryotic cell. Five HSP90 isoforms have 
been identified to date, including the two major cytoplasmic 
isoforms, HPS90α and HPS90β (also called HSPC1 and HSPC3, 
respectively), endoplasmic reticulum localized glucose regulated 
protein 94 (Grp94), mitochondrial tumor necrosis factor recep-
tor-associated protein 1 (TRAP1), and membrane-associated 
HSP90N [16]. Despite their different cellular localization, these 
isoforms have a similar overall structure and function as chap-
erone by a common mechanism involving the cyclic conforma-
tional change. 

HSP90 exists as a homodimer within the cell, and each sub-
unit is composed of three domains: N-terminal ATPase domain, 
middle domain implicated in client protein binding, and C-
terminal domain containing protein-protein interaction and 
dimerization motif [50]. The N-terminal domain contains ATP-
binding pocket, and the chaperoning activity of HSP90 requires 
both the binding and hydrolysis of ATP at this site [51]. Besides 

the role of C-terminal domain in dimerization, it was suggested 
that the C-terminal domain contains a second ATP-binding 
site of HSP90 [52-54]. The contribution of this second site to 
the overall regulation of the chaperone is still unknown. The 
C-terminal domain also recruits co-chaperones through a con-
served tetratricopeptide repeat (TPR)-binding motif, EEVD 
[55]. Co-chaperones, containing TPR domains such as HOP, 
and the non-TPR co-chaperones, CDC37, p23, and Aha1, play 
an important role in client protein maturation and modulation 
of ATPase activity [39,19]. Some of these co-chaperones such as 
Aha1 and HSP70 have been proposed for independent molecu-
lar targets [56].

HSP90 functions as a part of a multichaperone complex via 
association with a variety co-chaperons and client proteins that 
rely on the complex for maturation and stability. The HSP90 
complex appears to cycle between an ADP-bound and ATP-
bound state [57]. In an ATP-bound state, HSP90 undergoes a 
conformational change and becomes a mature complex that is 
essential for it to perform its function of client protein folding 
and stabilization. The hydrolysis of ATP to ADP facilitates release 
of these client proteins, and then they are degraded by ubiquitin 
proteasome pathway [58]. 

HSP90 is important molecular chaperone that regulates the 
stability and activity of numerous client proteins covering almost 
all cellular processes. More than 200 client proteins have been 
identified so far, and the list is constantly being updated [59]. Its 
client proteins include BCL-ABL, SRC, HER2, EGFR, CRAF, 
BRAF, AKT, MET, VEGFR, FLT3, androgen and estrogen   
receptor, hypoxia-inducible factor (HIF)-1α, and telomerase 
that are directly involved in malignancy and mutated oncogenic 
proteins that are required for the transformed phenotype. These 
include proteins important in breast cancer progression such 
as HER2 and c-SRC. Indeed, HSP90 overexpression has been 
observed in a variety of human malignancies including the 
breast cancer [59]. 

There are several principal functions of HSP90 in malignant 
cells. As mentioned above, HSP90 stabilizes many oncogenic 
proteins in cancer cell. HSP90 may inhibit apoptosis through 
several interactions. For example, it has been reported that 
HSP90 binds directly to apoptotic protease activating factor 1 
(Apaf-1), and inhibits its oligomerization, recruitment of pro-
caspase-9, thus blocking the assembly of a apoptosome [60]. 
Moreover, increased expression of HSP90 has been implicated 
in resistance to senescence due to its essential role of telomerase 
stability [61]. HSP90 also has a role in angiogenesis owing to its 
stabilizing properties on the transcription factor HIF-1α, and 
VEGF and nitric oxide synthase, two basic players in angiogen-
esis, are HSP90 client proteins. Finally, HSP90 may play a role 
in tumor invasion and metastasis. Interestingly, HSP90 inhibi-
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tors have been implicated in bone metastasis in breast cancer, 
but its mechanism is not fully explained [62].

HSPs INHIBITION AS A THERAPEUTIC STRATEGY

The cytoprotective function of HSPs is essential for cancer 
cell survival and high expression of HSPs is correlated with a 
poor clinical outcome. HSPs are an attractive and interesting 
molecular target in cancer therapy, particularly HSP90 that 
controls many oncoproteins and different signaling pathways 
in cancer cell. Many inhibitors of HSP90 have been developed 
and undergone clinical trials. While HSP27 and HSP70 are un-
doubtedly implicated as potential target for anti-cancer thera-
py, their clinical evaluation has not started yet. 

Targeting HSP90 in breast cancer
Many kinds of HSP90 inhibitors have been identified so far. 

The majority of HSP90 inhibitors bind to the N-terminal ATP-
binding site of HSP90 and inhibit the ATPase cycle which is 
essential for the HSP90 chaperone activity [48]. Therefore, HSP90 
inhibition results in degradation of important oncogenic client 
proteins by the ubiquitin-proteasome pathway, inhibition of 
tumor growth and activation of apoptosis in cancer cells. Al-
though blockade of N-terminal ATP binding of HSP90 has 
been focus of drug development, distinct modes of inhibition 
are being considered and include disruption of co-chaperone-
HSP90 interactions, inhibition of the C-terminal ATP binding 
site, or inhibition of client-HSP90 interaction. 

The natural products, geldanamycin (GA) and radicicol were 
first inhibitors discovered. Geldanamycin, an ansamycin anti-
biotic, was first isolated from Streptomyces hygroscopicus and 
noted to have inhibitory activity against HSP90 [63,64]. Unde-
sirable properties associated with GA, such as hepatotoxicity 
and poor solubility [65], led to a necessary round of compound 

optimization. Therefore, the less toxic and more effective GA 
derivatives, 17-allylamino-17-demethogeldanamycin (17-AAG, 
tanespimycin, KOS-953), 17-dimethylaminoethylamino-17-
demethoxygeldanamycin hydrochloride (17-DMAG, alvespi-
mycin, KOS-1022), and IPI-504 (retaspimycin) have been de-
veloped as potential therapeutics in a variety of clinical trials 
[66]. More recently, purine-scaffold derivates such as PU-H71, 
PU-DZ8, and CNF2024 (BIIB021) developed based on the 
structure of the nucleotide ligand [67,68]. Because of the poten-
tial toxicity of GA derivatives, specific small molecular weight 
HSP90 inhibitors may be more effective clinical agents. Several 
small molecular weight HSP90 inhibitors, including SNX-5422, 
CNF2024, STA 9090, and AUY 922, are currently in clinical 
trials in various tumor types [69-72]. Current phase I and II 
clinical trials with HSP90 inhibitors in breast cancer are seen 
in Table 1. Interestingly, HSP90 isolated from tumor cells has 
a binding affinity for the inhibitors between 20 and 200 times 
higher than does HSP90 isolated from normal cells. This might 
be due to the fact that tumor cells, as compared to their coun-
terparts, might exhibit a stressed phenotype, with an enhanced 
dependency on the cytoprotective action of HSP90. This ‘addic-
tion’ of cancer cells to HSP 90 client proteins have been pro-
posed as rationale for selectivity of HSP90 inhibitors for cancer 
versus normal cells [73].

Breast cancer is good target of HSP90 inhibitor for several 
reasons. HER2 is among the most sensitive client proteins of 
HSP90, demonstrating degradation within 2 hours of HSP90 
inhibition in cell culture experiments [74] and HSP90 inhibitors 
have shown activity in HER2-deriven xenograft model [75]. 
Modulation of estrogen and progesterone receptor has been 
long-standing target of breast cancer and both receptors are 
also client proteins of HSP90. Moreover, resistance of breast 
cancer cells to chemotherapy is known to involve the phospha-
tidylinositol 3-kinase (PI3K) pathway [76], and its key signal-

Table 1. Current clinical trials involving HSP90 inhibitor in breast cancer 

Drug Phase Route Combination Indication

Geldaymycin analogs
   Tanespimycin (17-AAG, KOS-953) I/II IV Trastuzumab HER2 + MBC

II IV - Advanced BC
   Alvespimycin (17-DMAG, KOS-1022) I IV Tratuzumab±paclitaxel HER2 + MBC

I IV - Advanced solid tumor
   Retaspimycin (IPI-504) II IV Tratuzumab HER2 + advanced BC
Synthetic
   CNF2024 (BIIB021) II Oral Exemestane HR + MBC

I Oral Trstuzumab or single HER2 + advanced BC
HER2 - advacned BC

   AUY922 I-II Oral Trastuzumab HER2 + advanced BC
I-II Oral Lapatinib and letrozole HR + HER2 + advanced BC

IV= intravenous; MBC=metastatic breast cancer; BC=breast cancer; HR=hormone receptor.
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ing protein Akt is modulated by HSP90. In addition, the ex-
pression of HSP90 has been shown to be correlated to adverse 
clinical prognosis. 

We previously investigated the HSP70/90 expression and the 
effect of HSPs inhibitor in breast cancer [77]. We found that 
more prominent HSP90 expression in breast cancer tissue than 
in benign tissue by immunohistochemistry staining and it was 
related to more aggressive tumor type; positive lymph node 
status and poor differentiated histologic type. However, we could 
not find the difference of HSP70 expression between two lesions 
(Table 2). We also demonstrated the expression of HSP70/90 
in breast cancer cell lines using the Western blot (Figure 1). In 
this study, we investigated the effect of HSP90 inhibitor (GA) on 
cell growth of the human breast cancer cell lines: MDA-MB231, 
MDA-MB 435, MCF-7, and T47D cell line. GA markedly in-

hibited the cell growth of these cell lines in a dose-dependent 
manner (Figure 2). 

HER2 overexpression is observed in 20-25% of breast can-
cer patients and it predicts for a poor clinical outcome. HSP90 
expression is associated with HER2 expression [78]. Preclin- 
ical studies have demonstrated the notable sensitivity of HER2-

Table 2. Immunohistochemical expression of HSP70/90 between the 
benign and malignant lesion of breast

Tissue
HSP70 HSP90

Cytoplasm Nuclear Cytoplasm Nuclear

Benign (n=19) 13 (68.4) 11 (57.9)   8 (42.1) 1 (5.3)
Cancer (n=63) 35 (55.6) 32 (50.8) 60 (95.2) 33 (52.4)
p-value 0.428 0.612 <0.001 <0.001

Values represent number of case (%).

Figure 1. HSP70/90 expression on breast cancer cell lines using Western 
blot assay. Expression of HSP70/90 are observated in both hormone 
receptor positive cell lines (1: MDA-MB 435; 2: MDA-MB 231) and hor-
mone receptor negative cell lines (6: MCF-7; 7: T-47D). Also, MDA-MB 
231LC3 (3), MDA-MB 231GFP (4), and MDA-MB 231BR3 cell line (5) 
expressed HSP70/90 proteins.
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Figure 2. The effect of geldanamycin on breast cancer cell lines measured by MTT assay. Compared with DMSO and control group, gendanamycin 
markedly inhibited the cell growth in breast cancer cell lines in a dose-dependent manner.
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overexpressing breast tumors to HSP90 inhibitors [69,70]. 17-
AAG (tanespimycin) is being developed in the clinic for HER2 
positive breast cancer and demonstrates a moderate clinical 
response in combination with trastuzumab in patients with 
trastuzumab-refractory HER2-positive metastatic breast cancer 
in recent report [79]. In phase II study, 31 patients (metastatic 
HER2-positive breast cancer progressing on trastuzumab) re-
ceived weekly tanespimycin at 450 mg/m2 intravenously and 
trastuzumab. The most common toxicities were diarrhea, fatigue, 
nausea, and headache. The overall response rate was 22% and 
the clinical benefit including complete response, partial re-
sponse, and stable disease was 59%. IPI-504 (retaspimycin), a 
17-AAG analogue, has improved water solubility properties 
thereby facilitating formulation for parental administration. In 
breast cancer, Phase I/II trials are currently underway to evalu-
ate the dosing schedules [80]. Moreover, a HSP90 inhibitor 
(SNX-5422) inhibits p95-HER2, the truncated form of HER2 
associated with trastuzumab resistance, and suppress their growth 
[81]. Similarly, 17-DMAG can overcome resistance of HER2 
positive breast cancer cells to aromatase inhibitors [82]. 

Triple negative breast cancer (TNBC; defined by the lack of 
expression of estrogen, progesterone, and HER2) patients have 
poor prognosis and survival outcomes, but there are currently 
no specific targeted therapies. Clinical studies have been shown 
the EGFR overexpression and activation of PI3K pathway in 
TNBCs and it has been associated with poor prognosis. Hence, 
HSP90 inhibitors may provide an opportunity to inhibit tumor 
progression of TNBCs because the many of HSP90 client pro-
teins are oncoproteins including EGFR and involved in multi-
ple oncogenic signaling pathways. Interestingly, PU-H71 (purine 
based synthetic HSP90 inhibitor) induces tumor regression in 
a xenograft model of TNBCs and that are not candidate for 17-
AAG treatment [83].

CONCLUSIONS

HSPs are highly expressed in many malignant human tumors 
including breast cancer, and the cytoprotective chaperone func-
tion of HSPs is essential for cancer cell survival. Moreover, these 
proteins seem to be associated with a poor clinical outcome 
and poor response to therapy. As a consequence, HSPs is an 
exciting new target in cancer therapy, particularly HSP90 that 
modulates multiple oncogenic proteins and signaling path-
ways in cancer cells. Clinical activity has been seen with HSP90 
inhibitors like 17-AAG and 17-DMAG in breast cancer, espe-
cially trastuzumab-resistant cancer and many clinical trials are 
currently underway. The results of clinical phase II and III trials 
evaluating the efficacy of these drugs are awaited.

Also, although not described in this review, another potential 

of HSPs as vaccine properties should be mentioned. Concerning 
extracellular HSPs, they can act as chaperones for tumor pep-
tide antigens thereby eliciting an immune anti-tumor response. 
Hence, HSPs can be used for vaccine preparations and this ap-
proach adds to the overall interest of HSPs in cancer therapy.
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