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Abstract 

Objective: Portal mesenchymal cells induce the epithelial differentiation of the bile ducts in the developing liver via 
one of the Delta-Notch signaling components, JAGGED1. Although this differential induction is crucial for normal liver 
physiology as its genetic disorder (Alagille syndrome) causes jaundice, the molecular mechanism behind JAGGED1 
expression remains unknown. Here, we searched for upstream regulatory transcription factors of JAGGED1 using an 
integrated bioinformatics method.

Results: According to the DoRothEA database, which integrates multiple lines of evidence on the relationship 
between transcription factors and their downstream target genes, three transcription factors were predicted to be 
upstream of JAGGED1: SLUG, SOX2, and EGR1. Among these, SLUG and EGR1 were enriched in ACTA2-expressing por-
tal mesenchymal cells in two previously reported human fetal liver single-cell RNA-seq datasets. JAGGED1-expressing 
portal mesenchymal cells tended to express SLUG rather than EGR1, supporting that SLUG induced JAGGED1 expres-
sion. Together with the higher confidentiality of SLUG (DoRothEA level A) over EGR1 (DoRothEA level D), we con-
cluded that SLUG was one of the most important candidate transcription factors upstream of JAGGED1. These results 
add mechanistic insights into the developmental biology of how portal mesenchymal cells support biliary develop-
ment in the liver.
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Introduction
Identification of the upstream regulators of key genes 
is one of the central issues in developmental biology. In 
the field of bile duct formation in the liver, one of the 
Delta-Notch signaling components, JAGGED1, is cru-
cial, as understood by jaundice in patients with genetic 
abnormalities (Alagille syndrome) [1, 2]. One of the 
major complications of this disease is abnormalities in 
the bile ducts in the liver, often requiring liver transplan-
tation. JAGGED1 is expressed in portal mesenchymal 

cells that are characterized by smooth muscle actin-asso-
ciated genes such as TAGLN [3] and ACTA2 [4]. From 
an experimental point of view, TAGLN-Cre-mediated 
JAGGED1 deletion in portal mesenchymal cells caused 
significant jaundice [3], suggesting that portal mesenchy-
mal cells express JAGGED1 to induce epithelial differ-
entiation that occurs in their periphery between mouse 
embryonic Days 13.5 (E13.5) and E18.5 [5]. However, the 
molecular mechanism underlying the induction of JAG-
GED1 expression in portal mesenchymal cells remains 
unknown. As portal mesenchymal cells occupy a small 
percentage (less than 10%) of the total liver cells (dis-
cussed later), we considered that it would be difficult to 
identify potential upstream transcription factors using 
conventional biochemical methods.
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Given this, we went on to identify the upstream tran-
scription factor regulating the induction of JAGGED1 
expression in portal mesenchymal cells using an estab-
lished bioinformatics database called DoRothEA [6]. 
DoRothEA uses several lines of data to generate a table 
of combinations of specific transcription factors and their 
downstream targets (regulons) with the confidentiality of 
these combinations scored from A (highest confidence) 
to E (lowest confidence), depending on the amount of 
evidence supporting these interactions. This means that 
a DoRothEA level A interaction is supported by at least 
two curated sources. We used this database to iden-
tify potential upstream transcription factors regulating 
JAGGED1 expression. We then examined the validity of 
these results by analyzing two sets of previously reported 
human fetal liver single-cell RNA-seq data [7]. This strat-
egy of narrowing down the potential transcription factors 
provides realistic insights into the regulation of a devel-
opmentary important gene component, JAGGED1.

Main text
Methods
We used R (R version 3.6.3; https:// www.R- proje ct. org/) 
to refer to DoRothEA.

We used the raw FASTQ files of single-cell RNA 
sequencing data from human fetal livers at Carnegie 
Stages (CS) 20 (GSM3906001) and 23 (GSM3906002), 
which correspond to E14.5 and E16, respectively. Both 
datasets were retrieved from the NCBI Gene Expres-
sion Omnibus (https:// www. ncbi. nlm. nih. gov/ geo/). We 
used CellRanger (v5.0.1) [8] to align the sequencing reads 
in the FASTQ files to the human reference (GRCh38-
2020-A, 10x Genomics) and created a count matrix for 
subsequent analysis. We used Scanpy (v1.7.0) [9] for 
basic filtering and comparing the enrichment of specific 
genes between one cluster and the others. Cells with 
high percentages of mitochondrial (> 0.1) or hemoglobin 
gene (> 0.1) expression and cells with a low percentage of 
ribosomal gene expression (< 0.05) were excluded from 
subsequent analysis. Any doublets identified by Scrublet 
(v0.2.3) were also excluded. Then, highly variable genes 
(n = 3019 and 2603 for CS20 and 23 datasets, respec-
tively) across the single-cell datasets (n = 7028 and 8020 
for CS20 and 23 datasets, respectively) were identified 
using the “sc.pp.highly_variable_genes” function and 
then subjected to dimension reduction with principal 
component analysis (“sc.tl.pca” function) and UMAP (“sc.
tl.umap” function) before clustering (Leiden method). 
Single-cell RNA sequencing analysis was completed in 
Python 3.6.13 in an Ubuntu 20.04 LTS environment. We 
examined differences in gene expression within these 
clusters using the Mann–Whitney U test, with these 

outcomes described as FDR-adjusted p values in the 
Results section.

Results
SLUG, SOX2, and EGR1 as potential regulators of JAGGED1
We first used DoRothEA to identify several potential 
regulators of JAGGED1 in portal mesenchymal cells 
and focused on SLUG (also known as SNAI2), SOX2, 
and EGR1, which are listed in the DoRothEA database 
for their association with JAGGED1 (levels A, B, and D, 
respectively) [6]. There were no candidate transcription 
factors with DoRothEA levels A or B other than SLUG 
and SOX2. EGR1 may be important because it was 
expressed in portal mesenchymal cells (discussed later), 
whereas the other transcription factors of DoRothEA 
level C or D, which are listed in Additional file 1, were not 
enriched in portal mesenchymal cells in either the CS20 
or 23 datasets.

Identification of ACTA2‑expressing portal mesenchymal cells
Next, we searched for TAGLN-expressing portal mes-
enchymal cells in previously reported single-cell RNA-
seq data from human fetal liver tissues of the CS20 and 
23 datasets as described in the Methods section. Unfor-
tunately, those cells occupied only 3.54% and 1.11% of 
the total cells of the CS20 and 23 datasets, respectively. 
Therefore, we alternatively searched for ACTA2-express-
ing portal mesenchymal cells in the CS20 and 23 data-
sets. In contrast to TAGLN, ACTA2-expressing cells 
occupied 5.92% and 5.76% of the total cells in the CS20 
and 23 datasets, respectively, and we used ACTA2 as a 
portal mesenchymal cell marker gene. For the CS20 
dataset, we conducted cell clustering as described in 
the Methods section, and that evaluation produced 21 
clusters (Fig.  1a), one of which (cluster #6) contained 
466 cells (6.63% of total cells) with increased ACTA2 
(p = 8.21 ×  10–24) expression (Fig.  1b), identifying them 
as portal mesenchymal cells. As expected, this cell popu-
lation expressed a relatively high level of JAGGED1 (log 
fold-change = 2.30, p = 0.439) (Fig.  1c). For the CS 23 
dataset, these evaluations produced 19 clusters (Fig. 1d), 
one of which (cluster #15) contained 129 cells (4.96% 
of total cells) with increased ACTA2 (p = 1.80 ×  10–28) 
expression (Fig.  1e), identifying them as portal mesen-
chymal cells. Indeed, this cell population expressed a sig-
nificantly high level of JAGGED1 (p = 0.0384) (Fig. 1f ).

Evaluation of the validity of SLUG, SOX2, and EGR1
Then, we examined the expression of SLUG, SOX2, 
and EGR1 in portal mesenchymal cells (clusters #6 
and #15 of the CS20 and 23 datasets, respectively). For 
the CS20 dataset, the cells in cluster #6 abundantly 
expressed SLUG (p = 2.08 ×  10–51) (Fig.  2a) and EGR1 
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(p = 5.91 ×  10–22) (Fig.  2c) but not SOX2 (p = 1.00) 
(Fig.  2b). We further evaluated the expression of JAG-
GED1, SLUG, and EGR1 in the cells of cluster #6 of the 
CS20 dataset. This evaluation showed that 63.6% of JAG-
GED1-expressing cells also expressed SLUG (7 out of 
11 cells), while 13.2% of JAGGED1-nonexpressing cells 
expressed SLUG (60 out of 455 cells) (p = 1.95 ×  10–4, 
Fisher’s exact test) (Fig. 2d). Additionally, although 63.6% 
of JAGGED1-expressing cells also expressed EGR1 (7 out 
of 11 cells), only 16% of JAGGED1-nonexpressing cells 
expressed EGR1 (73 out of 455 cells) (p = 6.37 ×  10–4, 
Fisher’s exact test); hence, we considered that both SLUG 
and EGR1 remained potential regulators (Fig. 2e).

For the CS23 dataset, the cells in cluster #15 abun-
dantly expressed SLUG (p = 2.29 ×  10–13) (Fig.  2f ) and 
EGR1 (p = 9.51 ×  10–6) (Fig. 2h) but not SOX2 (p = 1.00) 
(Fig.  2g). We further evaluated the expression of JAG-
GED1, SLUG, and EGR1 in the cells of cluster #15. This 
evaluation showed that 50.0% of JAGGED1-expressing 
cells also expressed SLUG (3 out of 6 cells), while only 
22.8% of JAGGED1-nonexpressing cells expressed SLUG 
(28 out of 123 cells) (p = 0.150, Fisher’s exact test) (Fig. 2i). 
In contrast, although 16.7% of JAGGED1-expressing cells 
also expressed EGR1 (1 of 6 cells), as many as 28.5% of 
JAGGED1-nonexpressing cells expressed EGR1 (35 of 
88 cells) (p = 1.00, Fisher’s exact test) (Fig. 2j). Therefore, 

together with high confidentiality (DoRothEA level A), 
we concluded that SLUG is a preferable candidate regula-
tor of JAGGED1 expression in portal mesenchymal cells.

Discussion
This study was designed to identify the upstream tran-
scription factor regulating JAGGED1 expression in portal 
mesenchymal cells. Our evaluations found SLUG to be a 
central candidate for this regulatory role, as this protein 
is strongly expressed during the time frame associated 
with epithelial differentiation into portal mesenchymal 
cells. We considered that insignificant JAGGED1 expres-
sion in portal mesenchymal cells at CS20 was because 
this time point was relatively early to allow the expression 
of the upstream regulator, SLUG, rather than JAGGED1.

SLUG reportedly acts as a transcriptional suppressor, 
as previously observed during the downregulation of 
E-cadherin expression in breast cancer [10]. However, 
the results of the biochemical analysis of the induction 
of fatty acid synthase in the liver suggest that SLUG can 
act as an activator [11]. Additionally, an in  vitro study 
using a human breast cancer cell line (MCF7) showed 
that SLUG overexpression or siRNA-mediated sup-
pression leads to increased or decreased JAGGED1 
expression, respectively, suggesting that SLUG expres-
sion is positively correlated with JAGGED1 expression 
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in this cell line [12]. Although this observation, along 
with the absence of SLUG binding sites in the JAG-
GED1 promoter region according to DoRothEA [6], 
implies that SLUG does not directly regulate JAGGED1 

expression, we propose that SLUG is located upstream 
of JAGGED1.

EGR1 is also a potential regulator enriched in mesen-
chymal cells (cluster #6 of the CS20 dataset and cluster 
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#15 of the CS23 dataset). This transcription factor was 
reported to induce JAGGED1 expression in Leishmania 
donovani-infected bone marrow macrophages [13]. How-
ever, owing to its low confidentiality (DoRothEA level 
D) and scarce expression in JAGGED1-expressing por-
tal mesenchymal cells in the CS23 dataset, we consider 
SLUG to be a potential regulator over EGR1.

Conclusion
SLUG is the candidate regulator of JAGGED1 in portal 
mesenchymal cells.

Limitations
First, further in vivo analysis is necessary to examine the 
biochemical properties of portal mesenchymal cells to 
determine the relationships between transcription factors 
and their regulons. Second, this study does not suggest 
that SLUG is the sole candidate for the upstream regu-
lation of JAGGED1 expression because we only evalu-
ated transcription factors according to DoRothEA. Third, 
four transcription factors (ESR1, HNB1B, PRDM14, 
and TFAP2C) were not examined for their enrichment 
because they were not differentially expressed genes 
in either CS20 or 23 datasets. Finally, we note that the 
molecular signature of portal mesenchymal cells is not 
fully characterized, and hence, other transcription factors 
may be listed as potential regulators when we use other 
marker genes for portal mesenchymal cells. However, 
we consider our work significant in that this is the first 
report on the molecular regulation of JAGGED1 expres-
sion in portal mesenchymal cells, which is important for 
normal liver physiology.
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