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Abstract

It is well understood that variation in relatedness among individuals, or kinship, can lead to false genetic associations. Multiple methods
have been developed to adjust for kinship while maintaining power to detect true associations. However, relatively unstudied are the
effects of kinship on genetic interaction test statistics. Here, we performed a survey of kinship effects on studies of six commonly used
mouse populations. We measured inflation of main effect test statistics, genetic interaction test statistics, and interaction test statistics rep-
arametrized by the Combined Analysis of Pleiotropy and Epistasis (CAPE). We also performed linear mixed model (LMM) kinship correc-
tions using two types of kinship matrix: an overall kinship matrix calculated from the full set of genotyped markers, and a reduced kinship
matrix, which left out markers on the chromosome(s) being tested. We found that test statistic inflation varied across populations and was
driven largely by linkage disequilibrium. In contrast, there was no observable inflation in the genetic interaction test statistics. CAPE statis-
tics were inflated at a level in between that of the main effects and the interaction effects. The overall kinship matrix overcorrected the infla-
tion of main effect statistics relative to the reduced kinship matrix. The two types of kinship matrices had similar effects on the interaction
statistics and CAPE statistics, although the overall kinship matrix trended toward a more severe correction. In conclusion, we recommend
using an LMM kinship correction for both main effects and genetic interactions and further recommend that the kinship matrix be calcu-
lated from a reduced set of markers in which the chromosomes being tested are omitted from the calculation. This is particularly important
in populations with substantial population structure, such as recombinant inbred lines in which genomic replicates are used.
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Introduction
Variation in relatedness, or kinship, among individuals in genetic

association studies can lead to artificial inflation of association

statistics leading to false positives and loss of power to detect

true positive associations (Devlin and Roeder 1999; Voight and

Pritchard 2005; Astle et al. 2009). While this inflation is commonly

noted in highly structured human populations, it is also often ev-

ident in laboratory crosses (Figure 1) that can also exhibit geno-

typic similarity. In this case, associations at a true causal

quantitative trait locus (QTL) will generate association signals at

all other loci with similar genotype segregation, the majority of

which will likely be false positives. For multiple true positives,

polygenic effects can increase apparent association when the

causal loci are collinear. This inflation will likely vary with popu-

lation type and study design, depending on genetic similarity of

the crossed inbred strains, generations of crossing, multilocus in-

compatibilities, and variable recombination patterns.
There are a number of statistical strategies to remove this

bulk effect of relatedness (Conomos et al. 2014; Sul et al. 2018; Yao

and Ochoa 2019). One popular method of kinship correction is to

estimate relatedness based on genotyped variants and model it
as a random effect using linear mixed models (LMMs) as de-
scribed in Kang et al. (2008). This method was originally developed
to correct kinship effects on genetic main effects in highly struc-
tured mouse populations, such as the hybrid mouse diversity
panel (Kang et al. 2008) or multigeneration populations from ad-
vanced intercross lines (AILs) (Cheng et al. 2013). The effects of
kinship corrections on main effects in these types of populations
are well studied and have been shown to dramatically reduce
false positive rate (FPR) and increases power to detect true main
effects (Kang et al. 2008; Cheng et al. 2013). Relatively unstudied,
however, are the effects of population structure and relatedness
on genetic interaction test statistics.

Genetic interactions, or epistasis, are an important aspect of
describing complex traits. Statistical models of complex traits are
improved when epistasis is taken into account (Forsberg et al.
2017), particularly when considering individuals at the tails of
the trait distribution (Tyler et al. 2017). Thus, epistasis may con-
tribute to missing heritability and poor replication of genetic
associations across human populations (Mackay 2014). Kinship
may influence these pairwise effects similarly to main effects.
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Understanding, and appropriately adjusting for kinship when
studying epistasis are important in reducing FPR while still main-
taining power to detect epistatic effects, which are often weaker
than main effects.

Previous work suggests that kinship inflates interaction test
statistics, and that adjusting specifically for epistatatic kinship
effects effectively reduces FPR in interaction test statistics and
improves modeling of complex traits through genetic interaction
networks (Ning et al. 2018). We sought to expand upon this work
by surveying a range of commonly used mouse mapping popula-
tions. Although it is common to apply kinship corrections univer-
sally, the effects of these corrections are relatively unstudied
across population types. Here, we investigated the effects of kin-
ship on interaction statistics in commonly used populations that
sampled a range of relatedness as well as population structure.

In addition to calculating main effects and interaction effects
using linear models, we investigated the effects of kinship on ge-
netic interaction coefficients from the Combined Analysis of
Pleiotropy and Epistasis (CAPE). We previously developed CAPE to
combine information across multiple traits to infer directed ge-
netic interactions (Carter et al. 2012; Tyler et al. 2013). This type of
epistasis analysis is distinct from standard single-trait epistasis

analysis, in that the interactions are inferred for multiple traits si-
multaneously and are directional. The most recent version of
CAPE published on the Comprehensive R Archive Network (CRAN)
implements an LMM kinship correction, and here, we investigated
whether kinship caused inflation of these statistics, and how the
kinship correction would affect any observed inflation.

For this survey, we selected six mouse populations that are
commonly used for identifying both main effects and interaction
effects. The populations represented a range of relatedness as
well as population structure. In each population, we assessed the
degree of inflation of main effect test statistics, and interaction
test statistics from linear models, as well as CAPE test statistics.
We also implemented a kinship correction to investigate the im-
pact of these corrections on test statistic inflation. We used the
LMM method originally described in Kang et al. (2008). This
method corrects for both cryptic relatedness and population
structure simultaneously and can handle nearly arbitrary and
complex genetic relationships between individuals (Sul et al.
2018). This is a potentially useful feature in many complicated
mouse populations, such as in multigenerational outbred popu-
lations, or in experiments involving recombinant inbred lines
(RILs) with genomic replicates.

Figure 1 Breeding schemes for mouse populations used. F2—Mice from two inbred strains are bred together generating genetically identical,
heterozygous mice in the F1 generation. These mice are bred together to generate mice in the F2 generation. Chromosomes in the F2 have been
recombined in a single generation producing mice with unique combinations of parental chromosomes. Backcross—Mice from the F1 generation are
bred with one of the parental strains creating mice in the N1 generation that have one parental chromosome, and one recombined chromosome. RIL—
Mice from the recombined F1 generation are sibling mated over many generations to generate inbred mice with two identical chromosomes that are a
combination of the parental chromosomes. Because each mouse is inbred, the line of identical mice can be propagated, but across the panel of inbred
lines, each mouse has a unique combination of the original parental chromosomes. AIL—Rather than being inbred as with an RIL, mice in an AIL are
continuously intercrossed producing genetically unique mice with high heterozygosity. Each subsequent generation of mice has more chromosomal
recombinations than the prior generation. Diversity Outbred—As with the AIL, diversity outbred mice are intercrossed each generation, producing
unique, highly heterozygous mice, with increasingly recombined chromosomes. In contrast to the AIL, the diversity outbred mice were started from
eight inbred founders. Figures adapted from Ashbrook et al. (2019) and Saul et al. (2019).
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We calculated two different kinship matrices for these correc-
tions. For one, we used the full set of genotyped markers to create
an overall kinship matrix. For the other, we calculated reduced
kinship matrices using only markers on chromosomes not being
tested for association. The overall correction has been shown to
be overly stringent and can reduce power to detect main effects
(Cheng et al. 2013). However, by calculating kinship matrices leav-
ing out the chromosome being tested simultaneously controls
FPR and retains power to detect main effects on the omitted chro-
mosome (Cheng et al. 2013). This method is called leave-one-
chromosome-out, or LOCO. We implemented an extension of
LOCO for epistatic tests in which we calculate kinship matrices
leaving out the pair of chromosomes containing the markers be-
ing tested. Of course, if both markers are on the same chromo-
some, this is the same as LOCO. Here, we call this extension
leave-two-chromosomes-out, or LTCO. We compared the
effect of these two kinship matrices across all test statistics and
all populations.

Materials and methods
Data
We examined genomic inflation in previously published data sets
representing commonly used mouse populations. We selected
these populations to represent a range of relatedness and popula-
tion structure. The populations were as follows: a reciprocal
backcross (Reifsnyder et al. 2000), an F2 intercross (Tyler et al.
2016), a panel of BXD RILs (Delprato et al. 2015, 2017, 2018), a co-
hort of Diversity Outbred mice (Svenson et al. 2012; Tyler et al.
2017), and a cohort from an AIL (Hernandez Cordero et al. 2018).
We created a sixth study population by averaging over genomic
replicates in the RIL. Averaging over replicates in RILs is common
practice. It not only reduces population structure but also
reduces n and the power to detect effects (Keele et al. 2019). We
refer to this population as the RIL with no replicates (RIL-NR).
Breeding schemes for each population are shown in Figure 1.

We expected that the AIL, F2, and backcross populations
would have negligible population structure, but may potentially
harbor cryptic relatedness, where random differences in recombi-
nation led to some pairs of individuals being more highly related
than other pairs of individuals. Outbred and RIL populations are
more likely to have population structure that may confound ge-
netic association tests. The Outbred population used here in-
cluded multiple generations of animals, and the RIL population
included genetic replicates. Each data set is described in more de-
tail below.

Mouse populations
Advanced intercross lines
This AIL was started by crossing a large (LG/J) mouse with a small
(SM/J) mouse (Cheverud et al. 1996). The study population used
here are all males derived from the 50th filial generation
(Hernandez Cordero et al. 2018). Mice were assessed for skeletal
and muscular traits at 12 weeks of age (Hernandez Cordero et al.
2018). The mice were genotyped at 7187 SNPs. Here, we analyzed
tibia length (Tibia) and soleus weight (Soleus) in 492 mice.

Backcross
This population was generated to investigate gene–environment
interactions influencing diabetes and obesity (Reifsnyder et al.
2000). The diabetes-prone New Zealand Obese (NZO/HlLtJ) mouse
was crossed to the diabetes-resistant Non-obese Non-diabetic
(NON/ShiLtJ) mouse. The F1 generation was then backcrossed to

the NON parent. The study population comprised 204 male mice
genotyped at 84 microsatellite markers. For this study, we se-
lected trygliceride level and high-density lipoprotein levels. We
used cross direction (paternal grandmother abbreviated as pgm)
as a covariate in all runs.

F2
This large F2 intercross was generated to investigate genetic
influences on bone density traits in mice (Tyler et al. 2016). This
population carried a fixed lit mutation in growth hormone-releas-
ing hormone receptor (GHRHR), which arose naturally on the
C57Bl6/J (B6) background, and was transferred to the C3H/HeJ
(C3H) background. C3H mice with the lit mutation have the same
body weight as B6 mice with the lit mutation but have higher
bone density. The purpose of this cross was to identify genetic
factors that increase bone density in the absences of GHRHR. We
used 1095 female mice from this cross. They were genotyped at
100 microsatellite markers. We analyzed percent body fat
(pctFat) and trabecular bone thickness (Tb.Th) here.

Outbred
We used a cohort of Diversity Outbred mice (Svenson et al. 2012),
which were derived from eight founder strains: 129S1/SvImJ
(129), A/J, CAST/EiJ (CAST), NOD/ShiLtJ (NOD), NZO/HlLtJ (NZO),
PWK/PhJ (PWK), and WSB/EiJ (WSB). The CAST, PWK, and WSB
strains were recently inbred from wild mouse strains, whereas
the other five strains were inbred mostly from pet fancy mice
with limited genetic diversity (Yang et al. 2007). Across all eight
strains, there are roughly 45 million SNPs, and because DO mice
are outbred, each carries a unique subset of these SNPs. The sys-
tematic mating scheme was designed to limit population struc-
ture and relatedness. The DO population we used here included
446 individuals, both male and female. We used only the mice
that were fed on a chow diet, eliminating those on a high-fat diet.
We used sex as a covariate in all runs. We analyzed the change in
blood glucose between 6 and 19 weeks of age (change.urine.glu-
cose) and blood glucose levels at 19 weeks of age (urine.glucose2)
in this study.

Recombinant inbred lines
The RILs we analyzed here were from the BxD panel of RILs. RILs
are generated by crossing two parental strains, breeding the prog-
eny for some number of generations to produce recombinant
chromosomes, and then inbreeding to generate stable, inbred
genotypes. The result is a panel of inbred mice each with a
unique combination of genotypes from the parental strains. BxD
were generated from an initial cross between the C57Bl/6J (B)
mouse and the DBA/2J (D) mouse. We downloaded data from the
MousePhenomeDatabase (Grubb et al. 2014) on August 5, 2020.

The data we analyzed were from an experiment investigating
the genetics of hippocampal anatomy and spatial learning
(Delprato et al. 2015, 2017, 2018). The data set is called Crusio1.
We downloaded all traits related to body weight, radial maze per-
formance, and histopathology.

The BxD panel has been genotyped at 7124 markers across the
genome. The genotypes are available from GeneNetwork (Sloan
et al. 2016). We analyzed time to complete the radial maze on the
first day of training (task_time_d1) and the number of radial
arms entered on day 5 of training (num_arms_d5) in 452 females.

Recombinant inbred lines, no replicates
This test used the same RIL data set as described above, but we
averaged over individuals of the same strain resulting in
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55 individuals. Averaging over replicates in a single strain is com-

mon practice. This practice not only reduces structure in the

mapping population but also reduces power to detect effects

(Keele et al. 2019). Here, we examined how averaging across repli-

cates in a strain affected test statistic inflation. We used only

females in this analysis to completely eliminate any duplicated

genomes.

Trait selection
CAPE combines information across multiple traits and requires

at least two traits as input. It has been observed previously that

body weight and size traits are significantly correlated with the

proportion of NZO genotype in an individual (P. Simicek, personal

communication). Two of our populations here, the backcross and

the outbred populations, include NZO genomes, and using body

weight traits in these populations could lead to increased test sta-

tistic inflation due to high levels of polygenicity. To reduce this

effect, we selected traits from each population that minimized

the correlation with the first principal component of the kinship

matrix (Supplementary Figure S1 and Table S1).

Kinship matrix calculation
We use the R package qtl2 (Broman et al. 2019) to calculate the

kinship matrix as described in Kang et al. (2008). This method cal-

culates a similarity matrix based on measured genotypes. This

matrix has been shown to correct confounding population struc-

ture effectively and is guaranteed to be positive semidefinite. The

kinship matrix is calculated as follows:

K ¼ G� GT

n
;

where G is the genotype matrix, and n is the number of genotyped

markers. For calculating main effects, we use the LOCO method

(Cheng et al. 2013), in which the markers on the chromosome be-

ing tested are left out of the kinship matrix calculation. LOCO has

been shown to reduce the rate of false negatives relative to use of

the overall kinship matrix (Cheng et al. 2013; Gonzales et al. 2018).

For each chromosome, we calculated:

KC ¼
GC � GT

C

n
;

where GC is the genotype matrix with all markers on chromo-

some C removed. For the pairwise tests, we used the natural ex-

tension of LOCO, which we called LTCO. To calculate the kinship

matrix for a pairwise test, we left out the two chromosomes con-

taining the two markers being tested. If both markers were on the

same chromosome, we left out only that one chromosome.

FST

To gauge the level of population structure in each population, we

calculated the fixation index (FST) using the sum of the heterozy-

gosity across all loci p (Hahn 2019). In the following equation, pT

is the heterozygosity across all populations and pS is the average

heterozygosity across the subpopulations (Hahn 2019).

FST ¼
pT � pS

pT
:

An FST of 0 indicates that the population is interbreeding

freely, and a value of 1 indicates that subpopulations within the

population are genetically isolated. Here, FST estimated how

structured each mouse population was.
To do this, we converted the kinship matrix for each popula-

tion to a weighted network using the R package igraph (Csardi

and Nepusz 2006). We used the fast-greedy clustering algorithm

(Clauset et al. 2004) in igraph to define subpopulations, which we

then used to calculate FST.

LMM correction
To account for population structure in our association tests, we

used an LMM correction as described in Lippert et al. (2011) and

Kang et al. (2008). Briefly, population corrections account for poly-

genic effects on the phenotype that are not attributable to the

test marker, which cause the assumption of independent predic-

tion errors to fail. To account for correlated errors, Kang et al. pro-

posed a mixed-effects model where the residual errors are not

independent, but correlated according to a multivariate Gaussian

distribution whose covariance matrix is given by a linear combi-

nation of the identity matrix (independent random noise) and a

kinship matrix, K, which is simply the variance-covariance ma-

trix of the genotypes among individuals. Fitting this model

requires identifying the maximum likelihood parameters for the

genetic (fixed) effects and the two mixing parameters defining

the correlated residual errors. As shown by Lippert et al. (2011),

this model can be fit rapidly by first factoring K into its spectral

decomposition and adjusting the genotypes and phenotypes to

align with the residual error structure.
The mathematical form of the model allows the fixed effects

and the genetic variance to be solved for explicitly as a function

of a mixing parameter, which can be optimized using a one-di-

mensional grid search. We have reimplemented this procedure

within CAPE for use with mouse model populations using the

code from the R/qtl2 implementation (Broman et al. 2019).

Test statistics from linear models
After adjusting for kinship effects, we used single-locus marker

regression and pairwise marker regression to derive test statistics

in each population. For the single-locus regression, we fit the fol-

lowing model:

Uj
i ¼ bj

0 þ
Xnc

c¼1

xc;ib
j
c þ x1;ib

j
1 þ �

j
i;

where U corresponds to traits, and � is an error term. The index i

runs from 1 to the number of individuals, and j runs from 1 to the

number of traits. xi is the probability of the presence of the alter-

nate allele for individual i at locus j. We calculated P-values for

each test statistic analytically using a t distribution with n—1

degrees of freedom, where n was the number of individuals in the

population. We collected main effect test statistics for all traits in

each data set.
For the pairwise marker scans, we limited our analysis to two

traits. As described below, CAPE requires at least two traits.

However, CAPE and pairwise tests in general are computationally

intensive, and our ability to run many traits was limited. We fit

linear models for each pair of markers and each of the two se-

lected traits as follows:
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Uj
i ¼ bj

0 þ
Xnc

c¼1

xc;ib
j
c

|fflfflfflfflffl{zfflfflfflfflffl}
covariates

þ x1;ib
j
1 þ x2;ib

j
2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

main effects

þ x1;ix2;ib
j
12|fflfflfflfflfflffl{zfflfflfflfflfflffl}

interaction

þ�ji:

Again, U corresponds to traits, and � is an error term. The in-
dex i runs from 1 to the number of individuals, and j runs from 1

to the number of traits. xi is the probability of the presence of the
alternate allele for individual i at locus j. For the pairwise tests,
we calculated empirical P-values from permutations. We com-

bined test statistics from individual permutations to generate a
null distribution with 1.5 million randomized values (Carter et al.

2012).

Combined Analysis of Pleiotropy and Epistasis
Starting with the pairwise linear regression above, we ran the

CAPE (Carter et al. 2012; Tyler et al. 2013). CAPE reparametrizes b

coefficients from pairwise linear regressions to infer directed in-
fluence coefficients between genetic markers. The reparametri-

zation combines information across multiple traits thereby
identifying interactions that are consistent across all traits simul-

taneously. Combining information across traits also allows infer-
ence of the direction of the interaction (Carter et al. 2012; Tyler

et al. 2013).
The b coefficients from the linear models are redefined in

terms of two new d terms, which describe how each marker ei-
ther enhances or suppresses the activity of the other marker:

½ d1

d2
� ¼ ½ b

1
1 b1

2

b2
1 b2

2
��1 � ½ b

1
12

b2
12
�:

We then translated the d terms into marker-to-marker influ-

ence terms:

d1 ¼ m12ð1þ d2Þ; d2 ¼ m21ð1þ d1Þ:

Since matrix inversion can lead to large values with larger

standard errors, we performed standard error analysis on the re-
gression parameters, and propagated the errors using a second-

order Taylor expansion (Bevington 1994; Carter et al. 2012). To
calculate P-values for the directed influence coefficients, we
performed permutation testing.

Evaluation of inflation
We ran CAPE on each population using each of the population
corrections: none, LMM-overall, or LMM-LOCO. For each run, we

collected the main effect statistics and interaction effect statis-
tics from the linear models, as well as the CAPE statistics. To esti-

mate the variation in test statistic distributions across sampled
populations, we performed Monte-Carlo cross-validation (Xu and

Liang 2001) by sampling 80% of the individuals over 10 trials.
In each trial, we assessed the inflation of each set of test sta-

tistics using k (Devlin and Roeder 1999). This inflation factor is
the ratio of the median test statistic over the mean of the theoret-

ical distribution. Here, we calculated the mean of the chi-square
quantiles of 1� p over the theoretical mean of the null, uniform

P-value distribution with one degree of freedom (0.456).

Data availability
All data used in this study and the code used to analyze it are

available as part of a reproducible workflow on Figshare. The
workflow is called Epistasis_and_Kinship_in_Mouse_Populations
and can be found here: https://figshare.com/articles/journal_con

tribution/Epistasis_and_Kinship_in_Mouse_Populations/
13863101.

CAPE is available at CRAN and on Github at https://github.
com/TheJacksonLaboratory/cape.

Supplementary File S1 contains descriptions of each of the
supplemental files. Supplementary Figure S1 shows box plots of
the correlations between traits and the first PC of the kinship ma-
trix for each population. Supplementary Figure S2 is identical to
Fig. 3, but with the addition of the lambda values for the sub-
sampled F2 population. Supplementary Figure S3 shows the cor-
relations between CAPE and main effect lambda statistics.
Supplementary Table S1 contains Pearson correlations between
traits and the first PC of the kinship matrix.

Results
Population structure and relatedness varied
across populations
We observed varying degrees of relatedness across the popula-
tions (Figure 2). The heat maps in Figure 2 show how each pop-
ulation was clustered into subpopulations and the relatedness
within and among subpopulations. The AIL and F2 popula-
tions had negligible structure with no discernible differences
in heterozygosity across subpopulations. The Outbred mice
were drawn from multiple generations of DO mice, which cre-
ated subpopulations with slightly higher relatedness than
the overall average. The Backcross and RIL had the most
substantial structure, with FST values more similar to human
populations.

Independent of the population structure, the populations also
had varying degrees of relatedness. On average, the Outbred mice
were related to each other at a level equivalent to first cousins,
which is by design (Svenson et al. 2012), whereas the AIL mice
were slightly more related to each other than siblings. The other
three populations were all siblings on average, but had differen-
tial variation around that mean, with the F2 having a very narrow
distribution of relatedness and the Backcross having a wider dis-
tribution (Figure 2).

Main effect test statistic inflation varied widely
across populations
Before running CAPE, we investigated overall trends in test statis-
tic inflation by scanning all traits for main effects using marker
regression. This revealed wide variation in test statistic inflation
by population (Figure 3). Across all traits, the AIL, Outbred, and
RIL-NR populations showed very little inflation. In contrast, the
RIL, F2, and Backcross populations showed substantial inflation
across most or all traits when no kinship correction was applied
(Figure 3, left-most group). Inflation in the RIL population was
corrected by an LOCO kinship correction (Figure 3, middle group).
The overall kinship correction eliminated inflation in all popula-
tions (Figure 3, right-most group).

Main effect inflation was correlated with linkage
disequilibrium
Linkage disequilibrium (LD) influences test statistic inflation be-
cause a single causal SNP within an LD block can inflate the test
statistics of all SNPs linked to it. If there are relatively few recom-
binations in the population, such as in an F2 or backcross, large
portions of the genome may be significantly associated with a
trait due to linkage alone.

To investigate whether LD may be related to the inflation of
test statistics in the populations used here, we calculated
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pairwise Pearson correlations (r) between markers on the same
chromosome across all chromosomes and all populations. These
distributions are shown in the inset in Figure 3. The two

populations with the highest test statistic inflation, the F2 and
Backcross populations, also had the highest average LD.

However, although the F2 had lower LD than the backcross, it
had substantially greater inflation of test statistics. The F2 also
had many more individuals than the backcross, and thus greater
power to detect effects. This increase in power combined with
high LD could lead to the high levels of inflation seen in the F2.
To test this, we subsampled the F2 to the same number of indi-
viduals in the backcross and recalculated k. Reducing n in the F2
also reduced inflation to similar levels seen in the backcross
(Supplementary Figure S2).

Kinship corrections reduced inflation
differentially across populations
Figure 4A shows a more detailed view of test statistic inflation in
the main effect statistics for each population. Each panel shows
quantile–quantile (QQ) plots for the �log10ðpÞ for two traits
against the theoretical null P-values. The more the points rise
above the line y¼ x, the stronger the inflation factor k. In the ab-
sence of a kinship correction, the F2 and RIL showed strong infla-
tion, the AIL and RIL without replicates showed moderate
inflation, and the backcross and Outbred populations showed
very minor inflation if any at all (Figure 4A).

Numeric values are shown in the legends of Figure 4. The RIL
(k ¼2.7) was the most affected by inflation, while traits in the
Outbred population had mild deflation (k¼ 0.82).

The overall kinship correction had a strong effect on inflation
across all populations (purple dots in Figure 4A). The LOCO cor-
rection had varied effects (green dots in Figure 4A). It provided
strong control of inflation in the RIL, but had no effect in the
Backcross, F2, or AIL populations.

Interaction coefficients were largely unaffected by
genomic inflation
The P-values associated with interaction coefficients were almost
completely unaffected by inflation (Figure 4B). The only popula-
tion where inflation appeared to affect the interaction statistics
was the RIL population (k¼ 1.1). This inflation was reduced by
both the LTCO and overall kinship corrections.

The LTCO correction appeared to slightly improve power to
detect interaction effects in the Outbred population, although
this was not evident in the k values (knone ¼ 1, vs kltco ¼1).

CAPE coefficients were intermediately affected
by inflation
The CAPE coefficients influenced by inflation at a level in be-
tween that of the main effect statistics and the pairwise statistics
(Figure 4C). The bulk of the inflation was seen in the RIL (k¼ 1.7),
F2 (k¼ 1.4), and backcross populations (k¼ 1.1). The overall and
LTCO kinship corrections had remarkably similar effects across
all populations.

Discussion
In this study, we examined inflation of main effect and genetic
interaction statistics in six mouse mapping populations. We also
investigated the effect of kinship corrections on this inflation.

We found large variation in test statistic inflation across popu-
lations and across traits. Across populations, the primary driving
factors of inflation were LD and population size. Populations with
high LD, like the F2 and backcross, had the highest inflation,
which is consistent with previous observations (Yang et al. 2011).
In effect, a high degree of LD makes the distribution of alleles less

Figure 2 Population structure and relatedness distributions across
populations. Each panel shows the population structure of a population
as a heat map on the left side of the panel. The heat maps show the
overall kinship matrix for each population clustered into
subpopulations. Cool colors indicate less relatedness, and warm colors
indicate more relatedness. The gray lines indicate the boundaries of
subpopulations. The histograms to the right of each heat map show the
distribution of relatedness from the upper triangle of the kinship matrix.
Average relatedness varies from the level of cousins in the Outbred
animals to slightly higher than the level of siblings in the AIL animals.
The FST value for each population is shown in the upper right-hand
corner of each histogram and was calculated as described in the
methods. Panels are in order of increasing FST.
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random across individuals. Two mice that share any randomly
selected allele are more likely to share a large number of alleles.

Between those populations with the highest LD, the number of
individuals in the population had a large effect on inflation.
Thus, high power to detect effects combined with high LD creates
hugely inflated test statistics. There was also wide variation in
inflation across different traits. We hypothesize that polygenicity
may be the primary factor in the variation in inflation across
traits within a single population. All else being equal, there will
be a preponderance of small P-values for traits with multiple true
positive loci.

Differences in LD cannot explain the difference in inflation
between the RIL with replicates, which had substantial inflation,
and the RIL without replicates (RIL-NR), which did not. It has
been shown previously that including genetic replicates increases
power to detect genetic effects (Keele et al. 2019). Increase in
power alone potentially increases the prevalence of small P-val-
ues; however, genetic relatedness also increases FPR when strain
effects are large relative to individual error (Keele et al. 2019).
Taken together, these results suggest that including genetic repli-
cates in an RIL study increases power to detect effects, but that
an LOCO kinship correction should be done to counteract the in-
crease in FPR caused by the replicates. Here, the LOCO kinship
correction substantially reduced inflation in the RIL population
without the reduction in power seen with the overall kinship cor-
rection (see Figures 3 and 4A).

The differences of effects between the overall and reduced
kinship matrices for the main effects illustrate a couple impor-
tant points about these two corrections. First, the overall kinship
correction reduces power to detect true effects (Cheng et al. 2013).
Indeed, we saw complete elimination of inflation across all popu-
lations with this correction. Second, the comparison between the
LOCO and overall corrections suggests that the inflation seen in

the RIL was primarily due to population structure. The substan-
tial inflation of main effect test statistics in the RIL was reduced
by the LOCO correction. However, the LOCO correction did not re-
duce inflation in the F2 or backcross. These populations had very
little structure, and inflation was likely due primarily to LD and
polygenicity.

That the overall kinship correction erased all inflation shows
how this severe correction can eliminate power to detect true
effects. The LOCO correction, however, retains power to detect
true effects, while still correcting for relatedness. It should be
noted that treating the F2 and Backcross populations as genome-
wide association study (GWAS) mapping populations is not really
a fair representation, since in practice the markers in these popu-
lations would not be treated as independent measurements.
However, this exercise illustrates important, albeit dramatic,
aspects of test statistic inflation, and how kinship corrections af-
fect test statistics in different situations.

The interaction b coefficients did not show any inflation in
any population except possibly in the RIL, despite these popula-
tions being well powered to detect epistasis (Stich and Gebhardt
2011). The effects of both type of kinship correction were mini-
mal; however, there may have been some minor improvement of
power from both corrections in the Outbred population.

This complete lack of inflation is in contrast to previous stud-
ies that have identified pairwise test statistic inflation due to pop-
ulation structure (Stich and Gebhardt 2011; Ning et al. 2018).
There are a number of possible explanations for this discrepancy.
Because CAPE relies on partial pleiotropy to dissect directed epi-
static interactions, and because we cannot exhaustively test all
pairs of markers in modern genomic studies, we select subsets of
markers with large main effects for pairwise testing. This selec-
tion may reduce the size of the interaction coefficients we mea-
sure because the majority of trait variance is explained by

Figure 3 Inflation of test statistics for main effects. Each group of dots shows inflation of main effect statistics across all populations for one of the
kinship correction types (none, LMM-loco, or LMM-overall). Each dot represents one trait. The populations are differentiated by color and are shown in
order of increasing LD. The legend shows the correspondence between color and population, as well as the number of individuals in each study. The
horizontal line shows k¼ 1, which indicates no inflation. Numbers below each set of dots indicate the mean and standard deviation of k for each group.
The inset in the top right-hand side of the plot shows the pairwise correlation between markers on the same chromosome for each population, which is
a stand-in for LD. The color of each box identifies which population the data come from. The horizontal line in the box plot shows r¼ 0. The F2 and
Backcross populations, which have the highest LD, also have the highest test statistic inflation. The extreme inflation seen in the F2 population is likely
due to a combination of high LD and large n.
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marginal effects (Xu and Jia 2007; Phillips 2008; Stich and
Gebhardt 2011).

Furthermore, in all but the Backcross, we tested for additive-
by-additive epistasis (Cockerham 1954; Mackay 2014), which may

further reduce our power to detect epistasis depending on trait
heritability and allele frequencies (Stich and Gebhardt 2011).

The RIL was the only population for which there was apparent
inflation in pairwise test statistics. In this population, both LMM

Figure 4 QQ plots for all test statistics. Each panel shows the QQ plots for one set of statistics across all populations and all correction types. Each row
holds the results for a single population. Each column shows one test statistic: (A) QQ plots for main effects. (B) QQ plots for the pairwise test statistics.
(C) QQ plots for CAPE statistics. Correction types (none, LMM-LOCO/LTCO, or LMM-overall) are shown in different colors. The x-axis in each plot shows
the theoretical quantiles of the null P-value distribution and the y-axis shows the observed quantiles. Dots show the mean P-value distribution across 10
rounds of Monte-Carlo cross-validation, and transparent polygons show the standard deviation. The black line in each plot shows y¼ x. The legends
show the k values for each set of statistics.
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paradigms corrected the inflation. This result is concordant with
previous findings that LMM kinship corrections reduce inflation in
pairwise test statistics (Stich and Gebhardt 2011; Ning et al. 2018).

In contrast to the interaction coefficients from pairwise linear
models, CAPE interaction coefficients did show inflation in some
populations. We saw the most inflation in the F2, RIL, and AIL popu-
lations. Lambda values were intermediate between those seen for
the main effect statistics and the interaction statistics, which we ex-
pect given that CAPE interaction coefficients are nonlinear combina-
tions of main effect statistics and interaction statistics across
multiple traits. We therefore attribute inflation in these CAPE coeffi-
cients to propagation of main effect inflation. Indeed, the lambda
values of the main effect statistics and CAPE interaction coefficients
were positively correlated (Supplementary Figure S3). When there
was inflation of CAPE coefficients, both corrections controlled the in-
flation well. The similarity in effects of the two corrections was
somewhat surprising. We predicted that as with LOCO, the LTCO
correction would have been less stringent than the overall correc-
tion, but this was not what we observed. Extrapolating from the
main effect results, test statistic in the RIL should be most subject to
inflation derived from kinship. In this population, both kinship ma-
trices controlled inflation well, but the overall correction did trend
toward the more severe correction. Although more work needs to be
done, these results suggest that using the LTCO kinship matrix for
interaction effects may maintain power to detect effects better than
the overall matrix.

We conclude that although these association mapping populations
are created in such a way as to minimize population structure, cryptic
relatedness and population structure may still increase FPR and de-
crease power to detect both main effects and genetic interactions.
This is particularly true in populations with unusual relatedness pat-
terns, such as RILs with genomic replicates. These findings highlight
the importance of examining the kinship matrix of a study population
as well as P-value distributions across all traits. In conjunction, relat-
edness and the degree to which low P-values are enriched can reveal
important features of the population and traits, including the degree
to which LD and polygenicity may be influencing significance testing.
In all populations, but particularly in those with greater structure, ap-
plying a kinship correction reduces FPR and increases power to detect
true effects. However, our empirical analysis also found that pairwise
interactions were generally avoided inflation in most study designs.
The one potential exception was recombinant inbred designs (RIL),
suggesting that traits with an expectation of epistasis may be more
effectively analyzed with the other experimental approaches. For inte-
grative analyses such as CAPE, an intermediate level of inflation may
be best avoided with balanced outbred populations.

We recommend applying the reduced kinship matrix in which
the chromosomes containing the tested markers are left out.
These kinship matrices reduce FPR related to population structure
with minimal effect on power. The kinship matrices calculated
from the full genome reduced power to detect effects, particularly
in the RIL. Simulations were beyond the scope of this project, but
could potentially further delineate guidelines for when kinship cor-
rections are necessary, and which types of kinship matrices to use.
Such simulations should take LD, polygenicity, and multiple types
of population structure into account.
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