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Salt marshes located on the east coast of temperate North America are highly productive,
typically nitrogen-limited, and support diverse assemblages of free-living nitrogen fixing
(diazotrophic) bacteria.This article reviews and analyzes data from North Inlet estuary (SC,
USA), addressing diazotroph assemblage structure and the influence of plant host and
environmental conditions on the assemblage.The North Inlet estuary is a salt marsh ecosys-
tem in which anthropogenic influences are minimal and the distributions of diazotrophs
are governed by the natural biota and dynamics of the system. Denaturing gradient gel
electrophoresis fingerprinting and phylogenetic analyses of recovered sequences demon-
strated that the distributions of some diazotrophs reflect plant host specificity and that
diazotroph assemblages distributed across marsh gradients are also heavily influenced by
edaphic conditions. Broadly distributed diazotrophs that are capable of maintaining popula-
tions under all environmental conditions spanning such gradients are also present in these
assemblages. Statistical analyses indicate that the structures of diazotroph assemblages
in different vegetation zones are significantly (p < 0.01) different. New data presented here
demonstrate the heterogeneity of salt marsh rhizosphere microenvironments, and corrob-
orate previous findings from different plant hosts growing at several locations within this
estuary.The data from these collected works support the hypothesis that the biogeography
of microorganisms is non-random and these biogeographic patterns are predictable.
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INTRODUCTION
Numerous studies have revealed the immense diversity of microor-
ganisms and have lent insight into their distributions within
and across ecosystems (Ward et al., 1990; Øvreås, 2000; Floyd
et al., 2005). A number of recent studies have demonstrated that
microorganisms have distinct patterns of distribution (microbial
biodiversity over space and time) reminiscent of those of macroor-
ganisms (Hughes Martiny et al., 2006). Biogeography concepts can
be used to understand why organisms are distributed as they are
within and across ecosystems and why stable, mixed communi-
ties exist (Green et al., 2008). On large regional scales, biogeo-
graphic patterns of microorganisms are more heavily influenced
by edaphic parameters than by the factors that typically dictate
the well documented biogeography of plants and animals, such as
latitude and mean annual temperature (Fierer and Jackson, 2006).
However, on the local scale, microbial biogeography is influenced
by both edaphic and biotic parameters such as vegetation type,
carbon availability, nutrient availability, and soil moisture. These
patterns have been observed in terrestrial, wetland, and aquatic
ecosystems (Crump et al., 2004; Dolan, 2005; Fierer and Jackson,
2006).

Salt marsh ecosystems are excellent locations for the investi-
gation of biogeographical patterns due to the small number of
dominant macrophytes and to predictable environmental effectors
such as tidal inundation and salinity. Niche differentiation patterns
are well-established as gradients of these effectors and develop in

response to tidal flooding and bioturbation in salt marsh ecosys-
tems. Microbial communities express niche differentiation based
on environmental gradients, often responding strongly to one or
more specific environmental effectors in the ecosystem (Crump
et al., 2004; Macalady et al., 2008; Dumbrell et al., 2010; Davis et al.,
2011). For example, microbial diversity in estuarine tidal creeks is
strongly influenced by salinity (Hollibaugh et al., 2000; Selje and
Simon, 2003; Crump et al., 2004), which reflects both the direct
impact of salinity on microbial communities and the influences
of advective inputs of marine and freshwater microorganisms.
Niche-based theories of ecology help to explain the partitioning
of limiting resources between competing species and the differ-
entiation of niche space across all species within a community
(Leibold and McPeek, 2008). Particularly with reference to func-
tional assemblages (i.e., assemblages of organisms carrying out
specific ecological activities), such theories can give insight into the
distribution of organisms throughout ecosystems and their ability
to contribute significantly to ecosystem function in differing niche
dimensions.

This review will examine recent findings from North Amer-
ican salt marsh ecosystems, focusing specifically on the diverse
assemblage of free-living diazotrophic (nitrogen fixing) organ-
isms found there. The salt marsh diazotroph assemblage includes
organisms that are quite specific for a given marsh microenviron-
ment as well as for specific marsh plant hosts. This assemblage is
also sufficiently stable in composition (determined through field
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manipulation experiments discussed below in the Section Niche
Specialization) to make analysis of geographic patterns feasible.

SALT MARSH ECOSYSTEMS
Coastal salt marshes are characteristically dominated by herbs, low
shrubs and grasses bordering saline water bodies and are subjected
to periodic flooding as a result of fluctuations (tidal or non-tidal)
in the sea/ocean (Adam, 1990). The marshes depend on the tidal
cycle to maintain water regimes, flush peat and sediment with
water and dissolved nutrients, and to maintain salinity gradients
(Gardner, 1973; Hemond and Fifield, 1982; Adam, 1990). Tidally
dominated salt marshes are transitional between the mainly sub-
merged sea grass communities and fully exposed terrestrial zones,
and have received extensive study due to their importance as nurs-
ery grounds for commercially important fisheries species and as
sources of carbon and nitrogen to nearshore waters (Long and
Long, 1983; Schubauer and Hopkinson, 1984; Dame and Kenny,
1986; Dame et al., 1986; Morris and Haskin, 1990; Morris et al.,
1990; King and Lester, 1995; Dai and Wiegert, 1997).

The coastal salt marshes of the south-eastern United States
are typically dominated by halophyte perennial graminoids which
have extensive underground rhizome systems (Odum, 1988). The
number of plant species that are numerically significant in coastal
salt marshes is small (Schubauer and Hopkinson, 1984) and a clear
zonation of plant species that is based on edaphic environmental
conditions, interspecies competition and minor differences in ele-
vation is routinely observed (Bertness and Ellison, 1987; Adam,
1990; Pennings and Callaway, 1992). Key abiotic factors that influ-
ence plant zonation include sediment porewater salinity, soluble
sulfide concentration, pH and redox potential (Bertness, 1991).
Microbial activities have also been thought to influence the devel-
opment of plant zonation, as expressed through their ability to
affect the concentrations of nutrients and other solutes, particu-
larly sulfide (King et al., 1982). The low marsh, which is regularly
flooded and where salinities are higher, is dominated by halophyte
grasses such as Spartina alterniflora and Spartina patens. The high
marsh typically has lower salinities, undergoes irregular flooding
(with frequency of flooding based on tidal heights and the eleva-
tion gradient), is closer to the terrestrial zone typically fringing the
marsh, and is dominated by rushes and grasses having lower salt
tolerance, such as Juncus roemerianus. Areas of disturbance in the
marsh, such as those experiencing long-term waterlogged con-
ditions or unusually high rates of evapotranspiration, are often
dominated by successional species such as Salicornia virginica
(Pennings and Callaway, 1992; Levine et al., 1998). These plant
zones are easily recognized in the field and some are monotypic
with respect to the plant present.

Crab Haul Creek Basin, North Inlet, South Carolina hosts a
typical tidally dominated salt marsh with obvious plant zonation,
fresh water input primarily from local rainfall, and nitrogen lim-
itation. North Inlet is a high salinity, relatively pristine estuary
(Blood and Vernberg, 1992) which serves as a benchmark sys-
tem in the United States National Estuarine Research Reserve. The
Crab Haul Creek Basin has a relatively minor elevation gradient,
just over 1 m from mean high tide to the highest points within the
basin,with semi-diurnal tides averaging 1.5 m (Kjerfve,1986). This
relatively flat landscape results in the edaphic parameter gradients

that have influenced the plant zonation patterns observed in this
system (Figures 1 and 2). Porewater salinity and sulfide concentra-
tion gradients, in particular, drive the development of macrophyte
zonation along this elevation gradient. Monotypic stands of short
and tall growth forms of S. alterniflora occur in the low marsh,
the successional species S. virginica in the waterlogged region of
the midmarsh (as well as in a mixed stand with the short growth
form S. alterniflora), and J. roemerianus in the high marsh and in
patches of slightly higher elevation within the low marsh zone of
short growth form S. alterniflora. This pattern of plant zonation
has been stable for decades (e.g., Dame and Kenny, 1986; Morris
and Haskin, 1990).

Productivity in salt marshes has important impacts on coastal
processes, and salt marshes are among the most productive ecosys-
tems known (Keefe, 1972; Turner, 1976; Morris and Haskin,
1990). The average annual production ranges from 167 to
938 g m−2 year−1, however this value varies greatly with tempo-
ral and local conditions (Kirwan et al., 2009). Despite these high
levels of productivity, salt marshes are often nitrogen-limited as
combined nitrogen compounds (nitrate, nitrite and ammonia)
can be rapidly depleted and sources of “new” nitrogen, such as
N2 fixation, must be utilized (Howarth et al., 1988). Phosphorus
can also be a limiting factor for productivity of salt marshes and
a seasonal switch is sometimes observed between nitrogen limita-
tion and phosphorus limitation (Valiela and Teal, 1974; Howarth
et al., 1988; van Wijnen and Bakker, 1999). Estuaries that are
not subject to high levels of anthropogenic nutrient inputs are
particularly susceptible to the effects of nutrient limitation. Nitro-
gen limitation has been demonstrated in these relatively pristine
systems through nutrient addition experiments (Valiela and Teal,
1974; Marinucci et al., 1983; Hopkinson and Schubauer, 1984;
Morris, 1991; Dai and Wiegert, 1997; van Wijnen and Bakker,
1999; Bagwell and Lovell, 2000a; Piceno and Lovell, 2000a,b) and
through ecosystem-level mass balance considerations (Hopkinson
and Schubauer, 1984; Hopkinson, 1988; Morris, 1995). Biological
nitrogen fixation in salt marshes is thought to be more important
than in most other ecosystems due to its significant contribution of
N to the nitrogen budget in these systems (Capone and Carpenter,
1982).

Only organisms of the domains Bacteria and Archaea are capa-
ble of the reduction of gaseous dinitrogen to ammonia (nitrogen
fixation or diazotrophy; Postgate, 1998). Ammonium levels in
the sediment porewater are much higher than in salt marsh sur-
face waters, demonstrating that the sediments are a net source of
nitrogen for the system (Mendelssohn, 1979; Morris and Dacey,
1984; Sundareshwar et al., 2003). The diazotrophs in the sedi-
ments of salt marshes are thus the main source of the considerable
contribution of fixed nitrogen from salt marshes to the global
nitrogen cycle. This was confirmed by 15N2 enrichment studies
using microcosms of sediment from a California estuary where
nitrogen fixation was the primary method of N transfer to veg-
etation and other primary producers (Moseman-Valtierra et al.,
2010). Diazotrophs associated with salt marsh grasses are present
in high numbers, are most active on the roots of these plants
(Patriquin, 1978; McClung et al., 1983; Whiting et al., 1986; Yoch
and Whiting, 1986) and are supported by root exudates, as well as
by products of plant decomposition (Whiting et al., 1986; Bagwell
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FIGURE 1 | Differences in site elevation above mean sea level

(AMSL) and distance of each sampling location from the forest

edge. Site designations: Juncus roemerianus stand (JS); Salicornia
virginica (SV); mixed plant zone of co-occurring S. virginica and

short form Spartina alterniflora (SS); short form S. alterniflora (S);
patch of J. roemerianus in the S zone (JP); and tall form S.
alterniflora (T). Reproduced with kind permission from Davis et al.
(2011), Figure 1.

FIGURE 2 |Typical marsh zonation including vegetation zonation and gradients of influential abiotic parameters as observed in Crab Haul Creek

Basin, North Inlet.

et al., 2001; Bergholz et al., 2001). Diazotrophs associated with salt
marsh macrophytes, particularly the cordgrasses (Spartina spp.),

have been studied extensively and the remarkable diversity of the
salt marsh diazotroph assemblages documented (Bagwell et al.,
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1998, 2001, 2002; Piceno et al., 1999; Bagwell and Lovell, 2000a;
Lovell et al., 2000, 2001a,b; Piceno and Lovell, 2000a,b; Bergholz
et al., 2001; Burke et al., 2002, 2003; Brown et al., 2003; LaRocque
et al., 2004; Moisander et al., 2005; Welsh et al., 2007; Moseman-
Valtierra et al., 2009, 2010; Gamble et al., 2010; Cramer et al., 2011;
Davis et al., 2011).

DIAZOTROPH ASSEMBLAGES ASSOCIATED WITH SALT
MARSH GRASSES
Bacterial diazotroph assemblages associated with salt marsh
grasses are primarily composed of organisms taxonomically
related to the α-, β-, δ-, ε-, and γ-Proteobacteria (Bagwell et al.,
1998, 2001, 2002; Piceno et al., 1999; Bagwell and Lovell, 2000a;
Lovell et al., 2000, 2001a,b; Piceno and Lovell, 2000a,b; Burke
et al., 2002, 2003; Brown et al., 2003; Moisander et al., 2005; Welsh
et al., 2007; Gamble et al., 2010; Davis et al., 2011). Archaeal dia-
zotrophs have not been extensively studied in most ecosystems
(Zehr et al., 2003) and have yet to be examined in salt marshes.
Salt marsh diazotroph assemblages consist of mainly novel, uncul-
tivated organisms whose physiologies have not yet been deter-
mined. This is a common observation of diazotroph assemblages
across natural ecosystems and the diversity of these assemblages
in combination with their potentially very different physiologies
has inspired many studies (Zehr et al., 2003; Bürgmann et al.,
2004). Culture-dependent studies have also revealed diverse cul-
turable assemblages, largely composed of Proteobacteria (Bagwell
et al., 1998, 2001; Bagwell and Lovell, 2000a; Bergholz et al., 2001;
LaRocque et al., 2004). These assemblages are capable of utilizing a
host of carbon compounds found in plant root exudates as deter-
mined in studies on isolates from washed roots (Bagwell et al.,
2001; Bergholz et al., 2001), and of surviving substantial ranges of
environmental conditions such as pH and salinity (Cramer et al.,
2011).

The development of nitrogenase gene specific polymerase chain
reaction (PCR) primers has allowed the investigation of salt marsh
diazotroph assemblages via culture-independent methods (Zehr
and McReynolds, 1989; Ueda et al., 1995; Olson et al., 1998; Piceno
et al., 1999; Widmer et al., 1999; Lovell et al., 2000; Welsh et al.,
2007). Briefly, the nitrogenase enzyme is composed of two multi-
subunit metalloproteins (reviewed in Postgate, 1998; Zehr et al.,
2003). Component I contains the active site for N2 reduction and
is composed of two heterodimers encoded by the nifD and nifK
genes. Component II couples ATP hydrolysis to inter-protein elec-
tron transfer and is composed of two identical subunits encoded by
the nifH gene. Primers specific for the nifH gene have been used
extensively in culture-independent studies of diazotroph assem-
blages across many ecosystems resulting in a robust database of
gene sequences from uncultivated microorganisms (Zehr et al.,
2003). Primers specific for nifD (Ueda et al., 1995) have also been
developed but have not been used as broadly or as frequently as the
nifH -specific primers (Zehr et al., 2003). The diazotroph assem-
blages associated with salt marsh macrophytes have been investi-
gated through PCR-amplification using nifH -specific primers and
the nifH amplicons have in turn been analyzed using methods such
as denaturing gradient gel electrophoresis (DGGE; Bagwell et al.,
1998, 2001, 2002; Piceno et al., 1999; Bagwell and Lovell, 2000a;
Lovell et al., 2000, 2001a,b; Piceno and Lovell, 2000a,b; Brown

et al., 2003; Welsh et al., 2007, 2010; Gamble et al., 2010; Davis
et al., 2011), restriction fragment length polymorphism (RFLP;
Burke et al., 2002, 2003), and terminal restriction fragment length
polymorphism (T-RFLP; Moseman-Valtierra et al., 2009, 2010).
PCR-amplification of reverse-transcribed mRNA extracts has also
been used to a lesser extent (Brown et al., 2003). In the North Inlet
estuary, diazotrophs have been investigated via culture-dependent
methods as well as DGGE (Bagwell et al., 1998, 2001, 2002; Piceno
et al., 1999; Bagwell and Lovell, 2000a; Lovell et al., 2000, 2001a,b;
Piceno and Lovell, 2000a,b; Brown et al., 2003; Gamble et al.,
2010; Davis et al., 2011), reverse sample genome probing (Bag-
well and Lovell, 2000a), clone library construction and screening
(Lovell et al., 2008) and sequencing of reverse-transcribed mRNA
extracts (Brown et al., 2003). The composition of the diazotroph
assemblages of this ecosystem are similar to those recovered from
other salt marsh ecosystems (e.g., Moisander et al., 2005) and other
estuaries (e.g., Affourtit et al., 2001; Burns et al., 2002; Moisander
et al., 2007). Due to the number of studies that have been done
in this area, detailed phylogenetic and statistical analyses can be
conducted on the nifH sequence data that have been obtained.
Assemblages from the North Inlet estuary have proven to be sta-
ble, ubiquitous, functionally versatile, distributed in predictable
patterns across the marsh landscape and are characterized by their
content of novel and undescribed taxa (Gamble et al., 2010; Davis
et al., 2011).

PLANT HOST SPECIFICITY
Culture-dependent and culture-independent analyses of dia-
zotroph assemblages associated with the rhizospheres of salt marsh
macrophytes of North Inlet have demonstrated the occurrence
of plant host specific organisms. This is not uncommon, nor is
it unexpected in natural ecosystems. The colonization of plant
species by specific microbial populations has been repeatedly
observed in terrestrial ecosystems (reviewed in Berg and Smalla,
2009). Soil quality and soil type heavily influences the root col-
onizing microorganisms, however it has been proven repeatedly
that plant species also exerts a direct influence (Berg and Smalla,
2009). The biogeography of soil microbial communities on a large
scale (i.e., continental) is controlled primarily by soil abiotic para-
meters, particularly soil pH (Fierer and Jackson, 2006), and it
is assumed that this premise holds true for salt marsh sediment
microbial communities. However, as previously mentioned, para-
meters such as vegetation type, carbon and nutrient availability,
and soil moisture have a more direct influence on the diversity of
the local microbial community (Fierer and Jackson, 2006). Plant
type and the root exudates that individual plant species produce
affect the relative abundance and diversity of indigenous microbial
communities at the root and in the rhizosphere (Berg and Smalla,
2009) resulting in plant host specific phylotypes.

LaRocque et al. (2004) examined diazotrophs isolated from
J. roemerianus rhizoplanes from two habitats differing in abiotic
parameters. The two monotypic Juncus stands were in different
marsh zones having different salinities (29 and 40 parts per thou-
sand), different porewater chemistries and experiencing different
extents and durations of tidal inundation (LaRocque et al., 2004).
The higher salinity Juncus habitat is regularly inundated during
daily tidal cycles, whereas the lower salinity stand is in the high
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marsh and not as frequently inundated. Diazotrophs from both
habitats were analyzed in parallel using the same protocols (includ-
ing nifH PCR-amplification). The presence of nifH was confirmed
in each isolate and isolates were grouped based on their carbon
substrate utilization patterns. Three major substrate utilization
clusters were identified and each cluster contained isolates from
both monotypic stands. DGGE analysis of rhizoplane (sediment
free roots) and rhizosphere (sediments influenced by the roots)
nifH amplicons from both Juncus stands confirmed the presence
of host specific diazotrophs – diazotrophs that were present in both
assemblages despite differences in salinity, sulfide, and pH. The use
of both culture-dependent and independent methods in this study
reduced the impact of biases that could have been introduced had
only data from a single method been examined.

Bergholz et al. (2001) isolated diazotrophs from the rhizoplanes
of S. patens growing in two physically different habitats of North
Inlet estuary, along with diazotrophs from other macrophytes.
The diazotrophs were grouped based on substrate utilization and
strains from S. patens formed two distinct clusters each contain-
ing strains from both habitats. Of the 16 physiologically different
groups, only one strain isolated from S. patens was similar to dia-
zotroph strains isolated from other macrophytes in the same salt
marsh ecosystem. Diazotroph strains from S. virginica were differ-
ent from strains from other plants growing in other marsh zones,
but were more similar to strains from host plants growing in the
same marsh zone (Bagwell et al., 2001). As described above and in
Figure 2, marsh zones are defined by edaphic parameters (Bert-
ness and Ellison, 1987; Adam, 1990; Pennings and Callaway, 1992).

Diazotrophs isolated from plant hosts in the same zone are pre-
sumed to be heavily influenced by the edaphic parameters of the
marsh zone.

nifH DGGE analysis of diazotroph assemblages recovered from
the rhizosphere and rhizoplane of host plants in North Inlet
also confirm the plant host specificity observed in the culture-
dependent studies (Gamble et al., 2010; Davis et al., 2011). Assem-
blages from S. alterniflora growing in two differing tidal drainage
systems within North Inlet estuary showed seasonal variability but
no significant site-influenced variability (Gamble et al., 2010). The
host plants were the same in both locations (short and tall growth
forms of S. alterniflora) and the subtle changes in edaphic para-
meters with changes in seasons shaped the seasonally responsive
segments of the diazotroph assemblages in these two locations.
Assemblages from the rhizospheres of plant hosts in the Crab Haul
Creek Basin that exhibit zonation due to elevation differences,
contained host specific diazotrophs as well as diazotrophs having
broad distributions across the landscape (Davis et al., 2011). As
described above, plant zones contain specific macrophytes due to
the differences in marsh environments. A clear response of dia-
zotroph assemblages to plant host zonation and seasonal changes
in edaphic parameters was observed from principal component
analysis (PCA) of the recovered nifH amplicons (Gamble et al.,
2010; Davis et al., 2011). The results obtained by Davis et al.
(2011) confirmed the seasonal responses (Figure 3) and plant host
specificity (Figure 4) observed by Gamble et al. (2010), and also
included diazotroph assemblages associated with multiple plant
hosts.
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FIGURE 3 | Principal Components Analysis results for dates June (SS, JP,

S, andT) and September 2000 (SV, SS, S, andT). Circles denote significance
(p < 0.001) for clustering. For June 2000 Axis 1 represents 28.4% of the

variance and Axis 2 represents 14.7% of the variance. For September 2000
Axis 1 represents 31.5% of the variance and Axis 2 represents 11.5% of the
variance. Reproduced with kind permission from Davis et al. (2011), Figure 3.
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FIGURE 4 | Principal Components Analysis results for vegetation

zones Juncus roemerianus stand and tall form Spartina alterniflora

on all dates. Circles denote significance (p < 0.001) for clustering. For J.
roemerianus stand Axis 1 represents 31.2% of the variance and Axis 2

represents 20.8% of the variance. For tall form S. alterniflora Axis 1
represents 25.8% of the variance and Axis 2 represents 15.5% of the
variance. Reproduced with kind permission from Davis et al. (2011),
Supplementary Figure 1A.

To confirm the results from PCA analysis,mothur (Schloss et al.,
2009) was used to conduct parsimony tests on neighbor-joining
trees created using nifH sequences (400–420 bp). These sequences
were recovered from DGGE banding patterns of rhizoplane and
rhizosphere samples from all plant zones except the mixed zone
of co-occurring S. virginica and short form S. alterniflora (Davis,
2010). Included in the phylogenetic analysis were plant zones (with
designations): J. roemerianus stand (JS), S. virginica (SV), short
form S. alterniflora (SS), patch of J. roemerianus in the SS zone
(JP), and tall form S. alterniflora (TS). Using a significance thresh-
old of p < 0.01 it was confirmed that diazotroph assemblages in
the same marsh zone (based on edaphic parameters) had simi-
lar structures (Table 1). Phylogenetic analyses of the sequences
recovered from these assemblages also revealed clusters of plant
host specific sequences that were considered identical (sensu Ven-
ter et al., 2004; see also Lovell et al., 2008) throughout the nifH
phylogenetic trees (Figure 5; Table A2 in Appendix, 19 clusters in
the high marsh; Figures 6 and 7; Table A4 in Appendix, 39 clusters
in the low marsh). These results provide additional and extensive
evidence of diazotroph specificity for the plant host.

Multiple analyses of datasets obtained in several different stud-
ies provide strong evidence of plant host specific diazotroph
assemblages associated with the rhizospheres of salt marsh plants.
These organisms have been detected through both culture-
dependent and culture-independent methods, in different sites
throughout North Inlet estuary, and over the course of more than
a decade. It is very clear that salt marsh diazotrophs have a distinct
biogeography driven by both biotic (host plant) and abiotic envi-
ronmental parameters (i.e., salinity, tidal inundation, elevation,
etc.). The results of these studies also indicate substantial resilience
of some members of the diazotroph assemblages that are capable
of withstanding wide ranges of environmental conditions and are
present in multiple marsh zones.

Table 1 | Results from parsimony tests (mothur) of neighbor-joining

trees containing diazotroph sequences recovered from band stabs of

DGGE gels of PCR-amplified nifH amplicons from rhizoplane (roots)

or rhizosphere (sediments) of different plant zones.

Trees Parsimony score Parsimony significance***

RHIZOPLANE

JPR v. SSR 16.00 0.08

All others 9.00–22.00 <0.01

RHIZOSPHERE

JPS v. SSS 44.00 0.038

All others 29.00–41.00 <0.01

***Significance threshold (using Bonferroni corrections) = 0.05/5 = 0.01.

All pairs yielding a parsimony significance <0.01 have significantly different struc-

tures from each other. Key: JPX, J. roemerianus patch in short growth form

S. alterniflora; SSX, short growth form S. alterniflora; XXR, rhizoplane; XXS,

rhizosphere.

NICHE SPECIALIZATION
Studies of diazotroph assemblages associated with the salt marsh
plants in North Inlet have demonstrated a diverse yet stable assem-
blage. Bagwell and Lovell (2000b) conducted a series of field
fertilization experiments and through reverse sample genome
probing revealed a highly resilient, niche specialized diazotroph
assemblage. The assemblage responded to environmental manip-
ulations through increases and decreases in quantities of specific
taxa, but not through loss of taxa (Bagwell and Lovell, 2000b).
DGGE analysis of diazotroph assemblages in long- and short-term
fertilization experiments (fertilized with 16.3 g N m−2 NH4NO3

and 18.0 g P m−2 P2O5) confirmed the stability of these assem-
blages (Piceno and Lovell, 2000a,b). The results of these experi-
ments indicate that salt marsh diazotrophs are quite competitive
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FIGURE 5 | Phylogenetic analysis of all nifH sequences from DGGE

bands of rhizoplane (R) and rhizosphere (S) samples from the high

marsh plant zones (nucleotide sequences, Neighbor-Joining, Jukes

Cantor correction, complete deletion of gaps and missing data, 1000

bootstrap replicates). Boot strap values below 50% are not shown.
Abbreviations: JS, Juncus roemerianus stand; SV, Salicornia virginica.

FIGURE 6 | Phylogenetic analysis of all nifH sequences from DGGE

bands of rhizoplane (R) and rhizosphere (S) samples from the low

marsh plant zones (nucleotide sequences, Neighbor-Joining, Jukes

Cantor correction, complete deletion of gaps and missing data, 1000

bootstrap replicates). Boot strap values below 50% are not shown.
Abbreviations: JP, J. roemerianus patch; SS, short form S. alterniflora; TS,
tall form S. alterniflora. The phylogram is continued in Figure 7.
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FIGURE 7 | Continuation of Figure 6 – phylogenetic analysis of all nifH

sequences recovered from the low marsh plant zones (nucleotide

sequences, Neighbor-Joining, Jukes Cantor correction, complete

deletion of gaps and missing data, 1000 bootstrap replicates).

Abbreviations: JP, J. roemerianus patch; SS, short form S. alterniflora; TS,
tall form S. alterniflora.

with non-diazotrophs and are able to maintain their populations
despite the energy expense of nitrogen fixation. The resilience
of diazotrophs associated with salt marsh plants has also been
observed during periods of extreme environmental conditions
(Davis, 2010).

In stark contrast to the diversity of diazotrophs associated with
the rhizospheres of salt marsh plants, nifH sequences recovered
from standing dead S. alterniflora biomass from North Inlet and
Sapelo Island (GA, USA) salt marshes revealed a diazotroph assem-
blage with markedly lower diversity (Lovell et al., 2001b). These
assemblages can produce significant levels of diazotrophy (based
on rates of nitrogen fixation) despite the highly mineralized and
frequently dry microenvironments they occupy (Newell et al.,
1985, 1992). The analysis methods (including nifH -specific PCR),
which were also utilized in other studies, revealed that approxi-
mately 90% of nifH sequences from these assemblages were similar
to those from α-Proteobacteria. This demonstrates that the meth-
ods of nifH sequence recovery employed in these studies are sound,
as the α-Proteobacteria are poorly represented in most salt marsh
rhizosphere diazotroph assemblages (Lovell et al., 2000, 2008;
Gamble et al., 2010; Davis et al., 2011). For example, Figures 5–
7 show the small number of nifH sequences that are similar to
those from α-Proteobacteria (∗-labeled clusters in Tables A1 and
A4 in Appendix) in comparison to the large number of recovered
sequences related to those from the γ-Proteobacteria. The majority
of the α-Proteobacteria-like salt marsh sequences have been recov-
ered from the high marsh, particularly in the J. roemerianus plant
zone. In addition, approximately half of the α-Proteobacteria-like
sequences that were recovered from the low marsh were from the
patch of J. roemerianus growing in the short form S. alterniflora
zone. This analysis clearly demonstrates specificity of diazotroph
assemblages for specific niches.

Principal component analysis and phylogenetic analyses by
Gamble et al. (2010) revealed that changes in edaphic parame-
ters associated with plant senescence, tidal intrusion, and nutrient
cycling produced different responses from the seasonally (grow-
ing season/summer vs. plant senescence/winter) responsive groups
within the diazotroph assemblages (Gamble et al., 2010). A sea-
sonally responsive γ-Proteobacteria clade was detected during
the Spartina growing season while, an anaerobic clade was only
detected during plant senescence. Some clades were also recovered
throughout all seasons, indicating a resilient portion of the assem-
blage. These diazotrophs are capable of competing for resources
and maintaining populations over seasonal changes in both biotic
and abiotic environmental variables.

Phylogenetic analyses of the recovered sequences from dif-
fering plant zones by Davis et al. (2011) demonstrated broadly
distributed (and mostly novel), frequently detected (FD) dia-
zotroph sequences that did not respond detectably to seasonal
changes (Davis et al., 2011). These sequences were not detected
in studies employing the same methods to examine diazotrophic
assemblages associated with standing dead Spartina (Lovell et al.,
2001b) or seagrasses (Bagwell et al., 2002). This indicates that they
were unlikely to derive from sample contamination. Sequences
were also identified (via statistical tests in PCA) as contributing
significantly to the structure of the diazotroph assemblages (LV –
sequences from bands producing long eigenvectors in Euclidean
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bi-plot analysis of PCA results; for full explanation see Davis
et al., 2011). LV sequences drive the formation of these assem-
blages throughout the ecosystem. Phylogenetic analysis revealed
several groups of FD and LV sequences that were virtually identical
(sensu Venter et al., 2004; see also Lovell et al., 2008) to each other
and to previously recovered “seasonally non-responsive” (detected
throughout all seasons) sequences from Gamble et al. (2010). This
work demonstrates that there are diazotrophs that have become
specialized for this ecosystem. They have been recovered from mul-
tiple sites in North Inlet estuary and differ from those recovered
from other ecosystems. Most importantly, these organisms have
maintained ubiquity and strong influence on ecosystem function
in an ecosystem characterized by distinct plant zones resulting
from varying edaphic parameters. It has been determined in ter-
restrial ecosystems that free-living diazotrophs are functionally
significant (Bürgmann et al., 2004; Hsu and Buckley, 2009). It is
reasonable to assume, based on the results of these studies, that
these organisms are equally important in salt marsh ecosystems.
Phylogenetic analysis of sequences recovered from high marsh and
low marsh zones (Figures 5–7) also confirm the presence of dia-
zotrophs specific to marsh zones. Throughout the phylograms are
clades containing virtually identical sequences recovered from host
plants in the same marsh zone (plant host labeled clusters in bolded
font in Figures 5–7, and sequences listed in Tables A2 and A4 in
Appendix), indicating niche specificity of these diazotrophs for the
edaphic parameters present in these zones.

These data have given insight into the distributions of dia-
zotroph populations throughout the nitrogen-limited salt marsh
ecosystem of North Inlet, SC, USA. These diazotrophs are special-
ized for the niches within this ecosystem, whether the niches are
defined by the microenvironment of the plant host, or by marsh
zone, or by both. They maintain populations that are readily
detectable by methods employed in multiple studies (particu-
larly nifH based PCR and DGGE fingerprinting) and influence
ecosystem function as well as diazotroph assemblage structure.

CONCLUDING REMARKS
Studies of this salt marsh ecosystem have revealed that the struc-
ture of a functional microbial assemblage can be predicted, based
on specific environmental parameters. Plant hosts and edaphic
factors that vary in response to elevation are the key parameters
that predict the biogeography of these organisms. On a continen-
tal scale, the biogeography of microbial communities in terrestrial
ecosystems is predicted by abiotic parameters, particularly soil pH,
rather than by geographic distance or vegetation type (Fierer and
Jackson, 2006). However, on a local scale, environmental para-
meters and vegetation type more heavily influence the diversity
of microbial populations. These patterns have been observed in
this estuarine system and can be used to predict biogeographi-
cal patterns of diazotroph assemblages associated with salt marsh
grass rhizospheres. Diazotroph assemblages of salt marsh ecosys-
tems are also capable of resisting relatively large changes in envi-
ronmental parameters to maintain detectable and functionally
important populations (Davis, 2010) and can be understood in
the context of biogeographical concepts that have been applied to
macroorganisms.

Strong evidence of plant host specificity and niche special-
ization in these assemblages has been compiled in this review;

however the methods used to obtain the data to support these
hypotheses are not perfect. Limitations of DGGE include the
co-migration of DNA fragments which will result in a loss of infor-
mation (Gelsomino et al., 1999; Maarit-Niemi et al., 2001; Kirk
et al., 2004). Also, the detection of nifH gene sequences by PCR
does not confirm the expression of this gene. Methods of quan-
tification such as quantitative reverse transcriptase-PCR would
be useful as this would identify the dominant diazotrophic phy-
lotypes that actively fix nitrogen and could help to quantify the
sizes of their populations. Continuing difficulties in the cultiva-
tion of these organisms results in a very limited understanding of
their physiology, with much of that understanding inferred from
known physiologies of related organisms. Finally, the evolution-
ary distances separating most salt marsh diazotrophs from their
nearest characterized relatives limits even inference of ecologically
significant characteristics of many of these organisms. A great deal
remains to be done in identifying the taxa that contribute substan-
tially to diazotrophy in salt marsh ecosystems, though a small start
has been made (Brown et al., 2003). Greater knowledge of these
organisms may allow us to refine our cultivation strategies and
finally isolate the key organisms into pure culture for characteri-
zation. Perhaps metagenomic approaches could be employed, but
the great diversity of distinct strains within even well studied lin-
eages may limit the gains from these methods as chimeric genomic
fragments may be encountered. Clearly, many challenges remain
to be overcome.

Based on current climate models, coastal salt marshes are in
danger of being completely submerged by the end of the cen-
tury (Nicholls et al., 2007; Craft et al., 2009). This is due to the
accelerating rate of sea level rise. Currently, it is expected that
the ecogeomorphic feedbacks of these dynamic coastal ecosys-
tems [i.e., rapid vegetation growth during years of low and high
sea level (Morris et al., 2002); sediment trapping, organic mat-
ter accretion and limiting erosion (Fagherazzi et al., 2004)] that
have allowed the survival of intertidal wetlands over time will
continue to do so. However, the ever increasing number of com-
pletely submerged wetlands indicates that the current rate of sea
level rise may exceed the abilities of ecogeomorphic feedbacks
to preserve tidal ecosystems, particularly salt marshes (Kirwan
et al., 2010). Continuous submersion of coastal salt marshes will
result in losses of vegetation (Penland et al., 2001; Hartig et al.,
2002; Kearnery et al., 2002; Kirwan et al., 2010) and consequently
loss of microorganisms restricted to a particular plant host or
microenvironment (Berg and Smalla, 2009). Loss of microor-
ganisms critical to ecosystem function would clearly be detri-
mental to the ecosystem that is dependent on their activity and
interactions with macrophytes (primary producers). These events
will eventually interrupt food webs and littoral biogeochemical
cycles affecting the quality of estuarine water due to eutrophi-
cation and increasing the export of particulates (Kearnery et al.,
2002).

The ability to predict biogeographical distributions of microor-
ganisms as critical to ecosystem function as diazotrophs are to
salt marshes will be advantageous to ecosystem modelers, espe-
cially those involved in determining the effects of global climate
change. These data clearly show that the distribution of dia-
zotrophs is non-random and is driven directly or indirectly by
edaphic parameters in their habitat. The assemblages contain
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microorganisms that appear to be restricted in their distribu-
tions, as well as broadly distributed microorganisms. Each group
is clearly engaged in ecosystem function as evidenced by their
resilience and stability within the assemblages. However, even with
this apparent ability to prosper over wide ranges of environmen-
tal parameters, there are limits to their survival. The flooding
of coastal wetlands as sea level continues to rise could result in
large losses from these assemblages. The biogeographical patterns
observed in North Inlet estuary can be applied to tidally domi-
nated coastal wetlands when the edaphic parameters of the system
in question are taken into consideration.
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APPENDIX

Table A1 | Sequences included in the mixed clusters designated in Figure 5 (*α-Proteobacteria clusters).

Grouping Sequences

Mixed cluster 1 JSS13-4, JSS13-8, JSS13-22, SVS10-9

Mixed cluster 2 JSS13-2, SVS13-4

Mixed cluster 3 JSS9-5, SVS7-2

Mixed cluster 4 JSS1-10, SVS2-5

Mixed cluster 5 JSS3-6, SVS3-8

Mixed cluster 6 JSS6-2, JSS6-4, SVS4-12

Mixed cluster 7 JSS4-2, JSS4-3, JSS4-4, SVS2-8, SVS4-3, SVS4-9, SVS5-1, SVS6-6, SVS8-8, SVS8-10, SVS9-6

Mixed cluster 8 JSS8-4, SVR14-3, SVR15-4, SVR15-6, SVR15-8

Mixed cluster 9 JSS7-2, SVS7-1

Mixed cluster 10 JSS4-1, JSS5-2, JSS7-4, JSS7-10, JSS8-5, JSS8-9, SVS3-9, SVS3-10, SVS4-10, SVS4-11, SVS6-8, SVS6-9, SVS6-10, SVS7-6, SVS8-7

Mixed cluster 11 JSR3-1, JSS4-11, JSS4-102, JSS11-7, SVR1-7, SVR2-4, SVR5-4

Mixed cluster 12 JSS15-4, JSS16-1, SVR10-1, SVR10-3

Mixed cluster 13* JSS4-9, JSS8-1, JSS8-11, JSS8-102, JSS8-22, SVS3-12

Mixed cluster 14 JSS10-22, JSS10-32, JSS10-52, JSS11-2, JSS12-12, JSS12-3, JSS12-42, JSS12-52, SVR12-2

Mixed cluster 15 JSS6-9, JSS13-3, SVS9-1, SVS12-6, SVS13-2, SVS15-8, SVS16-6, SVS16-13, SVS17-4, SVS17-5

Mixed cluster 16 JSR2-1, JSR7-4, JSR7-5, JSR8-2, JSS2-1, SVS11-6, SVS14-1

Mixed cluster 17 JSS4-8, SVR7-3

Mixed cluster 18 JSS12-22, SVS10-1, SVS15-11

Mixed cluster 19 JSS1-1, JSS1-3, JSS1-7, JSS1-9, JSS1-12, JSS1-102, SVR1-3

Mixed cluster 20 JSS3-4, SVR2-5

Mixed cluster 21 JSR2-2, JSR5-4, JSR7-2, JSR8-1, JSR8-5, JSR9-1, JSR9-2, JSR9-4, JSR9-5, JSS2-2, JSS13-7, SVR9-8, SVR12-4, SVR12-8, SVR13-2,

SVR13-8, SVR14-1, SVR14-7, SVS11-2, SVS11-3, SVS11-5, SVS11-13

Mixed cluster 22 JSR1-1, JSR1-3, JSR1-4, JSR2-4, JSR3-2, JSR3-4, JSR3-5, JSR4-1, JSR4-4, JSS2-3, JSS2-4, SVS14-9
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Table A2 | Sequences included in the plant host clusters designated in Figure 5.

Grouping Sequences

JS cluster 1 JSS3-2, JSS3-5

JS cluster 2 JSR7-1, JSR7-3, JSS13-6

JS cluster 3 JSR6-1, JSR8-3

JS cluster 4 JSR6-3, JSR9-3

JS cluster 5 JSR2-5, JSS2-5

JS cluster 6 JSS14-1, JSS14-2

SV cluster 1 SVR13-7, SVR14-8

SV cluster 2 SVS10-3, SVS12-4

SV cluster 3 SVS4-1, SVS5-8

SV cluster 4 SVR9-2, SVS10-11

SV cluster 5 SVS6-3, SVS6-4, SVS8-9

SV cluster 6 SVS15-6, SVS16-82

SV cluster 7 SVR14-4, SVR14-5, SVR15-7

SV cluster 8 SVS13-3, SVS14-2, SVS14-3, SVS14-4, SVS14-92, SVS17-11

SV cluster 9 SVR5-2, SVR11-5

SV cluster 10 SVS5-6, SVS6-7

SV cluster 11 SVR7-4, SVR7-5, SVR7-6

SV cluster 12 SVR9-5, SVS15-7

SV cluster 13 SVS1-4, SVS1-6, SVS1-8

Table A3 | Sequences included in the mixed clusters designated in Figures 6 and 7.

Grouping Sequences

Mixed cluster 1 JPR6-3, JPR6-7, SSR8-3

Mixed cluster 2 JPS18-8, TSS16-5

Mixed cluster 3 JPS2-6, JPS3-1, JPS3-6, JPS3-8, JPS4-3, SSS1-3, SSS1-7

Mixed cluster 4 SSS2-7, TSR4-9, TSR16-4

Mixed cluster 5 JPS5-4, JPS10-2, JPS11-5, JPS12-4, SSR2-6, SSS2-2, SSS4-4, SSS5-2, SSS7-10, SSS8-1, SSS8-2, SSS9-4, TSR9-4, TSR11-1, TSR11-7,

TSS2-2, TSS3-7, TSS7-2

Mixed cluster 6 JPS1-1, TSS2-3

Mixed cluster 7 JPR8-4, SSR10-9, SSS16-8

Mixed cluster 8 JPR2-1, JPS14-6, SSS10-7, SSS10-8, TSR12-3, TSR13-5

Mixed cluster 9 JPR5-5, JPS12-1, TSS10-12

Mixed cluster 10 JPR6-4, SSR5-7, SSR6-2, SSR9-3, TSR14-4, TSS13-2, TSS13-4, TSS14-1, TSS14-2

Mixed cluster 11 JPS5-9, JPS6-3, JPS6-4, JPS6-5, JPS6-6, JPS7-1, JPS7-2, JPS7-3, JPS7-8, JPS15-1, SSS2-3, SSS4-1, SSS4-2, SSS5-1,TSR4-3,TSS3-1,

TSS3-2, TSS3-6

Mixed cluster 12 JPS9-1, JPS9-6, SSS3-8, SSS6-2, TSR10-9, TSR12-1, TSR14-2, TSR14-10, TSR15-1, TSR15-5, TSS5-4, TSS6-1, TSS6-3, TSS6-7, TSS6-9

Mixed cluster 13 JPS18-5, TSR2-4, TSR3-6

Mixed cluster 14 JPS6-1, JPS8-3, JPS8-4, SSS6-1

Mixed cluster 15 JPR2-8, JPS9-4, SSR1-8, SSS5-3, SSS5-5, SSS6-3

Mixed cluster 16 JPS11-1, SSR3-9

Mixed cluster 17 JPS4-4, TSR4-6

Mixed cluster 18 JPS5-6, TSR2-3, TSS2-4

Mixed cluster 19 JPS2-8, JPS5-8, JPS5-10, TSR5-2, TSR7-4

Mixed cluster 20 JPS5-3, TSR9-5

Mixed cluster 21 JPS15-7, JPS16-2, JPS16-5, SSR97-3, SSR9-1, SSR9-5, SSS7-5, SSS12-2, SSS13-9, SSS16-4, TSS11-11

Mixed cluster 22 JPS9-7, JPS10-7, SSS15-7, TSR14-3, TSR14-9, TSR15-4, TSS9-9, TSS12-1

Mixed cluster 23 JPR4-2, SSR1-4, TSR9-10, TSR15-7, TSR16-2, TSR16-7, TSS9-3, TSS9-6, TSS9-7

Frontiers in Microbiology | Terrestrial Microbiology March 2012 | Volume 3 | Article 84 | 14

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Lovell and Davis Salt marsh diazotroph assemblages

Table A4 | Sequences included in the plant host clusters designated in Figures 6 and 7 (*α-Proteobacteria clusters).

Grouping Sequences

JP cluster 1 JPR2-4, JPS12-3

JP cluster 2 JPR2-7, JPS3-4

JP cluster 3 JPS11-3, JPS11-6

JP cluster 4 JPS5-5, JPS6-7

JP cluster 5 JPR1-9, JPS2-1, JPS9-2

JP cluster 6 JPR2-3, JPR3-4, JPR4-5, JPR7-4, JPR7-5, JPR7-6, JPR7-7, JPR7-8, JPR8-6

JP cluster 7 JPS13-4, JPS13-7, JPS15-3, JPS15-4, JPS15-5

JP cluster 8 JPS4-5, JPS4-6, JPS4-8, JPS4-9, JPS5-1

JP cluster 9 JPS6-2, JPS10-9

JP cluster 10 JPR4-1, JPR7-9

JP cluster 11 JPS5-2, JPS5-7

JP cluster 12* JPS18-9, JPS18-10, JPS18-11

JP cluster 13 JPR1-8, JPR2-6, JPR4-3

JP cluster 14 JPS10-1, JPS12-2, JPS15-8

S cluster 1 TSR3-2, TSR3-3, TSS1-2

S cluster 2 TSR7-3, TSS10-5

S cluster 3 TSR6-6, TSR9-2

S cluster 4 SSR6-5, SSR7-4, SSS13-1

S cluster 5 TSR7-7, TSR9-6, TSR11-8

S cluster 6 SSR1-5, SSR2-7, SS1-2, TSR7-9, TSR13-1, TSR13-2

S cluster 7 TSR5-1, TSR6-5

S cluster 8 SSS9-1, SSS11-5, TSR10-4

S cluster 9 TSR8-2, TSR9-8

S cluster 10 SSR3-2, TSR15-2, TSS7-3

S cluster 11 SSR9-4, TSS14-5

S cluster 12 SSR5-1, SSR11-3, SSR11-6, SSR11-7, SSR11-9, SSS16-10, TSS15-8

S cluster 13 SSR4-3, SSS12-9, SSS13-2

S cluster 14 TSR12-7, TSS11-10, TSS12-3, TSS12-5, TSS12-7, TSSS13-8, TSS15-4, TSS15-5

S cluster 15 TSR1-1, TSR1-3, TSR1-7, TSR1-8, TSR2-7, TSR2-8, TSR3-1, TSR4-2, TSR4-4, TSS1-8, TSS5-1, TSS4-7, TSS16-9

S cluster 16 TSS5-3, TSS5-6

S cluster 17 SSS2-5, TSS16-10

S cluster 18 TSS8-3, TSS8-4, TSS8-8

S cluster 19 TSR7-1, TSR10-10

S cluster 20* SSS17-8, TSS16-2

S cluster 21 TSS10-8, TSS10-10

S cluster 22 SSR8-1, TSR7-5, TSS8-1, TSS8-5, TSS10-3, TSS10-9, TSS11-5, TSS13-12, TSS14-4

S cluster 23 SSS13-7, TSS11-6

S cluster 24 SSS11-3, SSS11-6, SSS11-8

S cluster 25 TSR3-4, TSR5-3
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