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Background: Heat stress has negative effects on the intestinal health of humans
and animals. However, the impact of heat stress on intestinal microbial and metabolic
changes remains elusive. Here, we investigated the cecal microbial and metabolic
profiles in mice in response to heat stress.

Methods: The mouse heat stress model was constructed by simulating a
high-temperature environment. Twenty mice were randomly assigned to two groups,
the control group (CON, 25◦C) and the heat treatment group (HS, 40◦C from 13:00
to 15:00 every day for 7 days). Serum and cecal contents were collected from the
mice for serum biochemical analysis, 16S rRNA high-throughput sequencing, and
non-targeted metabolomics.

Results: Both core body temperature and water intake were significantly increased in
the HS group. Serum biochemical indicators were also affected, including significantly
increased triglyceride and decreased low-density lipoprotein in the heat stress group.
The composition and structure of intestinal microbiota were remarkably altered in the
HS group. At the species level, the relative abundance of Candidatus Arthromitus
sp. SFB-mouse-Japan and Lactobacillus murinus significantly reduced, while that of
Lachnospiraceae bacterium 3-1 obviously increased after HS. Metabolomic analysis
of the cecal contents clearly distinguished metabolite changes between the groups.
The significantly different metabolites identified were mainly involved in the fatty acid
synthesis, purine metabolism, fatty acid metabolism, cyanoamino acid metabolism,
glyceride metabolism, and plasmalogen synthesis.

Conclusion: In summary, high temperature disrupted the homeostatic balance of
the intestinal microbiota in mice and also induced significant alterations in intestinal
metabolites. This study provides a basis for treating intestinal disorders caused by
elevated temperature in humans and animals and can further formulate nutritional
countermeasures to reduce heat stress-induced damage.
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INTRODUCTION

High ambient temperature is the main factor threatening animal
production in tropical and subtropical regions (Mueller et al.,
2014; Slimen et al., 2015). Numerous studies have indicated
that high temperatures impact not only the growth performance
but also immune and intestinal mucosal barrier function in
livestock (St-Pierre et al., 2003; Lrar and Rostagno, 2013;
Faiz-ul et al., 2019) resulting in increased morbidity, mortality,
and economic loss.

The stress response can trigger the organism’s defense system,
mitigating the damage caused by the stressor and maintaining
physiological balance (Wen et al., 2019, 2020a). In the case
of excessive stress or long-term stress on the organism, the
stress response will gradually weaken and finally present as a
pathological state (Wen et al., 2020b). Heat stress can seriously
damage the intestinal tract, significantly increasing intestinal
permeability (Cui and Gu, 2015; Zhang et al., 2017). Heat stress
can also affect the immune function, potentially leading to
intestinal mucosal damage (Gu et al., 2012; Tao et al., 2012).
Through the study of the intestinal contents of heat-stressed
broilers, it was found that the viable counts of Lactobacillus
and Bifidobacterium were significantly reduced, resulting in an
imbalance of intestinal microecology (Song et al., 2013, 2014;
Al-Fataftah and Abdelqader, 2014).

The host metabolism is altered in response to environmental
changes, specifically in terms of metabolic adaptations (Virtue
et al., 2019). For example, a reduction in food intake can result
in shortening of the jejunum (Lemme and Mitchell, 2008; Payne,
2019). The level of serum triglyceride (TG) was found to be
significantly lower under chronic heat stress (He et al., 2019b).
Water intake is an efficient way to alleviate heat stress, resulting
in a lower rectal temperature and respiration rate (Marai et al.,
2001). In broilers, both the total water intake and water intake
per access were significantly increased at a high-temperature
house (Bruno et al., 2011). Postabsorptive carbohydrate and lipid
metabolism are also markedly altered (Baumgard and Rhoad,
2012). Together, these results suggested that heat stress exerts a
negative effect on an organism’s metabolism.

The microbiota appears to play an important role in the
stress response (Sekirov et al., 2010; Zong et al., 2020) and
the microbiota composition is related to heat tolerance (Ziegler
et al., 2017). These intestinal microorganisms can assist in the
maintenance of the intestinal barrier, thus effectively ensuring
the host’s health (Guarner and Malagelada, 2003). Disruption
of the intestinal temperature may allow pathogen invasion and
the consequent development of disease (Harvell et al., 2002).
Although heat treatment has no great effect on the alpha diversity
of the microbiome, alterations at the phylum and genus levels
were observed (Zhong et al., 2019). Segmented filamentous
bacteria (SFB) are host-specific gut symbionts that induce a
multifaceted immune response, leading to host protection from
gut pathogens (Pamp et al., 2012). It has been found that SFB

Abbreviations: AUC, area under the curve; LDL, low-density lipoprotein;
OPLS-DA, Orthogonal partial least squares method-discriminant analysis; PCoA,
principal coordinates analysis; SCFAs, short-chain fatty acids; SFB, segmented
filamentous bacteria; TG, triglyceride.

can prevent the colonization of enteropathogenic Escherichia coli
O103 (Heczko et al., 2000). Moreover, SFB is involved in lipid
metabolism (Nguyen et al., 2007). Homeostatic disturbance of the
gut microbiota may cause abnormal growth of microorganisms
and inadequate absorption of host nutrients that be captured
by microorganisms.

Heat stress has a deleterious effect on human and animal
welfare and causes economic losses in livestock production.
Therefore, in the present study, a mouse model was used
to investigate the impact of heat stress on the diversity
and metabolism of intestinal microbiota by next-generation
sequencing and GC-TOF/MS. The aim was to explore the effects
of heat stress on intestinal microbial diversity, metabolism,
physiological and biochemical parameters in mice. Correlation
analysis was used to determine the relationship between
regulatory processes induced by heat stress and the intestinal
microbiome community, thus providing a theoretical and
experimental basis for our understanding of the effects of high
temperature on humans and animals.

MATERIALS AND METHODS

Animal Experiments
All animal experiments in the present study were approved by the
Institutional Animal Care and Use Committee of Northwestern
Polytechnical University, China, and performed following the
institutional ethical guideline of experimental animals. Adult
female ICR mice (30.2± 2.5 g) aged 7 weeks were purchased from
the Animal Experimental Center of Xi’an Jiaotong University,
China. The heat stress model was established according to
previous study (Minho et al., 2017; Chen et al., 2020). The core
temperature of mice is 37 ± 1◦C. Under conditions when the
increasing temperature is beyond the upper critical temperature
of the range, the animals begin to suffer heat stress (Rojas-
Downing et al., 2017). The hottest time of the day is between
1 and 3 PM. Taking these together, we chosen 40◦C lasted
2 h as the heat stress condition. All animals had free access to
food and drinking water and were housed in plastic cages in a
controlled environment (temperature, 25◦C; relative humidity,
60%; lighting cycle, 12 h/d). After 10 days of acclimatization
under normal conditions, a total of 20 mice were randomly
assigned to two groups (n = 10), including the control group
(CON) and the heat stress group (HS). Starting from the 11th
day, the temperature of the HS group was raised to 40◦C from
13:00 to 15:00 during feeding every day and returned to 25◦C
for the remainder of the day. The experiment lasted for 7 days.
At the end of the experiment, the animals were anesthetized and
blood was withdrawn by orbital bleeding. Serum samples were
separated after centrifugation at 4,000× g for 15 min at 4◦C. The
cecum contents were also collected for 16S rRNA sequencing and
GC-TOF/MS analysis.

Body Weight, Water Intake, and Core
Body Temperature
After the HS treatment, the body weights were measured every 2
days. The daily water intake of the mice was also determined.
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Serum Biochemical Parameters
The serum biochemical parameters included total cholesterol,
TG, high-density lipoprotein, and low-density lipoprotein (LDL)
were investigated using an automatic biochemical analyzer
(Shenzhen Redbang Electronics Co., Ltd., China).

DNA Extraction, Library Construction,
and Sequencing
Total DNA from the cecal contents was extracted using the
E.Z.N.A. R©Genomic DNA Isolation Kit (Omega Bio-Tek,
United States) according to the manufacturer’s instructions.
To investigate the bacterial community structure, we
used next-generation 16S rRNA sequencing to analyze
the composition of the cecal microbiota. The V3-V4
hypervariable region of the bacterial 16S rRNA gene in
each sample was amplified using the broadly conserved
primers, 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 533R
(5′-TTACCGCGGCTGCTGGCAC-3′), and then sequenced
using an Illumina MiSeq PE250 (Illumina, San Diego, CA,
United States). The assembled MiSeq sequences were submitted
to the NCBI’S Sequence Read Archive (SRA BioProject No.
PRJNA730381) for open access. The resulting raw sequences
were filtered and assembled according to previous research (Jin
et al., 2019; Zhou et al., 2019) and using the QIIME (v1.9.1)
and FLASH (v1.2.11) software packages. The filtered sequences
were compared with SILVA (v132) small subunit ribosomal
RNA database, and the similarity more than 80% of the species
information was screened out. In the taxonomic analysis of each
OTU, sequences with 97% similarity were selected first, and the
consistency of these sequences was analyzed. Finally, the species
information of each OTU was taken as the species information of
its nearest ancestor. The analysis and production of rarefaction
curves were performed by Mothur (v1.30.2) and R software,
respectively. To investigate bacterial richness and diversity,
Mothur was also used to analyze the alpha diversity, including
the Chao, Ace, Shannon, and Simpson indices. The OTU
coverage curves were expressed using the “vegan” R package.

Sample Preparation and GC-TOF/MS
Analysis
Cecal samples (100 µL) were slowly thawed at 4◦C. 200 µL
acetonitrile was added, followed by sonication for 10 min,
and centrifugation at 10,000 × g for 10 min at 4◦C. The
supernatant was removed and vacuum-dried at 40◦C. For mass
spectrometry, 50 µL 15 mg/mL methoxyamine pyridine solution
was reconstituted, vortexed, and incubated at 70◦C for 1 h. 50
µL silanization reagent (MSTFA: TMCS = 100:1) was added to
the centrifuge tube for derivatization, mixed well, allowed to
stand for 1 h, and then added to a concentration of 0.1 mg/mL
n-heptane containing 150 µL docosane, before thorough mixing
and centrifugation at 10,000 × g for 10 min at 4◦C. The
supernatant was retained and transferred to a sample bottle
for GC-TOF/MS analysis (Agilent 7890A gas chromatograph
equipped with an Agilent DB-5MS capillary column (30 m× 250
µm× 0.25 µm, J&W Scientific, Folsom, CA, United States).

The derivatized sample (1.0 µL) was injected by the splitless
mode. The helium carrier gas flow rate was 1 mL/min. The oven
temperature ramp program was set as follows: initial holding at
50◦C for 1 min, increasing to 240◦C at 10◦C/min, and finally
holding for 2 min. The temperatures of the front inlet, transfer
line, and ion source were set at 280, 270, and 220◦C, respectively.
The ionization voltage was set to − 70 eV, the quality control
ranged from 50 to 500 m/z, the scan rate was 20 spectra/s, and
the solvent delay time was 6 min.

GC-TOF/MS Data Processing and
Differential Metabolites Identification
After the raw data was collected, the LECO’s ChromaTOF
software was used for peak alignment, retention time correction,
deconvolution analysis, peak identification, and area extraction.
Principle component analysis (PCA) and orthogonal partial
least squares method-discriminant analysis (OPLS-DA) were
performed using SIMCA software. After the analyzed data was
matched with the KEGG data ID, path enrichment and network
construction were performed (Haug et al., 2019). Analysis of
differential metabolites and metabolic pathways were performed
based on MetaboAnalyst 4.0.1 The RAW data of GC–TOF/MS
has been submitted to Metabolights NO. MTBLS2874.2

Data Analysis
All statistical analyses were performed using SAS 8.2 software
(SAS Institute, Inc.). The data relating to the microbiota
community were analyzed on the free online platform of
Majorbio Cloud Platform.3 Metagenomes were predicted from
the copy number-normalized 16S rRNA data according to the
previous report (Zhou et al., 2018). The molecular functions
were categorized into KEGG pathways on the web-based
Galaxy according to the instructions described by developers.4
5 Correlation analysis was computed with spearman test in R
using corrplot package (Wei and Simko, 2013). The codes used
in the analysis could be found on the websites.6 Details can be
found in the legends of the corresponding figures and tables.
The difference between CON and HS was compared using an
unpaired t-test. P-values < 0.05 indicated statistical significance.

RESULTS

Body Weight, Water Intake, and Core
Body Temperature
In the heat stress mouse model, no significant difference was
found in body weight between the groups (Figure 1A). As
expected, both the relative intake of water (Figure 1B) on the
7th day and the body temperature significantly increased in the

1http://www.metaboanalyst.ca
2www.ebi.ac.uk/metabolights/MTBLS2990
3www.majorbio.com
4http://huttenhower.sph.harvard.edu/galaxy/
5http://picrust.github.io/picrust
6https://github.com/zlabx/zlab-qiime2
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FIGURE 1 | Changes in body weight (A) water intake (B) and core body temperature (C) on day 7. CON, control group; HS, heat stress group. *P < 0.05,
***P < 0.001.

HS group (Figure 1C) (n = 10 per treatment). This indicated the
successful establishment of the heat stress model.

Serum Biochemical Indices
We further analyzed serum concentrations of lipids. The fasting
serum lipids values are presented in Figure 2. There were
no significant changes in the levels of total cholesterol and
high-density lipoprotein (Figures 2A, C). Compared with the
CON group, the level of serum TG increased significantly, and
LDL decreased remarkably in the HS group (Figures 2B, D)
(n = 10 per treatment).

Cecal Microbial Community
Across all 20 samples, 1451173 high-quality sequences were
identified, with an average length of 411 bp. No remarkable
differences were found in the richness estimators (Ace
and Chao), diversity indices (Shannon and Simpson), and
observed OTUs (Supplementary Table 1). The normalized
microbiome data has been added in the supplementary material
(Supplementary Table 2).

We further investigated the shifts in bacterial taxa that were
responsible for heat stress adaptation. Principal coordinates
analysis (PCoA) based on weighted_unifrac revealed distinct
clustering of microbiota composition for the two groups
(Figure 3A). Analysis of the similarities in the Bray-Curtis
distance indicated that the heat-stressed and control mice
tended to be different (P = 0.052) with an R-value of 0.1237,
suggesting that the microbiota of the two groups were different.
A non-metric multidimensional scaling (NMDS) ordination plot
based on the Bray-Curtis distance metric showed that the cecal
bacterial communities in the samples could be differentiated by
heat treatment (Figure 3B).

The overall microbial composition of the two groups differed
at the phylum, family, genus, and species levels. The five
largest phyla represented in each group were Firmicutes,
Proteobacteria, Bacteroidetes, Tenericutes, and Deferribacteres.
The thermoneutral mice had a higher relative abundance of
Proteobacteria (28.1%), Bacteroidetes (16.4%), and Tenericutes
(3.1%), but a lower relative abundance of Firmicutes (48.7%)
and Deferribacteres (0.5%) (Figure 3C). Heat-treated mice
contained largely bacteria of the phyla Bacteroidetes 14.9%,
Firmicutes 52.5%, Proteobacteria 26.7%, Tenericutes 1.3%, and

Actinobacteria 1.0% (Figure 3C). No statistical differences were
observed in the relative abundance of the five largest phyla.
However, heat treatment tended to decrease the proportion
of Tenericutes and Actinobacteria (P = 0.071 and 0.098,
respectively) (Figure 3C). These results suggested that the
gut microbiota composition of mice remained relatively stable
under heat stress. At the family level, Clostridiaceae_1 was
significantly enriched in thermoneutral conditions (Figure 3D
and Supplementary Figure 1A). The relative abundance at
the levels of class and order were presented in supplementary
materials (Supplementary Figures 1D–F). At the genus level,
Lachnospiraceae bacterium 3-1 and unclassified g-Anaerotruncus
were significantly increased, while Candidatus Arthromitus sp.
SFB-mouse-Japan, Lachnoclostridium, and Lactobacillus murinus
were significantly decreased in the heat-treated mice (Figure 3E
and Supplementary Figure 1B). At the OTU level, OTU1468,
and OUT1733 were significantly increased in the HS group, while
OTU1364 and OTU778 were significantly decreased in the CON
group (Supplementary Figure 1C).

Predicted Molecular Functions of Cecal
Microbiota
We found that multiple KEGG (level 3) categories were disturbed
in the heat-treated group. The KEGG at level 2 category results
were consistent with the findings of KEGG at level 3 (Figure 3F).
Specifically, the enriched pathways were membrane transport,
lipid metabolism, infectious disease: bacterial, infectious
disease: parasitic, immune disease, excretory system, cellular
community-prokaryotes, cell motility, glycan biosynthesis,
and metabolism, and signaling molecules and interaction
(Supplementary Figure 2). Moreover, carbohydrate digestion
and absorption, DNA replication proteins, translation proteins,
and pyrimidine metabolism were significantly upregulated in the
CON group (Figure 3F).

Variations in Cecal Metabolite Profiles
To explore the effects of heat treatment on cecal metabolites
in mice, GC-TOF/MS was applied to investigate the intestinal
metabolite profiles. A total of 532 effective peaks were obtained,
of which 235 compounds were relatively quantified, 120 were
labeled “analyte,” 173 were labeled “unknown” as compared
against the LECO-Fiehn Rtx5 database. The differences of
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FIGURE 2 | Changes of blood lipid indicators. Density of total cholesterol (A), triglyceride (B), high density lipoprotein (C) and low density lipoprotein (D) in serum.
CON, control group; HS, heat stress group. *P < 0.05.

metabolomics profiles between CON and HS groups by the
multivariate analysis are shown in Figures 4A, B. Principal
component analysis (PCA) of the metabolites showed no clear
distinction between the groups (Figure 4A). To further verify
the differences between the groups, we did an OPLS-DA which
clearly distinguished the metabolites (Figure 4B). It indicated
that the GC-TOF/MS-based metabolomics and PLS-DA model
was suitable to be applied in identifying the differences between
the two groups. Furthermore, the heatmap showed significant
changes in the intestinal metabolites between the two groups
(Figure 4C). Compared with the CON, the heat stress group
showed significant up-and down-regulation of 7 metabolites and
10 metabolites, respectively (Supplementary Table 3). In these
metabolites, xanthine, shikimic acid, salicin, purine riboside,
diglycerol, 3,5-dihydroxyphenylglycine, and 2-deoxy-D-glucose
were enriched in the HS group. Conversely, there was a increase
of metabolites such as stearic acid, pipecolinic acid, palmitic acid,
oleic acid, myristic acid, mannose, carbazole, behenic acid, 4-
hydroxyphenylacetic acid, and 3-aminopropionitrile in the CON
group (Supplementary Table 3). The normalized metabolomics
data is provided in spreadsheets on the supplementary material
(Supplementary Table 4).

Differential Metabolic Pathway Analysis
KEGG analysis of the 17 significantly different metabolites
showed enrichment of the fatty acid biosynthesis, purine
metabolism, fatty acid metabolism, cyanoamino acid metabolism,

tyrosine metabolism, amino sugar and nucleotide sugar
metabolism, and lysine degradation pathways (Figure 4D).
Further analysis of the metabolic pathways by bubble diagram
and metabolic pathway enrichment revealed that heat treatment
significantly inhibited the fatty acid synthesis pathway.

Analysis and Verification of Biomarkers
Based on variable importance for projection (VIP) > 1.0 in the
OPLS-DA and P-value < 0.05 between the two groups, carbazole,
purine nucleoside, and stearic acid were selected as biomarkers
in the intestine that responded to heat stress (Figure 4E). The
AUCs of carbazole (AUC value = 0.85), purine nucleoside (AUC
value = 0.87), and stearic acid (AUC value = 0.855), as well as
the levels of these three compounds in the intestine, are shown
in Figure 4E. Besides, cross-validation prediction of the samples
with three metabolites indicated that CON and HS showed
a significant separation trend (Supplementary Figure 3). The
results of comprehensive prediction with these three biomarkers
showed that the average AUC was 0.973, which was extremely
close to 1 (Supplementary Figure 3), and that the two groups
of samples were clear separated and discriminated.

Correlation Analysis Between Serum
Index, Significantly Different Microbiota
and Metabolites
To further study the correlation between gut microbiota,
metabolites, and serum biochemical markers, Spearman analyses
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FIGURE 3 | Effects of heat stress on mouse gut microbiota. (A) Analysis of the PCoA plots based on a Bray-Curtis distance metric. (B) NMDS ordination plots of
cecal bacterial communications in the HS and CON group based on the Bray-Curtis distance metric. (C) Differential microorganisms at the phylum level.
(D) Differential microorganisms at the family level. (E) T-test bar plot of significantly different species between the groups (relative abundance > 1%). (F) T-test bar
plot of significantly differed pathways enriched at KEGG level 3. CON, control group; HS, heat stress group; PCoA, principal coordinates analysis; NMDS,
Non-metric multidimensional scaling.
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FIGURE 4 | Changes in cecal metabolite profile of mice shaped by heat
stress. (A) PCA score plot. (B) OPLS-DA score plot. (C) heatmap tree show
metabolites significantly different between groups and their phylogenic
relationships. (D) Metabolic pathway enrichment analysis. (E) Biomarker
analysis. (F) Correlations between serum indicators and gut microbiota, and
cecum metabolic indicators mediated by heat stress. CON, control group;
HS, heat stress group; OPLS-DA, Orthogonal partial least squares
method-discriminant analysis. *P < 0.05, **P < 0.01, ***P < 0.001.

were performed (Figure 4F). It was observed that TG showed a
significant negative correlation with 4-hydroxyphenylacetic acid
(ρ = −0.45, P = 0.049) and a positive correlation with the salicin

level (ρ = 0.68, P < 0.001). However, the correlation between LDL
and 4-hydroxyphenylacetic acid (ρ = 0.46, P = 0.043) and salicin
(ρ =−0.63, P = 0.003) level was exactly the opposite of TG.

There is a close relationship between gut microbiota
and metabolites. For instance, Candidatus Arthromitus sp.
SFB-mouse-Japan showed a negative correlation with salicin
(ρ = −0.55, P = 0.013) and purine riboside (ρ = −0.60,
P = 0.005) and a positive correlation with behenic acid (ρ = 0.63,
P = 0.003). Lactobacillus murinus was positively correlated with
carbazole (ρ = 0.56, P = 0.010) and palmitic acid (ρ = 0.55,
P = 0.011). Moreover, Lachnospiraceae bacterium 3-1 was
positively associated with salicin (ρ = 0.54, P = 0.013), purine
riboside (ρ = 0.58, P = 0.008), and diglycerol (ρ = 0.50,
P = 0.026, but negatively associated with behenic acid (ρ =−0.62,
P = 0.004), oleic acid (ρ = −0.51, P = 0.022), and carbazole
(ρ = −0.56, P = 0.011). Unclassified-g-Anaerotruncus was
positively associated with salicin (ρ = 0.52, P = 0.018) but
negatively correlated with both mannose (ρ = −0.57, P = 0.009)
and 4-hydroxyphenylacetic acid (ρ =−0.50, P = 0.024).

DISCUSSION

Temperature is a crucial environmental signal that controls
the growth and development of bacteria. Continuous high
temperature may cause functional disorders, including intestinal
dysbiosis (Bouchama and Knochel, 2002; Kovats and Hajat,
2008; He et al., 2019a). The impact of heat stress on microbial
composition and metabolites in mice is still limited. A better
understanding of the physiological alterations of the microbial
community and its metabolites under heat stress could help to
develop targeted approaches to alleviate heat stress.

Heat stress induces weight loss was reported in ducks (He
et al., 2019b), broiler (Luo et al., 2018). In our study, we also
found a body weight loss in the HS group. Animals developed
a phenotypic response to heat acclimation which results in
decreased feed intake and increased water intake to accommodate
increased evaporative heat loss requirements (Robert et al.,
2018). The core temperature is significantly increased in the
HS group, which indicated that our heat stress model was
successfully established.

Blood biochemical indicators can be used to determine
metabolic status. It was found that the TG content was
significantly increased with the LDL level showing an opposite
trend in HS mice. LDL is mainly responsible for transporting
cholesterol from the liver to the tissues of the body, and then
metabolizing cholesterol by the body (Cirulli and Ginsburg,
2017). When the body is subjected to heat stress, cholesterol
metabolism is slowed down, resulting in a decrease in LDL
levels. In broilers, heat stress was found to increase the TG
concentration (Luo et al., 2018), consistent with our results. In
general, there is an alteration in the metabolic response to heat
stress characterized by an increase in the use of carbohydrates
and a decrease in fat usage (Febbraio, 2001). It follows that the
TG content in the blood is significantly increased.

The effect of heat stress on the intestinal microbiota and
their microecological structure in mice was studied by 16S

Frontiers in Microbiology | www.frontiersin.org 7 August 2021 | Volume 12 | Article 706772

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-706772 August 16, 2021 Time: 14:42 # 8

Wen et al. Temperature Affect Microbiota and Metabolites

rRNA high-throughput sequencing. Analysis of the rarefaction
curves and alpha diversity showed that there were no significant
differences in the alpha diversity indices, indicating that HS
had no significant effect on intestinal microbiota diversity.
According to the sequencing, the mouse intestinal microbiome
consists mainly of five phyla, the Firmicutes, Proteobacteria,
Bacteroidetes, Tenericutes, and Deferribacteres. Among these,
the dominant microbial group was Firmicutes, accounting for
more than 60% of the microbiome. Besides these, we also
detected Verrucomicrobia, Acidobacteria, Actinomycetes, and
Cyanobacteria in the mouse intestine, with low proportions of
less than 0.2%. The Firmicutes/Bacteroidetes ratio, a parameter
to evaluate the imbalance of microbial composition, has been
used to indicate obesity in the host (Wen et al., 2008). In our
study, the Firmicutes/Bacteroidetes ratio increased by 21.5% in
the heat-treated group (Supplementary Figure 1G).

Accumulating evidence has revealed the dysbiosis of intestinal
microbiota induced by heat stress in mammals and poultry (Song
et al., 2013; Zhang et al., 2017; Zhu et al., 2018; He et al., 2019b).
Stress-induced by extreme environments such as simulated
weightlessness can also change the composition of the intestinal
microbiota, decrease the diversity of intestinal microorganisms
(Chen et al., 2016), lead to changes in the homeostasis of colonic
epithelial cells and barrier function, and also cause pathological
changes of the intestinal mechanical barrier, including intestinal
villus damage and down-regulation of tight junction protein
expression, thereby changing intestinal permeability (Shi et al.,
2017; Jin et al., 2018). The present study indicated that
heat stress significantly reduced the abundance of Candidatus
Arthromitus sp. SFB-mouse-Japan, Lactobacillus murinus in the
gut, and significantly increased the abundance of Lachnospiraceae
bacterium 3-1. Candidatus Arthromitus plays an important role
in host immune regulation, as it is in contact with epithelial
cells and be transplanted into host epithelial cells, thereby
triggering a series of physiological responses related to the host
immune system (Pamp et al., 2012; Bolotin et al., 2014). SFB are
host-specific intestinal symbionts that comprise a distinct clade
within the Clostridiaceae, designated Candidatus Arthromitus
(Pamp et al., 2012). SFB induces a multifaceted immune response,
leading to host protection from intestinal pathogens (Pamp et al.,
2012). Candidatus Arthromitus sp. SFB-mouse-Japan was one
of the five SFB filaments isolated from a mouse (Pamp et al.,
2012). SFB has a relatively high abundance of predicted proteins
devoted to cell cycle control and to envelope biogenesis (Pamp
et al., 2012). The dominance of Lactobacillus in the intestine
is associated with protection against pathogens and infections
(Reid and Burton, 2002). Lactobacillus plays an essential role
in food fermentation and is used in probiotic applications
(Heeney et al., 2018). The most abundant lactobacilli included
L. murinus, L. casei and L. ruminus, and L. murinus is considered
a gut-autochthonous microorganism. Lactobacillus has been
reported to be remarkably enriched in the distal gut (Rossi
et al., 2016). The depletion of intestinal Lactobacillus is frequently
associated with the disease. Oscillibacter, a beneficial bacterium,
is significantly reduced in patients (Fang et al., 2016), piglets with
intrauterine growth retardation (Zhang et al., 2019), and obese
mice (Gong et al., 2020), indicating that the intestinal microflora

constitution was disturbed. Ruminococcaceae is significantly
higher in the intestinal flora of a high-risk colorectal cancer
population than in a low-risk population (Moore and Moore,
1995). It was speculated that a high-temperature environment
may have specific effects on patients with colorectal cancer.
Lachnospiraceae are the main producers of short-chain fatty
acids (SCFAs) and have been associated with intestinal diseases
(Vacca et al., 2020). They are also increased in obese subjects,
which suggested that the metabolic syndrome may be related
to a gut microbiota disorder (Zhao et al., 2019). The study
of microbial excavation and interaction is useful to reveal
the influence of heat stress on the intestinal mucosal barrier
and can provide a theoretical basis and experimental ideas
for the prevention and repair of body damage caused by
heat stress. The gut flora plays a key role in host energy
metabolism (Guarner and Malagelada, 2003; Dai et al., 2011;
Pérez-Cobas et al., 2013). Indigestible carbohydrates are degraded
by fermentation of colonic microflora to produce metabolic end
products, such as SCFAs, these metabolites have been shown
to affect host physiological activities (Topping and Clifton,
2001; Wong et al., 2006; Wang et al., 2019; Guo et al., 2020).
Recent studies have confirmed that SCFAs can inhibit the
production of anti-inflammatory factors and inhibit colonic
inflammation (Tan et al., 2014; van der Beek et al., 2017;
Kurata et al., 2019; Zeng et al., 2019).

To determine the effect of heat stress on the mice’s cecal
metabolites, GC-TOF/MS was used to explore the chemical
constituents of the intestinal contents in both groups. The
results showed that heat treatment produced significant changes
in the cecal metabolites with most metabolites significantly
reduced compared with the CON, including oleic acid, palmitic
acid, stearic acid, mannose, myristic acid, and carbazole. These
metabolites are involved in the physiological and biochemical
processes of energy metabolism and lipid metabolism (Savage
et al., 2007; Loscalzo, 2011; Li et al., 2017). Heat treatment
inhibited fatty acid synthesis, shown by combining a bubble
diagram and metabolic pathway enrichment. Meanwhile, three
metabolites were screened as biomarkers, namely carbazole,
purine nucleoside, and stearic acid, and these were used to cross-
validate and predict the HS and CON samples. Salicin showed a
potential therapeutic agent against LPS induced acute injury (Li
et al., 2015). In our study, the salicin was significantly increased
in the HS group (Supplementary Table 3). It suggested that the
host triggered an adapted response to counter heat stress-induced
inflammatory processes.

Intestinal metabolites are agents between the microbiota and
energy metabolism (Karl et al., 2018). Previous study have found
that heat stress could induce the increase of fatty acids (Cui et al.,
2019). The correlation analysis in this study suggested that TG
was significant negative correlation with 4-hydroxyphenylacetic
acid and positive correlation with the salicin level Interestingly,
the correlation between LDL and 4-hydroxyphenylacetic acid
and salicin level was exactly the opposite of TG. Candidatus
Arthromitus sp. SFB-mouse-Japan showed a negative correlation
with salicin and purine riboside and a positive correlation with
behenic acid. These results indicated that microbiota are involved
in the regulation of energy metabolism.
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In conclusion, this study revealed the important relationship
between intestinal microbiota structure and metabolism under
heat stress. We need not only to identify changes in the intestinal
flora structure but also to understand the correlation between the
microflora and disease under heat treatment. Our study screened
some metabolites and microbiota in the cecum of heat-stressed
mice might have potential beneficial properties. This study
provides a theoretical and experimental basis for further research
into high-temperature damage in humans and animals.
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