
Andreatta et al. eLife 2022;11:e76339. DOI: https://doi.org/10.7554/eLife.76339  1 of 25

A CD4+ T cell reference map delineates 
subtype- specific adaptation during acute 
and chronic viral infections
Massimo Andreatta1,2,3, Ariel Tjitropranoto4, Zachary Sherman4, Michael C Kelly5, 
Thomas Ciucci4,6*†, Santiago J Carmona1,2,3*†

1Department of Oncology, UNIL CHUV and Ludwig Institute for Cancer Research 
Lausanne, University of Lausanne, Lausanne, Switzerland; 2Agora Cancer Research 
Center, Lausanne, Switzerland; 3Swiss Institute of Bioinformatics, Lausanne, 
Switzerland; 4David H. Smith Center for Vaccine Biology and Immunology, 
Department of Microbiology and Immunology, University of Rochester, Rochester, 
United States; 5Single Cell Analysis Facility, Frederick National Laboratory for Cancer 
Research, Leidos Biomedical Research Inc, Frederick, United States; 6Laboratory of 
Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National 
Institutes of Health, Bethesda, United States

Abstract CD4+ T cells are critical orchestrators of immune responses against a large variety 
of pathogens, including viruses. While multiple CD4+ T cell subtypes and their key transcriptional 
regulators have been identified, there is a lack of consistent definition for CD4+ T cell transcriptional 
states. In addition, the progressive changes affecting CD4+ T cell subtypes during and after immune 
responses remain poorly defined. Using single- cell transcriptomics, we characterized the diversity 
of CD4+ T cells responding to self- resolving and chronic viral infections in mice. We built a compre-
hensive map of virus- specific CD4+ T cells and their evolution over time, and identified six major cell 
states consistently observed in acute and chronic infections. During the course of acute infections, 
T cell composition progressively changed from effector to memory states, with subtype- specific 
gene modules and kinetics. Conversely, in persistent infections T cells acquired distinct, chronicity- 
associated programs. By single- cell T cell receptor (TCR) analysis, we characterized the clonal 
structure of virus- specific CD4+ T cells across individuals. Virus- specific CD4+ T cell responses were 
essentially private across individuals and most T cells differentiated into both Tfh and Th1 subtypes 
irrespective of their TCR. Finally, we showed that our CD4+ T cell map can be used as a reference 
to accurately interpret cell states in external single- cell datasets across tissues and disease models. 
Overall, this study describes a previously unappreciated level of adaptation of the transcriptional 
states of CD4+ T cells responding to viruses and provides a new computational resource for CD4+ T 
cell analysis.

Editor's evaluation
This paper uses single- cell genomics to examine the heterogeneity of virus- specific CD4 T cells over 
time in both acute and chronic viral infection. Further, the authors build a comprehensive atlas of 
the transcriptional evolution of virus- specific CD4 T cell responses that could be used as a reference 
tool to interpret other datasets. This work characterizes how the antiviral CD4 T cell transcriptional 
landscape changes with time and will be of broad interest to those that study acute and chronic CD4 
T cell responses.
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Introduction
CD4+ T cells play a critical role in shaping immune responses against pathogens through the secretion 
of soluble mediators and direct cell interactions with other immune cell populations. The multifaceted 
ability of CD4+ T cells to orchestrate multiple layers of protection relies on their unique capacity to 
adopt diverse functional fates upon antigen encounters (Nguyen et al., 2019; Swain et al., 2012). 
Following viral infections, naive CD4+ T cells clonally expand and differentiate into effector popula-
tions supporting both cellular and humoral responses. This functional diversification of CD4+ T cell 
populations is under tight transcriptional control, ensuring the appropriate positioning and deploy-
ment of effector functions (Zhu et al., 2010). While Th1 cells, supported by the transcription factors 
Blimp1 and T- bet, regulate cellular responses in helping CD8+ T cells and innate populations through 
the secretion of INF-γ, follicular- helper CD4+ T cells (Tfh), which depend on Bcl6, promote antibody 
responses via direct cell contact with B cells and the production of cytokines like IL- 21 (Crotty, 2011; 
Laidlaw et al., 2016; Sheikh and Groom, 2021).

During the contraction phase following its initial amplification, the pool of virus- specific CD4+ T 
cells declines in both self- resolving and persistent infections. However, the nature of the infection 
greatly impacts the evolution of CD4+ T cell functions (Brooks et al., 2005; Crawford et al., 2014; 
Fahey et al., 2011). After acute viral infections, pathogen clearance is followed by the persistence 
of memory CD4+ T cell populations that acquire distinct phenotypes, gene expression and functional 
properties (Crawford et al., 2014; Hale et al., 2013; Marshall et al., 2011). Because memory popu-
lations are heterogeneous and include many subsets, including Th1- and Tfh- like subsets, measuring 
transcriptional changes occurring between the effector to memory populations remains challenging. 
In fact, in addition of Th1 and Tfh cells, memory populations are comprised of a less differentiated 
subset of Central Memory (Tcm) cells that contribute to long- term protective functions of CD4+ T 
cells (Pepper and Jenkins, 2011). Tcm cells phenotypically resemble cells present during the early 
anti- viral response and referred to as Central Memory precursors (Tcmp), raising the possibility of an 
early transcriptional imprinting that favors the emergence of long- lived memory CD4+ T cells (Ciucci 
et al., 2019; Marshall et al., 2011; Pepper et al., 2011). Yet, the nature of such program, as well as its 
overlap with that involved in Th1 and Tfh subsets, has not been elucidated. More broadly, it remains 
unclear whether a shared transcriptional module regulates memory differentiation, or whether diverse 
gene programs allowing long- term maintenance are imprinted in a subset- specific manner. In sharp 
contrast to acute settings, chronic infections do not result in such phenotypic memory transition of 
persisting cells (Brooks et al., 2005; Fahey et al., 2011). Instead, in response to sustained antigenic 
stimulation, CD4+ T cells acquire dysfunctional features, including the expression of inhibitory recep-
tors and reduced cytokine production (Brooks et al., 2005; Crawford et al., 2014). In this context, 
questions remain about how persistent infections alter the functional and transcriptional landscape of 
CD4+ T cell populations. However, because of the lack of consistent definition of virus- specific CD4+ 
T cell states across conditions and over time, the subtype- specific adaptations during infections are 
currently poorly characterized.

Although there is evidence that cell fate decisions are stochastically imprinted on T cells (Buchholz 
et al., 2016; Buchholz et al., 2013; Soon et al., 2020), other studies have shown that cell- intrinsic 
factors as well as environmental cues affect the differentiation of single naïve T cells (Cho et  al., 
2017; Tubo et al., 2016; Tubo et al., 2013). Among these factors, the interaction between the T cell 
receptor (TCR) and their cognate antigen has been shown to influence the diversification and mainte-
nance of CD4+ T cells (Cho et al., 2017; Snook et al., 2018; Tubo et al., 2013). For instance, recent 
studies showed that Th1 and Tfh differentiation are influenced by TCR usage, affinity to cognate 
peptides and the type of infection (Khatun et al., 2021; Künzli et al., 2021; Snook et al., 2018). Yet, 
we do not fully understand the extent by which the TCR repertoire impacts the early fate decision of 
CD4+ T cells responding to acute and chronic viral infections. In particular, it remains to be addressed 
whether naïve T cells with particular TCR chains are preferentially recruited during the effector phase 
and adopt specific transcriptional profiles that could skew the overall immune response.

Here, we employed single- cell RNA sequencing (scRNA- seq) coupled with single- cell TCR 
sequencing to explore the landscape of virus- specific CD4+ T cell states at different timepoints during 
acute and chronic infections. We provide evidence of both shared and subtype- specific transcriptional 
changes occurring dynamically in both types of infection. Analysis of paired scRNA- seq and scTCR- seq 
data of antigen- specific polyclonal T cells revealed that, although a fraction of the clonotypes in both 
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acute and chronic settings were significantly biased towards specific subtypes, T cell functional diver-
sification appears to be mostly independent of the expression of particular TCR chain pairs. Based 
on these results, we make available a new reference map describing virus- specific CD4+ T cell states 
– including Th1, Tfh, and Tcmp/Tcm – and their dynamic evolution over time during acute and chronic 
infection. By combining this map with a reference- projection algorithm, we provide a new compu-
tational framework that enables automated and accurate interpretation of CD4+ T cell states across 
models, conditions, and experiments.

Results
Differential phenotypic adaptation of CD4+ T cells in acute and chronic 
viral infection
To characterize the diversification of T cell populations during acute and chronic infections, we used 
two variants of the lymphocytic choriomeningitis virus (LCMV): the Armstrong and Clone 13 strains. 
Both viruses induce a strong T cell amplification early in the response, followed by the persistence of 
a small pool of virus- specific T cells at later timepoints. While the Armstrong strain results in an acute 
infection cleared within 6–8 days post infection (dpi), Clone 13 persists, leading to chronic infection 
(Ahmed et al., 1984; Crawford et al., 2014). Using these models, we sought to measure the pheno-
typic changes of virus- specific T cells following infection, both at early and late timepoints. Virus- 
specific CD4+ and CD8+ T cells were identified using MHC tetramers loaded with the LCMV- derived 
GP66 and GP33 peptides, respectively. Cells were analyzed using spectral flow cytometry with a panel 
of 21 parameters allowing high- dimensional analyses based on 14 surface markers expressed by virus- 
specific T cells (Figure 1A, Figure 1—figure supplement 1A- C).

Cytometric readouts showed that splenic virus- specific CD4+ T cells are highly heterogeneous and 
largely differ phenotypically from CD8+ T cells, both at early and late timepoints after acute and 
chronic infections (Figure 1B, Figure 1—figure supplement 1D). Interestingly, while CD4+ T cells 
responding to acute and chronic infections at early timepoints showed partial similarities, minimal 
overlap was observed at late timepoints. Additionally, CD4+ T cells differentiating in chronic settings 
appear to change less drastically over time compared to the sharp transition occurring between early 
and late timepoints after acute infection (Figure 1C). Overall, these analyses revealed a profound and 
fast- adapting phenotypic heterogeneity of CD4+ T cell populations in response to different infection 
settings.

Defining the landscape of CD4+ T cell states in acute and chronic viral 
infection
To characterize the transcriptional landscape of virus- specific CD4+ T cells and gain further insight 
into their heterogeneity and transcriptional adaptation, we conducted single- cell RNA sequencing 
(scRNA- seq) of virus- specific CD4+ T cells isolated from LCMV- infected animals at different time-
points. Virus- specific GP66:I- Ab+ were purified either 7 or 21 days after Clone 13 infection – conditions 
referred to as Early and Late Chronic. In addition, similar populations were isolated 7, 21 and >60 days 
after LCMV Armstrong infection – conditions referred to as Acute, Early and Late Memory, respec-
tively. A total of 11 samples, including two or three biological replicates per condition, were processed 
with droplet- based scRNA- seq, resulting in over 35,000 high- quality virus- specific CD4+ T cell tran-
scriptomes (Figure 2A and Supplementary file 1A- B). In addition, selected samples were used to 
measure simultaneously TCR usage and transcriptome at single- cell resolution. To generate a unified 
map of virus- specific CD4+ T cell states in acute and chronic infections, all datasets were integrated 
with STACAS, a computational tool allowing correction of batch effects while preserving relevant 
biological variability across datasets (Andreatta and Carmona, 2021a) (see Materials and methods) 
(Figure 2B). While different timepoints and types of infection (i.e. acute vs chronic) occupied different 
areas of the integrated space, biological replicates were largely covering overlapping areas of the 
map (Figure 2—figure supplement 1A), suggesting a successful data integration. By clustering the 
high- dimensional space of the integrated map, we defined six major and three minor CD4+ T cell clus-
ters that were annotated based on the expression of canonical markers previously described in this 
model. Among the six major clusters, representing >93% of the cells in the map, we identified: (i) Th1 
effector cells, expressing the highest levels of Cxcr6 and Ly6c2 (encoding Ly6C); (ii) Tfh effector cells, 
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preferentially expressing Cxcr5 and Izumo1r (encoding FR4); (iii) Central memory precursors (Tcmp) 
expressing the highest levels of Ccr7 (Figure 2C). The remaining three major clusters were identified 
as putative memory populations based on their higher expression of memory- associated genes Tcf7 
(encoding TCF1) and Il7r, corresponding to: (iv) Th1 memory (co- expressing Tcf7, Il7r, Cxcr6 and 
Ly6c2), (v) Tfh memory (co- expressing Tcf7, Il7r and Izumo1r) and (vi) Central Memory cells (Tcm), with 
the highest levels of Tcf7 and Il7r but limited expression of Th1/Tfh marker genes (Figure 2C). Consis-
tent with these annotations, Th1 memory, Tfh memory and Central Memory (Tcm) populations were 
predominantly derived from virus- specific CD4+ T cells isolated at late timepoints after acute infection 
(Figure 2—figure supplement 1A, see next section). In addition, these clusters of virus- specific CD4+ 

Figure 1. Phenotypic characterization of virus- specific CD4+ T cells by spectral flow cytometry. Spleen GP66:I- Ab+ CD4+ T cells were analyzed 7 and 
21 days after infection with LCMV Armstrong and Clone 13. (A) Schematic of experimental procedures. Uniform Manifold Approximation and Projection 
(UMAP) visualization was calculated based on the expression of 14 markers on virus- specific CD4+ T cells pooled from 5 animals. (B) Expression of 
selected markers shown on the UMAP as in (A). (C) CD4+ T cells from each condition were highlighted as contour lines on the UMAP. Experiment with 
4–5 mice per group, representative of two independent experiments. See also Figure 1—figure supplement 1 for spectral cytometry analysis including 
GP33:H2Db+ CD8+ T cells, and for surface marker panels used to characterize T cell populations.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Phenotypic characterization of virus- specific T cells.

https://doi.org/10.7554/eLife.76339
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T cells and their annotations were independently validated using gene signatures that were previously 
identified on CD4+ T cells after acute viral infection (Ciucci et al., 2019; Figure 2—figure supplement 
1B). Finally, three minor clusters corresponded to (i) Foxp3- expressing regulatory T cells (Treg), (ii) 
a Tfh- like state expressing high levels of type 1 interferons- stimulated genes (INFI- stimulated) and 
(iii) a population characterized by high levels of Eomes (Eomes- HI) (Figure 2C). These minor states 

Figure 2. Transcriptional landscape of CD4+ T cell states during infections. (A) Schematic experimental design to assess virus- specific T cell 
transcriptomes at different timepoints in acute (Armstrong) and chronic (Clone 13) LCMV infections (additional information in Supplementary file 1). 
(B) UMAP visualization of single- cell data before and after dataset integration, highlighting the samples and batches on the left and the 9 CD4+ T cell 
subtypes of the reference map on the right. (C) Expression levels of key marker genes in the 9 subtypes of the reference map. (D) Single- cell expression 
visualized in the UMAP space for key marker genes of Th1, Tfh and Tcmp/Tcm subtypes. (E) Average expression of differentially expressed genes in the 
six major subtypes of the reference map; selected genes are highlighted.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Distribution and consistency of CD4+ T cell states during infections.

https://doi.org/10.7554/eLife.76339
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were largely associated to chronic infection and will be described in a later section. All subtypes were 
present in similar proportions across biological replicates, and samples clustered by condition rather 
than by batch, further confirming a successful data integration (Figure 2—figure supplement 1D- E). 
Similar subtype proportions were confirmed by spectral cytometry (Figure 1—figure supplement 
1E).

We next explored the expression of genes involved in the function of CD4+ T cell subsets across 
major clusters. As expected, Th1 cells, both effector and memory, expressed the highest amount 
of the Th1- defining transcription factor Prdm1 (encoding Blimp1) together with Gzmb – encoding 
the cytotoxic effector molecule Granzyme B. Similarly, the Tfh- specific transcription factor Bcl6 and 
effector molecule Il21 were almost exclusively expressed in Tfh cells (Figure 2D). Interestingly, Tcmp 
and Tcm populations, which expressed the highest levels of Ccr7, Il7r and S1pr1 were characterized 
by the promiscuous expression of both Th1- associated genes such as Nkg7, Ifngr1, or Runx3, and Tfh- 
specific markers like Slamf6, Tox, or Bcl2 (Figure 2C–D, Figure 2—figure supplement 1C).

Differential gene expression analysis between the major CD4+ T cell states revealed additional 
subtype- specific genes, and showed that Th1 states (both Effector and Memory subsets) share a 
common gene module (e.g. Id2, Runx3, Gzmb), distinct to that of Tfh cells, characterized by the 
expression of Tox, Maf, and Izumo1r (Figure 2E). Although Tcmp and Tcm states are largely defined 
by their lack of Th1 and Tfh gene signatures, consistent with a more quiescent, undifferentiated state, 
they are characterized by the shared expression of genes such as Ccr7, Klf2, and S1pr1. The full list of 
CD4+ T cell subtype- specific signatures is available in Supplementary file 2, and gene expression in 
this dataset can be explored online at https://spica.unil.ch/refs/viral-CD4-T.

Subtype-specific evolution of CD4+ T cell states during acute infection
To further describe CD4+ T cell states as they adapt during the course of an acute, self- resolving infec-
tion that generates protective memory T cells, we investigated subtype composition and subtype- 
specific transcriptional changes over time. First, from the effector phase (7 dpi) to the early memory 
phase (21 dpi), we observed a dramatic shift from Th1 effector, Tcmp and Tfh effector to Th1 memory, 
Tcm and Tfh memory (Figure 3A), concomitantly associated with a reduction in the absolute number 
of T cells (Figure 2—figure supplement 1F- G). This was consistent with the fact that major functional 
and phenotypic changes occurs during and after the contraction phase 12–20 days following infection 
(Marshall et al., 2011; Pepper and Jenkins, 2011).

To further investigate the transcriptional changes underlying this transition, we sought to iden-
tify gene expression differences among matching cell states during the acute response and early 
memory phase. We also interrogated potential changes between the early and late memory time-
points resulting in the identification of 196 genes differentially expressed in a time- and state- specific 
manner in response to acute infection (Figure 3—figure supplement 1A, Supplementary file 2). Our 
analyses revealed that the transition of Th1 and Tfh subtypes from effector phase to memory phase 
were accompanied by the dampening of effector function molecules such as Gzmb (Th1) and Il21 
(Tfh), and by the acquisition of Il7r expression at the memory phase (Figure 3B). However, the down-
regulation of effector programs, especially for the Tfh state, was more pronounced in late memory 
phase compared to early memory, suggesting that memory CD4+ T cells undergo continued tran-
scriptional remodeling after the contraction phase. In contrast, the central memory- type cells [Tcmp 
and Tcm clusters, referred to as Tcm(p)] readily downregulated most effector- associated genes at the 
early memory phase. Similarly, the Tcm(p) state more quickly upregulated genes associated with the 
function, survival or trafficking of memory cells like Ccr7, Il7r, Bcl2, or Klf6 compared to Th1 and Tfh 
states. This early divergence and stable expression of memory genes is compatible with the possibility 
that Tcmp represent a pool of circulatory cells with an increased fitness to develop into long- lived 
memory cells.

These analyses highlight subtype- specific transcriptional changes from effector to memory states. 
In particular, they suggest that, while Tcmp are poised to transition to memory, Th1 and Tfh states do 
so with different kinetics and using divergent transcriptional modules.

Subtype-specific adaptation of CD4+ T cell states to chronic infection
We next investigated the adaptation of CD4+ T cell transcriptional states to chronic infection. 
Compared to the acute setting, we did not observe a sharp transition to memory states at day 21, and 

https://doi.org/10.7554/eLife.76339
https://spica.unil.ch/refs/viral-CD4-T


 Tools and resources      Immunology and Inflammation

Andreatta et al. eLife 2022;11:e76339. DOI: https://doi.org/10.7554/eLife.76339  7 of 25

Figure 3. Subset- specific adaptation of CD4+ T cell states in chronic and acute infections. (A,C) Distribution of T cell states at different timepoints after 
acute and chronic infections. In the UMAP plots, contour lines indicate the density of T cells for each type of infection and timepoint; the barplots in the 
bottom row indicate the percentage of cells in each subtype in the indicated condition. (B,D) Normalized average expression during acute and chronic 
infections among Th1, Tfh and Tcm(p) subtypes. Selected genes from differentially expressed genes shown in Figure 3—figure supplement 1A,C. 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.76339
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most virus- specific CD4+ T cells matched effector subtypes (Figure 3C). Although the proportion of 
the Th1 subtype remained similar at early timepoints between acute and chronic condition, there was 
a reduction in the Th1 effector subsets at late chronic stages. In addition, we observed a larger pool of 
Tfh cells both at early and late chronic timepoints compared to acute settings (Figure 3C), consistent 
with previous studies highlighting a Tfh bias during Clone 13 infection (Brooks et al., 2005; Fahey 
et al., 2011). We also noted that the fraction of Tcmp cells was lower in chronic infection, both at early 
and late stages, compared to the CD4+ T cells in acute infection. Indeed, the proportion of Tcmp and 
Tcm cells, which can be identified by flow cytometry based on CCR7 expression, was greatly reduced 
among virus- specific CD4+ T cells in chronic settings compared to acute infection (Figure 3—figure 
supplement 1B).

Next, we aimed to assess the transcriptional changes affecting the differentiation and persistence 
of each subtype in responses to chronicity. To this end, we measured the differences across subtypes 
at an early (7 dpi) and late phase (21 dpi) of the chronic response. We identified 214 genes differ-
entially expressed between Acute vs. Early Chronic, Early vs. Late Chronic and Early memory vs. 
Late Chronic timepoints (Figure 3—figure supplement 1C, Supplementary file 2). Importantly, most 
changes observed at the late chronic phase were not present at the early chronic stage, suggesting 
that they are not merely attributed to changes in viral replication or host responses to viral variants. We 
observed that late chronicity was associated with the upregulation of a shared gene module, including 
Nr4a family members (Nr4a1, Nr4a2, Nr4a3) and Tox in all subtypes (Figure 3D, Figure 3—figure 
supplement 1C), indicative of the strong TCR engagement in response to persistent antigen (Seo 
et al., 2019). Similarly, the expression of inhibitory receptors such as Pdcd1 (encoding PD- 1) and Lag3 
was also detected across states in late chronic samples. Late timepoints were also characterized by the 
downregulation of effector modules, including gene associated with cytotoxic function, such as Gzmb 
and Ctsw (encoding Cathepsin W) in Th1 clusters. In contrast, cytokine Il21 as well as transcription 
factor Maf remained highly expressed in Tfh clusters, suggesting that, unlike in Th1, effector functions 
in Tfh cells are not dampened at late chronic phase. In fact, Il21 expression appears to increase at late 
timepoints in both Tfh and Th1 subtypes (Figure 3D). In contrast to what was observed in response to 
acute infection, Tcm(p) minimally diverged from other states, as the expression of inhibitory receptors 
and transcription factors associated with T cell dysfunction such as Ikzf2 (encoding Helios), Bhlhe40, 
or Gata3 (Crawford et al., 2014; Doering et al., 2012; Singer et al., 2016) were equally upregulated 
in all states in chronic settings. However, unlike other subtypes, Tcm(p) maintained expression of Il7r, 
Ccr7, and S1rp1 (Figure 3D, Figure 3—figure supplement 1C).

In addition to the six main CD4+ T cell states, we detected two distinct states that were almost 
exclusively present in response to chronic infection: the IFNI- stimulated state and the Eomes- HI state 
(Figure 3AC). The Eomes- HI state was specifically observed at late stages of chronic infection, consis-
tent with previous studies (Crawford et al., 2014; Lewis et al., 2016) and flow cytometry analyses 
(Figure 3E and Figure 3—figure supplement 1D). Because this cluster was characterized by the 
co- expression of Eomes, Lag3 and Xcl1 (Figure 3—figure supplement 1E), three functional targets 
repressed by the CD4+ T cell- defining transcription factor ThPOK (Ciucci et al., 2019; Taniuchi, 2018), 
we sought to determine whether its expression was altered in this subset. Indeed, we found that 
ThPOK protein expression was reduced specifically in EOMES+ virus- specific CD4+ T cells late during 
chronic infection (Figure 3F). In addition, this subset displays specific expression of Crtam and Gzmk 
(Figure 3—figure supplement 1E) and is compatible with the CD4+ T cell subtype with high- cytotoxic 
potential (Cenerenti et al., 2022).

In summary, these analyses showed that persistent antigen exposure during chronic infections 
deeply alters CD4+ T cell differentiation by imprinting both common and subtype- specific transcrip-
tional changes associated with chronicity.

(E,F) Animal were infected with LCMV Armstrong (Acute) or Clone 13 (Chronic) and analyzed at the indicated timepoints (Early: 7dpi; Late: 21dpi). (E) 
Graph shows the percentage of Eomes+ cells among spleen GP66:I- Ab+T cells. (F) Plot (left) shows the intracellular expression of Eomes and Thpok on 
spleen GP66:I- Ab+T cells analyzed 21 dpi after LCMV Clone 13 infection. Graph (right) shows Thpok mean fluorescent intensity (gMFI) in the indicated 
population. (E,F) are from one experiment with >5 mice per group, representative of 2 independent experiments.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Adaptation of CD4+ T cell states in chronic and acute infections.

Figure 3 continued
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Clonotype-fate relationships of virus-specific CD4+ T cells in acute and 
chronic infections
Because cell- intrinsic factors, notably the expression of TCR, have been shown to impact the differ-
entiation of virus- specific T cells (Khatun et al., 2021; Künzli et al., 2021; Snook et al., 2018), we 
sought to determine whether CD4+ T cell states are influenced by the expression of particular sets 
of TCR chains. To describe the clonal relationship between CD4+ T cell states, we analyzed the TCR 
usage of all T cells for which a productive pair of TCRα/TCRβ sequences was detected (65% of all 
single cells). To limit potential confounding factors related to the survival or expansion of clonotypes 
over time, we restricted our analyses to early timepoints (i.e. 7 dpi) after acute or chronic infections. 
We observed a consistent pattern of clonal expansion across different animals, with large clonotypes 
(13–31 clones with >20 cells per animal) occupying roughly half of the clonal space in all samples, both 
for acute and early chronic settings (Figure 4A). Next, we interrogated potential repertoire overlaps 
between animals considering the pair of nucleotide and amino- acid sequences of the CDR3 regions. 
Strikingly, this analysis showed that less than 3% of the clonotypes (7 out of 795 CDR3 nucleotide 
pairs; 20 out of 779 CDR3 protein pairs) were observed in two or more animals, when considering 
clones with 3 cells or more (Figure 4B). Similar results were obtained when all clones, including single-
tons, were included (Figure 4—figure supplement 1A). This suggests that the TCR repertoire of 
virus- specific CD4+ T cells is largely private, that is subject- specific, even when considering a single 
peptide specificity and animals with the same genetic background.

Next, we explored the potential relationship between TCR usage and the emergence of specific 
T cell states at early infection timepoints. To this end, we defined a ‘clonotype bias’ metric to quan-
tify how individual clones are skewed toward a specific subtype (see Materials and methods). At its 
extreme values, a clonotype bias of 1 indicates that a clonotype is composed uniquely of cells from 
the same subtype, and a clonotype bias of zero corresponds to a clonotype that matches exactly 
the background subtype distribution of the whole sample. Because small clonotypes are statisti-
cally more likely to show high clonotype bias compared to large clonotypes, we only considered 
expanded clonotypes with 10 or more cells, and corrected for clonotype size by generating expected 
background distributions by random permutation (Figure 4—figure supplement 1B, see Materials 
and methods). This analysis revealed that most clonotypes were largely unbiased, both in acute and 
chronic infections, giving rise to multiple CD4+ T cell states (Figure 4C–D), consistent with previous 
studies in acute infection (Khatun et al., 2021). However, we observed that a small number of clono-
types exhibited significant functional bias (Z- score >5), that is they were preferentially enriched in 
one specific subtype (Figure 4C). In the case of acute infection, 9% of expanded clonotypes (15 out 
of 165) exhibited a functional bias toward one subtype. Similarly, 13% of expanded clonotypes in 
chronic infection (11 out of 85) showed a significant clonotype bias (Figure 4C). Interestingly, in acute 
infection 14 out of 15 biased clonotypes were skewed toward either the Tcmp or Th1 states (8 and 6 
respectively), while in chronic infection all 11 biased clonotypes showed functional bias toward either 
Th1 or Tfh states (8 and 3, respectively) (Figure 4C–E). We did not observe any robust CDR3 motif 
associated with biased clonotypes, and previously reported fate- biased CDR3 motifs (Khatun et al., 
2021) were not predictive of clonotype lineage on our data (Figure 4—figure supplement 1C- D and 
Materials and methods).

These combined analyses of the TCR repertoire and transcriptional landscape reveal that the vast 
majority of the clonotypes can differentiate into multiple states with minimal functional skewing. 
However, a minority of these clonotypes are significantly biased toward a particular functional state, 
and this bias appears to be influenced by the type of infection.

Reference map projection to dissect the effect of genetic and 
therapeutic perturbations
A cell atlas is particularly useful when it serves as a ‘reference’ to compare and interpret new data. We 
have recently proposed a computational method, ProjecTILs, that allows analyzing single- cell data-
sets by projection into a reference atlas (Andreatta et al., 2021c). Using this approach, we sought to 
apply our CD4+ T cell reference map for the interpretation of CD4+ T cell states in external datasets 
(Figure 5A).

To verify the accuracy of data projection into our reference map, we analyzed an independent 
scRNA- seq dataset of LCMV- specific CD4+ T cells isolated at 7 and 30 days post- infection with LCMV 
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Armstrong (Ciucci et al., 2019). Validating both the accuracy of the map and of the projection algo-
rithm, cells from day 7 were projected into the Tcmp and effector states, while cells from day 30 were 
largely projected into the memory states (Figure 5B). Importantly, the expression profile of key marker 
genes for the projected samples matched closely to the expression profile of the reference map in all 
major cell subtypes (Figure 5C).

Figure 4. Clonal structure of virus- specific CD4+ T cells and clonotype- fate relationship. (A) Fraction of clonal space occupied by clonotypes with 
different levels of expansion. For each sample (three replicates for Acute, two replicates for Early Chronic), the plot indicates the number of single cells 
that belong to clonotypes in one of the five classes of expansion. (B) Number of clones with identical CDR3 nucleotides or amino acid sequence pairs 
between individual samples among clonotypes with ≥3 cells. (C) Clonotype bias analysis for acute and chronic infection samples. Plots show clonotype 
bias vs. clonal size for all clones with >10 cells. Clonotypes are colored by predominant T cell subtype (left) or by Z- score of the clonotype functional bias 
(right). Red line highlights the null distribution (background distribution) for each condition. (D, E) Distribution of cells over the reference map for the (D) 
four most expanded and (E) four most biased clonotypes in acute and chronic infections. The CDR3 alpha and beta sequences and the clonotype size 
are indicated for each clonotype.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Repertoire overlap of virus- specific CD4+ T cells and clonotype bias.

https://doi.org/10.7554/eLife.76339
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Figure 5. Interpretation of CD4+ T cell states in external datasets by projection into the reference map. (A) Independent scRNA- seq datasets can be 
projected into the CD4+ T cell reference map using the ProjecTILs algorithm and interpreted in the context of the space and cell states of the reference. 
(B) UMAP embeddings for the external data by Ciucci et al., 2019 at 7 and 30 days after acute LCMV infection projected into the reference map. 
Contour lines indicate the density of projected cells. (C) Radar plots showing average expression profiles of a panel of CD4+ T cell marker genes, for 

Figure 5 continued on next page
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For additional validation, we re- analyzed LCMV- specific CD4+ T cells isolated 10 days post- infection 
with LCMV Armstrong (Khatun et al., 2021). Dataset projection into our CD4+ T cell reference map 
revealed that the majority of these virus- specific T cells were found in the Th1 Effector, Tfh Effector, 
or Tcmp states (Figure 5—figure supplement 1A), similarly to subtype compositions we observed 
at day 7 in acute infection (Figure 3A). This is consistent with the notion that transition to memory 
phenotypes occurs later, at day 12–20 post- infection (Marshall et al., 2011). Importantly, very similar 
subtype distributions were observed across different mice, highlighting the robustness of the projec-
tion algorithm across multiple biological replicates (Figure 5—figure supplement 1B). Based on the 
same dataset, we verified that, while cycling cells tend to cluster together in unsupervised analyses 
irrespective of their subtype, they are correctly classified by reference projection (Figure 5—figure 
supplement 1C- G and methods). We also confirmed that data projection is robust to sequencing 
depth, with consistent subtype annotation with as low as one third of typical sequencing depths 
(Figure 5—figure supplement 2 and methods).

We also tested the robustness of our projection approach in detecting subtle variations across 
biologically similar samples. To this end, we took advantage of transcriptomic datasets of LCMV- 
specific CD4+ T cells isolated at memory timepoints (day 35) after in vivo administration of an inhibitor 
blocking NAD- induced cell death (NICD) (Künzli et al., 2020). As expected for a late timepoint, in 
both the control and treated conditions most cells were projected into the memory clusters (Tcm, 
Th1 memory, and Tfh memory) (Figure 5—figure supplement 1H). However, the NICD- protector- 
treated sample showed a~twofold increase of Tfh effector and Tfh memory cells compared to control 
(Figure 5—figure supplement 1I). This is consistent with Tfh cells being more susceptible to NICD 
than other CD4+ T cell subtypes, and that in vivo NICD- blockade can enhance the persistence of Tfh 
populations after infection (Künzli et al., 2020).

Having validated the accuracy and robustness of reference map projections, we sought to apply 
the reference map to interpret the effect of genetic and pharmacological perturbations. Transcription 
factors Bcl6 and Blimp1 (encoded by the Prdm1 gene) have antagonistic roles in driving CD4+ T cell 
differentiation into Tfh or Th1 lineages, respectively (Ciucci et al., 2022). Projection of scRNA- seq data 
from genetically altered virus- specific CD4+ T cells isolated 7 days after LCMV acute infection (Ciucci 
et al., 2022) showed that Bcl6- deficient cells almost exclusively acquired a Th1 state (Th1 Effector or 
Th1 Memory), while Blimp1- deficient cells were dominated by Tfh and Tcmp states (Figure 5D). These 
results are in line with the known role of Bcl6 in driving Tfh and memory differentiation, with the role 
of Blimp1 in promoting Th1 functions (Crotty, 2011), and highlight the utility of our tool to describe 
the effect of genetic perturbations.

Next, we aimed at using our reference map to interpret the effect of immunotherapies. To this end, 
we projected scRNA- seq data of virus- specific CD4+ T cells isolated from mice chronically infected 
with LMCV, after treatment with an anti- PD- L1 antibody (Snell et al., 2021). While control samples 
showed a similar subtype distribution to our late chronic samples (Figure 5E, Figure 3C), anti- PD- L1 
treatment increased the relative proportion of Th1 effectors (Figure 5E). Expression profiles for all 
major subtypes in this dataset largely matched those of our reference (Figure 5—figure supplement 
3B), including the expression of exhaustion markers, which was similar to chronic infection samples 
of the reference map (Figure 5—figure supplement 3C). Notably, Th1 effector cells after anti- PD- L1 
treatment upregulated a Th1- associated gene module that includes Klrd1, Plac8, Ctla2a, and Ly6c2 
(Figure 5—figure supplement 3D), confirming the findings by Snell et al., 2021.

the projected cells from Ciucci et al., 2019 (blue and red) compared to the reference map profiles (black) grouped by predicted subtype. (D) UMAP 
embeddings for projected scRNA- seq data of Bcl6- and Prdm1- deficient virus- specific CD4+ T cells isolated 7 days after acute infection with LCMV 
Armstrong (data from Ciucci et al., 2022). (E) UMAP embeddings for projected scRNA- seq data of virus- specific CD4+ T cells isolated 33 days after 
chronic infection with LCMV Clone13, in animals treated with anti- PDL1 or isotype control (data from Snell et al., 2021). Barplots in the bottom row 
indicate the percentage of cells projected in each reference subtype.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Reference- based classification of independent datasets.

Figure supplement 2. Effect of sequencing depth on reference- based annotation.

Figure supplement 3. Reference- based analysis of CD4+ T cells in late chronic infection.

Figure 5 continued
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Overall, these analyses demonstrate that our map and projection method can successfully describe 
biologically relevant alterations in the subtype distribution and transcriptional programs following 
diverse perturbations.

Diversity of virus-specific CD4+ T cells across tissues
To investigate whether our reference map can be useful to describe the subtype composition and 
transcriptional landscape of CD4+ T cells from other biological models and tissues, we projected 
influenza- specific CD4+ T cells isolated from lungs and draining lymph nodes (LN) at different time-
points after infection (Swarnalekha et al., 2021). Data projection revealed that, while lymphoid tissue 
was largely dominated by Tfh subtypes, lung samples were enriched in Th1 cells, with a progressive 
accumulation of Tfh cells at later timepoints (Figure 6A–C). These results recapitulated recent obser-
vations into the delayed development of tissue- resident CD4+ T cells with Tfh characteristics in the 
lungs after influenza infection (Son et al., 2021; Swarnalekha et al., 2021). In addition to changes in 
cell subtype composition, we evaluated transcriptional differences between tissues for each subtype. 
Consistently with the findings by Swarnalekha et al., we observed that, compared to LNs, all the most 
abundant T cell subtypes in the lung display a tissue- specific gene module, which includes Crem, 
Tnfrsf4, H3f3b, Fth1, Ifngr1, Vps37b, Sub1, and Arpc3 (Figure 6D).

We next projected LCMV- specific CD4+ T cells isolated from liver and spleen at day 37 after acute 
infection from the study by Künzli et al., 2020. As previously reported, liver- resident CD4+ T cells 
were strongly enriched in Th1 subtypes compared to spleen (Künzli et al., 2020; Figure 6E). Inter-
estingly, the tissue- specific gene module derived from lung in the context of influenza infection was 
also significantly upregulated by all subtypes of LCMV- specific CD4+ T cells in the liver, compared to 
those from spleen (Figure 6F). Altogether, these results suggest that subtype- defining transcriptional 
programs are preserved across tissues, and that these can be exploited for classification by reference 
map projection. Moreover, they indicate that different subtypes can use the same gene programs to 
adapt to different tissues, for instance to acquire residency capacity in non- lymphoid tissue.

Reference map projection to explore CD4+ T cell diversity beyond viral 
infections
Lastly, we investigated how a transcriptional map of CD4+ T cells that developed in response to viral 
infections could help interpreting the heterogeneity of CD4+ T cells differentiating in a non- infectious 
context. To this end, we isolated and performed scRNA- seq of tumor- specific CD4+ T cells from tumor 
and draining lymph nodes (dLN) of animals inoculated with a colon carcinoma expressing the LCMV- 
derived GP protein (Magen et al., 2019; Supplementary file 1). Projection of these data into the 
reference map showed that most tumor- specific CD4+ T cells in the dLN corresponded to Tfh states 
(Figure 7A–B), similarly to virus- specific cells in the LN of infected animals (Figure 6A–B). In contrast 
to viral infection, in tumor- draining LN we observed a sizable fraction (~10%) of Treg among antigen- 
specific CD4+ T cells (Figure  7A–B). Moreover, tumor- infiltrating lymphocytes (TILs) were largely 
projected into the Th1 effector (40–50%) and Treg (~30%) reference map states (Figure 7A–B).

Next, we examined each subtype separately. While the gene profile of tumor- specific Tfh were 
consistent with those of the viral reference, tumor- specific T cells projected into the Th1 effector state 
seemed to diverge (Figure 7C). Indeed, re- clustering and re- calculation of UMAP embeddings (now 
including both the virus- specific and the tumor- specific T cells) revealed that the T helper cells from the 
tumor formed a separate cluster (Figure 7D). Compared to virus- specific Th1 cells, this tumor- specific 
CD4+ T cell state differentially expressed genes associated with Th2 cells, including Igfbp7, Ccl1, Ccr8, 
and Il13, and downregulated Th1- associated genes, including Ccl5 and Ly6c2 (Figure  7E–F). This 
suggests that CD4+ T cells acquire distinct effector programs in cancer and infection.

While reference maps aim at being as comprehensive as possible, it is possible that new data-
sets contain novel states that are not represented in the reference, especially when used in different 
diseases models. In these cases, the user is encouraged to make use of all the analytic tools we provide 
with the ProjecTILs package (see Materials and methods) to evaluate the degree of correspondence 
between reference and query, as we illustrated in the case of tumor- specific T cells (Figure 7C–E). 
These analyses demonstrate the feasibility of using a reference map to describe cell diversity beyond 
the states already present in the map, and as a strategy to expand references to incorporate novel, 
unrepresented cell states.

https://doi.org/10.7554/eLife.76339


 Tools and resources      Immunology and Inflammation

Andreatta et al. eLife 2022;11:e76339. DOI: https://doi.org/10.7554/eLife.76339  14 of 25

Figure 6. Diversity of virus- specific CD4+ T cells across tissues. (A) Reference projection of influenza- specific CD4+ T cells isolated from draining lymph 
nodes and lungs at different timepoints after infection (Swarnalekha et al., 2021). Black contour lines represent density of cells over the reference 
UMAP embeddings. (B) Summary of subtype composition (percentage of total cells) for each of the six samples in this study. (C) Fold- change of cell 
subtype proportions between lung and lymph node at day 30 p.i. (D) Differentially expressed genes for select subtypes between lung and lymph node 
at day 30 p.i. The genes consistently found in all three comparisons (hereby ‘lung residency signature’) are: Crem, Tnfrsf4, H3f3b, Fth1, Ifngr1, Vps37b, 
Sub1, and Arpc3 (p- values from Wilcoxon test). (E) Reference projection of LCMV- specific CD4+ T cells from liver and spleen at day 37 p.i. (Künzli et al., 
2020). (F) UCell scores on spleen and liver samples for the “lung residency signature” learned from CD4+ T cells in influenza infection (p- values from 
Wilcoxon test).
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Discussion
CD4+ T cells orchestrate immune responses to pathogens and critically support protection conferred 
by vaccination. However, the phenotypic and functional plasticity of CD4+ T cells has hindered a robust, 
unbiased delineation of pathogen- specific T cell subtypes. Although the precise characterization of T 
cell transcriptional states is fundamental toward understanding the dynamics of immune responses, 
the subtype- specific changes occurring over time in response to acute and chronic infections remain 

Figure 7. Projection of tumor- specific CD4+ T cells into the reference viral map. (A) Reference projection of tumor- specific (GP66:I- Ab+) CD4+ T cells 
isolated from the tumors (TIL) or draining lymph nodes (LN) of animals inoculated with MC38- GP tumor. Black points and contour lines represent 
projected cells and their density over the reference UMAP embeddings. (B) Subtype composition as percentage of total cells for each sample. (C) Radar 
plots showing average expression profiles of a panel of CD4+ T cell marker genes, for the projected tumor- specific CD4+ T cells from the indicated 
organs compared to the reference map profiles (black). (D) Re- calculated UMAP plot generated after merging virus- specific T cell data (reference map) 
with tumor- specific T cell data (projected data). Non- Treg, non- Tfh tumor- infiltrating CD4+ T lymphocytes (TILs) emerge as a distinct cluster (‘Tumoral_
Th’). (E) Differentially expressed genes between virus- specific T helpers (Th1 Effector) and tumor- infiltrating T helpers (‘Tumoral_Th’); p- values from 
Wilcoxon test. (F) Expression of genes associated with Th1 or Th2 functions in the indicated cell subtypes (log- normalized UMI counts).
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poorly understood. In recent years, scRNA- seq has enabled unbiased interrogation of T cell tran-
scriptional diversity at the single- cell level. However, definition of T cell subtypes and states remains 
subjective and inconsistent across studies. We have previously demonstrated that reference projec-
tion is a scalable computational approach for robust and consistent single- cell data analysis, provided 
a reference cell map (Andreatta et al., 2021c).

In this work, we aimed at providing a reference map of the transcriptional and clonal landscape 
of virus- specific CD4+ T cells in acute and chronic infections. To this end, we generated a scRNA- seq 
dataset of >35,000 high- quality virus- specific polyclonal CD4+ T cells from infected mice in multiple 
timepoints throughout LCMV chronic or acute infections. One key advantage of this model is that it 
allowed us to explore T cell transcriptional diversity and clonality in both acute and chronic settings 
using a single antigen- specificity (GP66:I- Ab+) and to include biological replicates for every condi-
tion and timepoint. Combined with the projection algorithm ProjecTILs, our new reference map 
enabled robust and consistent interpretation of external CD4+ T cell single- cell transcriptomics data 
from multiple tissues, conditions, and biological models, providing a new powerful resource for the 
community.

We also presented new insights into the transcriptional adaptation of virus- specific CD4+ T cell 
populations over time and across conditions. Our analyses during acute infection highlighted that, 
although the major gene expression changes occur at the end of the initial proliferative burst, early 
memory CD4+ T cells that survive the contraction phase undergo continued transcriptional remod-
eling at later timepoints, similarly to late changes at play in CD8+ and NK T cells memory development 
(Chang et al., 2014; Lau et al., 2018; Milner et al., 2020). However, CD4+ T cell subsets undergo 
memory transition in a divergent manner, where each subtype acquires memory features with different 
kinetics and using non- overlapping transcriptional modules. Similar to the acquisition of the memory 
program in CD8+ T cells, Th1 memory differentiation is characterized by a dampening of effector 
functions accompanied by the upregulation of molecules associated with their long- term survival. In 
contrast, the transition of effector Tfh cells to memory states appears to be delayed, as molecules 
associated with Tfh function such as IL- 21 or ICOS remain expressed in early memory Tfh cells, and 
their expression only decreases at later timepoints. This delayed transition into resting memory could 
be associated with differential and prolonged antigen exposure of Tfh within the germinal centers 
compared to Th1 cells (Künzli et al., 2020). Interestingly, the transition to the Tcm state diverges from 
both Th1 and Tfh. In fact, most memory- associated features like the expression of Ccr7, Il7r, or Bcl2 
appear quickly at the early memory phase or are already present in Tcmp cells at the acute phase of 
the response. This observation is in line with the concept that Tcmp cells already express a large frac-
tion of memory- associated genes allowing for their survival and homing to lymphoid organs. Thus, it 
is possible that most Tcm derived mainly from Tcmp cells through the acquisition of a transcriptional 
state poised for memory differentiation, similar to memory- precursors in CD8+ T cell populations 
(Joshi et al., 2007; Kaech et al., 2003).

During chronic infection, similar state- specific changes occur in CD4+ T cell subtypes. In addition 
to a shared transcriptional module upregulated in all subsets, Th1 and Tfh states differ in their adap-
tation to chronic antigen stimulation. Imprinting of persistent antigen exposure on Th1 cells results in 
a reduction of effector function characterized by the repression of effector molecules like granzymes, 
reminiscent of CD8+ T cell function dampening in chronic infection and cancer (Crawford et al., 2014; 
Singer et al., 2016). In contrast, Tfh effector functions remain unaffected at the chronic phase of the 
response. While this could be related to the strong Tfh bias observed in chronic infections (Fahey 
et al., 2011), we also observed in Th1 subsets features typically associated with Tfh cells, including 
the expression of IL- 21. Because IL- 21 is critical to limit T cell dysfunction during chronic infections 
(Elsaesser et al., 2009; Fröhlich et al., 2009; Yi et al., 2009), it is possible that compensatory mech-
anisms enforce its expression in non- Tfh subsets. Alternatively, the ‘boundaries’ between CD4+ T cells 
states may be less easily delineated during chronic infection. In line with this idea, our analyses reveal 
that during chronic infection, the accumulation of Eomes+ virus- specific CD4+ T cells is accompanied 
by the downregulation of the CD4+ T cell- defining factor Thpok. Similar to ‘redirected’ CD4+ T cells 
in both human and mouse (Mucida et al., 2013; Serroukh et al., 2018), this CD4+ T cell subset is 
characterized by the upregulation of targets actively repressed by Thpok, including the transcrip-
tion factor Eomes and genes associated with cytotoxic activity (Ciucci et al., 2019; Vacchio et al., 
2019). While the downregulation of Thpok in CD4+ T cells can be influenced by the cytokine milieu 
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(Cervantes- Barragan et al., 2017; Reis et al., 2014), it is important to note that the Eomes+ Thpoklow 
CD4+ T cell population appears to be limited to chronic settings, including in responses to the gut 
microbiota (Cervantes- Barragan et al., 2017; Mucida et al., 2013).

Although we have focused on LCMV viral infection, this study represents the first step into building 
a more comprehensive reference map of the transcriptional landscape supporting the functional 
heterogeneity of CD4+ T cells across tissues and beyond viral infections. In fact, we have shown that 
unrepresented transcriptional states (e.g. tumoral Th cells) and programs (e.g. adaptation to non- 
lymphoid tissue) can be interpreted in the context of the reference map, suggesting a strategy where 
reference maps can evolve to incorporate novel cell states. We provide user- friendly computational 
resources for investigators to explore the new CD4+ T cell map and to analyze external datasets in the 
context of this reference. The virus- specific CD4+ T cell reference map developed in this study can be 
explored within the SPICA portal at https://spica.unil.ch/refs/viral-CD4-T, where users can compare 
the expression of genes of interest in individual cell subtypes and across the reference space. SPICA 
also hosts interactive analyses for the datasets described above and for several others (https://spica. 
unil.ch/projects). Finally, researchers can project their own scRNA- seq data through the SPICA web 
interface, or by using our R package ProjecTILs available at https://github.com/carmonalab/ProjecTILs 
(Carmona and Andreatta, 2022).

Materials and methods
Mice, virus, and infections
C57BL/6Ncr were infected by intra- peritoneal injection of 2 × 105 pfu of LCMV Armstrong or intra-
venously with 2 × 106 pfu of LCMV Clone 13. Viral stocks were prepared and titrated as previously 
described (Ciucci et al., 2019; Dangi et al., 2020).

Antibodies
Antibodies for the following specificities were purchased either from Becton- Dickinson Pharmingen, 
BioLegend or ThermoFisher: CD4 (GK1.5), CD8α (53- 6- 7), CD5 (53–7.3), B220 (RA3- 6B2), CD44 (IM7), 
IL- 7Ra (A7R34), CCR7 (4B12), CXCR5 (SPRCL5), CXCR6 (SA051D1), PSGL1 (2PH1), Ly6C (HK1.4), 
CD27 (LG/3A10), FR4 (12A5), Thpok (T43- 94), Eomes (Dan11mag), CD69 (H1.2F3), LAG3 (C9B7W), 
Tim3 (RMT3- 23), KLRG1 (2F1), PD1 (29 F.1A12), CX3CR1 (SA011F11). MHC tetramers loaded with the 
LCMV GP66 or GP33 peptides were obtained from the NIH Tetramer Core Facility.

Spleen cell preparation and staining
Spleen cells were prepared and stained as previously described (Ciucci et al., 2019). Surface staining 
with GP66:I- Ab tetramer and for CCR7 or CXCR5 was performed at 37 °C for 1 hr prior to staining 
with antibodies for other cell surface markers. Intracellular stainings were performed as previously 
described using the Transcription Factor Staining Buffer (ThermoFisher) (Chopp et al., 2020). Data 
was acquired on Aurora spectral flow cytometer (Cytek) and analyzed with FlowJo V10.8 software 
(TreeStar). Dead cells and doublets were excluded by DAPI or LiveDead staining (Invitrogen) and 
forward scatter height by width gating. Purification of lymphocytes by cell sorting was performed on 
a FACS Fusion and FACS Aria (BD Biosciences).

Tumor model and cell preparation
MC38 colon cancer carcinoma cell line expressing the LCMV- derived GP protein was kindly provided by 
R. Bosselut at the National Cancer Institute, NIH, and cultured and inoculated as previously described 
(Magen et al., 2019). The cell line was tested negative for Mycoplasma by PCR. The cell line is not 
part of the commonly misidentified cell lines of the International Cell Line Authentication Committee. 
2 weeks following subcutaneously injection, tumor and draining lymph nodes were harvested and 
processed as previously described (Magen et al., 2019).

Single-cell RNA sequencing
GP66:I- Ab+ T cells were sorted from LCMV infected or tumor- bearing animals, loaded onto the Chro-
mium platform (10 X Genomics) to generate cDNAs carrying cell- and transcript- specific barcodes 
that were used to construct sequencing libraries using the Chromium Single Cell 5′ or 3’ Library & Gel 
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Bead Kit according to the manufacturer instructions. For pooled captures, two- cell populations were 
sorted and barcoded separately with TotalSeq antibodies (BioLegend) before mixing and cell captures 
(Supplementary file 1). Libraries were sequenced on multiple runs of Illumina NextSeq or Novaseq 
using paired- end reads to reach a sequencing saturation of 60–90%, resulting in at least 2–9 × 104 
reads/cell. Single- cell sequencing files were processed, and count matrixes extracted using the Cell 
Ranger Single Cell Software Suite (10 X Genomics).

scRNA-seq and scTCR-seq data processing and quality control
Single- cell transcriptomes and single- cell TCR sequences were mapped and combined using the 
combineTCR function from scRepertoire (Borcherding et al., 2020). We performed quality control 
on the single- cell data using the following criteria: number of detected genes >700; number of UMIs 
>1500 and<15,000; percentage of ribosomal genes <50 and percentage of mitochondrial genes <10. 
For all these parameters, we additionally removed all extreme outlier cells outside the 1st and 99th 
percentile in each sample. In order to filter out potential contaminants and experimental artifacts, we 
applied the UCell package (Andreatta and Carmona, 2021b) to evaluate a panel of signatures for 
several common immune and non- immune cell types. This resulted in high- quality transcriptomes for 
35,488 single cells from 11 samples, covering acute and chronic infections at three different timepoints.

scRNA-seq data integration
For the construction of the CD4+ T cell reference map, datasets were downsampled to balance the 
contribution from different types of infection and timepoint. To this end, a maximum of 5000 cells 
were randomly selected for each of the 5 subsets: acute day 7, acute day 21, acute day 60, chronic 
day 7 and chronic day 21. To mitigate batch effects between samples, we integrated the 11 samples 
using STACAS (Andreatta and Carmona, 2021a) with the following parameters: number of variable 
genes = 800,  dist. thr= 0. 6, dims = 20. For the selection of variable genes for data integration, we did 
not consider mitochondrial genes, ribosomal genes, heatshock proteins, interferon- stimulated genes 
(ISGs), cell cycle genes or T cell receptor genes (gene sets available in Supplementary file 3). On the 
integrated data, unsupervised clusters were calculated using the FindNeighbors and FindClusters 
functions from Seurat (Hao et al., 2021) with parameters: k.parameter=10, resolution = 0.4. Finally, 
unsupervised clusters were manually annotated guided by differential expression analysis between 
clusters, merging clusters where appropriate, to obtain nine ‘functional clusters’ that summarize the 
diversity of CD4+ T cells in acute and chronic infections.

Dataset projection and reference-based analysis of scRNA-seq data
In order to avoid large imbalances between subtypes, and to limit its disk size, the CD4+ T cells 
reference map is a downsampled version of all available data. In order to obtain low- dimensional 
embeddings and subtype annotations for all cells generated in this study, we projected them onto 
the map using ProjecTILs with default parameters (Andreatta et al., 2021c). The same method was 
applied to project and interpret scRNA- seq data from several additional studies not included in the 
reference map (Ciucci et al., 2022, Ciucci et al., 2019; Khatun et al., 2021; Künzli et al., 2020; Snell 
et al., 2021; Swarnalekha et al., 2021). For all re- analyses of public data, we retrieved the gene 
expression matrices from Gene Expression Omnibus (GEO) under the following accession numbers: 
LCMV- specific CD4+ T cells at 7 and 30 days p.i. (GSE121002); LCMV- specific CD4+ T cells at day 
10 p.i. (GSE158896); LCMV- specific CD4+ T cells at day 35 p.i. (GSE139198); CD4 +T cells from lung 
and lymph nodes of influenza- infected mice (multiple timepoints), and liver cells at day 37 post- LCMV 
infection (GSE146626); Blc6- deficient, Blimp- 1 deficient and WT CD4 +T cells 7 days post- acute LCMV 
infection (GSE149912); Anti- PD- L1- treated and isotype- treated virus- specific CD4  +T  cells at day 
33 p.i. (GSE163345). Prior to reference projection, CD4 +T cells were purified from each dataset using 
scGate (Andreatta et al., 2022) and default T cell and CD4 +T cell gating models.

Detection of novel/unrepresented states
Several utilities are available in the ProjecTILs package to evaluate query projection accuracy and to 
detect the presence of novel cell states. First, on a qualitative level, one can apply the  plot. states. 
radar() function to compare the expression of panels of key genes between query and reference. 
Second, the user can recalculate the UMAP embeddings of the combined reference and query space 
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(function recalculate.embeddings()) to assess whether part of the projected data form a novel, sepa-
rate cluster (e.g. Figure 7D). Third, per- subtype differential expression analysis (function  find. discrim-
inant. genes()) can reveal which and how many genes are differentially expressed between reference 
and query in a given subtype (e.g. Figure 7E). Fourth, the compute_silhouette() function calculates 
an average silhouette coefficient per subtype, which aims at measuring the average distance of query 
cells from their own assigned cluster compared to all other clusters of the reference. A case study 
highlighting the application of these metrics can be found at: https://carmonalab.github.io/Projec-
TILs_CaseStudies/novelstate.html.

Gene signatures of adaptation to acute and chronic infections
CD4+ T cell state signatures were calculated by comparing each of the 3 main effector and 3 main 
memory clusters to the two other clusters in the same state (i.e. effector or memory) using the Find-
Markers function implemented in Seurat. To summarize subtype- specific transcriptional changes at 
different stages of infection, we first identified differentially expressed genes between timepoints 
and subtypes. For this analysis, Th1 effector and Th1 memory cells were grouped together to identify 
Th1- type cells. Similarly, we combined the Tfh effector and Tfh memory clusters (Tfh type), as well as 
Tcmp and Tcm clusters (Tcm(p) type). For significantly differentially expressed genes, we calculated 
average expression profiles for the Th1, Tfh, and Tcm(p) types at individual timepoints using the  find. 
discriminant. genes function of ProjecTILs (Andreatta et al., 2021c). The UCell algorithm (Andreatta 
and Carmona, 2021b) was applied on the CD4+ T cell map subtypes to evaluate gene signatures 
for subtypes identified in a previous study (Ciucci et al., 2019). To exclude potential confounding 
factors, ribosomal- associated, sex- specific and TCR transcripts (Magen et al., 2019) were removed 
from signatures related to acute and chronic adaptation (Supplementary file 3).

T cell clonal analysis
The CDR3 amino acid sequence for productive alpha- beta VDJ rearrangements obtained by scTCR- seq 
were used as unique ‘barcodes’ to identify individual T cell clones. The expansion level of a clone was 
calculated as the absolute number of cells with identical TCR sequence in a given sample, either in 
terms of CDR3 sequence or full nucleotide sequence. Expanded clones that were unique to a sample 
were denoted as private clones, expanded clones found in at least three samples were denoted as 
public clones. Merging and visualization of scTCR- seq data were performed using the scRepertoire 
package (Borcherding et al., 2020).

To measure gene expression- TCR relationship, we defined a ‘clonotype bias’ metric to quantify 
whether a given clonotype was preferentially composed of one of the T cell subtypes: c=maxi [ (fi - qi) 
/ (1- qi) ] where fi is the observed frequency for subtype i in the clonotype, and qi is the background 
frequency of subtype i in the whole sample. To assess statistical significance of measured clonotype 
bias scores, we generated N random permutations of the observed clonotype data, preserving clonal 
size and global subtype background frequencies. On the distribution of permuted clonotype bias 
scores, binned by clone size, we determined expected mean and standard deviation for each clone 
size bin. Z scores for observed clonotype bias scores were then calculated as the number of standard 
deviations from the background mean (Z score = 5 corresponds to a p- value ~6*10–7). PWMs for the 
fate- biased TCR alpha CDR3 motifs identified by Khatun et al., 2021 were kindly provided by the 
authors. We applied glam2scan (Frith et al., 2008) as in the original study to score these motifs on 
our data and rank clones based on individual motifs. We found that the motifs by Khatun et al. did not 
correlate with biased clones from our datasets (Figure 4—figure supplement 1C). Selecting clono-
types based on the 65% percentile of each of these motifs (as in the original study) did not enrich 
biased clones compared to their expected frequency. In particular, Tfh motifs were not predictive of 
Tfh bias and Th1 motifs were not predictive of Th1 bias (Figure 4—figure supplement 1D).

Effect of cell cycling in defining reference spaces
To investigate the effect of cycling cells in the definition of low- dimensional embeddings, we re- ana-
lyzed the dataset by Khatun et al., 2021 (LCMV acute day 10). Unsupervised analysis of two replicates 
from this study (replicates 1 and 2) showed that cycling cells clustered together and that cells in this 
cluster expressed a mixture of markers for Th1, Tfh, and Tregs (Figure 5—figure supplement 1C- E). 
Next, we asked whether projecting these cycling cells into our reference map allowed discriminating 

https://doi.org/10.7554/eLife.76339
https://carmonalab.github.io/ProjecTILs_CaseStudies/novelstate.html
https://carmonalab.github.io/ProjecTILs_CaseStudies/novelstate.html


 Tools and resources      Immunology and Inflammation

Andreatta et al. eLife 2022;11:e76339. DOI: https://doi.org/10.7554/eLife.76339  20 of 25

the different subsets. Reference projection of cycling cells revealed that, while the majority of cells 
were assigned to Th1, more than 30% of cycling cells were predicted to be Tfh, Tcmp, and Treg 
(Figure 5—figure supplement 1F). The expression profile of a panel of marker genes for these cell 
subtypes corresponded closely with the reference profiles (with additional high expression of cycling 
markers for example Mki67, as these are all cycling cells), confirming that the cycling cluster was 
composed of a mixture of different cell types (Figure 5—figure supplement 1G). These analyses 
showed that cell cycling can mask differences between cell subtypes, and that failing to account for 
cell cycling signals leads to mixing of multiple cell types in low dimensional spaces.

Effect of sequencing depth on reference-based annotation
Starting from the data generated in this study, as well as on an external dataset (Khatun et al., 2021), 
we applied the ‘downsampleMatrix’ function from the scuttle package (McCarthy et al., 2017) to 
generate downsampled scRNA- seq count matrices with increasingly lower sequencing depth (99%–
10% of measured depth) for each sample in the study. These reduced- depth datasets were then 
systematically projected into the reference map, and we evaluated the agreement of the cell subtype 
annotation with the annotation of the full- depth dataset. We measured the classification agreement as 
a function of the minimal (1% quantile) or median (50% quantile) number of genes, and of the minimal 
and median number of UMIs. We observed that subtype classification was robust to sequencing 
depths down to 30% of the original sequencing depth, corresponding roughly to a median of 500 
detected genes and around 1000 median UMIs per cell (Figure 5—figure supplement 2B,E). More-
over, disagreement in classification between full depth and downsampled depth was mostly affecting 
related cell subtypes, such as the effector and memory states of Tfh or Th1 cells, or Tcm cells and 
other memory subtypes (Figure 5—figure supplement 2C,F). On the whole, these experiments show 
that reference- based annotation is robust to sequencing depth for transcript counts and numbers of 
detected genes currently yielded by standard scRNA- seq technologies.

Statistical analyses for flow cytometry data
Statistical significance was calculated with Prism software. Except where otherwise indicated in figure 
legends, error bars in graphs indicate standard deviation and statistical comparisons were done by 
one- way ANOVA test.
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Cui W, Khatun A 2020 Single- cell lineage 
mapping of a diverse virus- 
specific naïve CD4 T cell 
repertoire

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE158896

NCBI Gene Expression 
Omnibus, GSE158896

Kuenzli M, Schreiner 
D, Roux J, King C

2019 Single- cell RNA- 
sequencing of spleen 
memory CD4+ T cells

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE134157

NCBI Gene Expression 
Omnibus, GSE134157

Bosselut R, Ciucci T 2018 Single- cell gene expression 
of anti- viral WT and Thpok- 
deficient effector and 
memory T cells

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE121002

NCBI Gene Expression 
Omnibus, GSE121002
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