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In acute stroke management, time window has been rigidly used as a guide for decades

and the reperfusion treatment is only available in the first few limited hours. Recently,

imaging-based selection of patients has successfully expanded the treatment window

out to 16 and even 24 h in the DEFUSE 3 and DAWN trials, respectively. Recent guidelines

recommend the use of imaging techniques to guide therapeutic decision-making and

expanded eligibility in acute ischemic stroke. A tissue window is proposed to replace

the time window and serve as the surrogate marker for potentially salvageable tissue.

This article reviews the evolution of time window, addresses the advantage of a tissue

window in precision medicine for ischemic stroke, and discusses both the established

and emerging techniques of neuroimaging and their roles in defining a tissue window. We

also emphasize the metabolic imaging and molecular imaging of brain pathophysiology,

and highlight its potential in patient selection and treatment response prediction in

ischemic stroke.

Keywords: ischemic stroke, tissue window, metabolic imaging, molecular imaging, reperfusion therapy

INTRODUCTION

Stroke is the worldwide leading cause of death and adult disability. More than 80% of all strokes are
caused by brain ischemia, which results from obstruction of one or more cerebral arteries. Rapid
and safe restoration of the blood flow through thrombolysis or/and thrombectomy is the only
approved therapy for ischemic stroke. Such treatment is strictly limited by a narrow time window
and need to be performed within the first few hours after the onset of symptoms (1, 2). The “time is
brain” mantra has been the golden principle for acute management of ischemic stroke for decades.
Due to the narrow therapeutic window and strict indications, recanalization therapy is restricted
to only a small fraction (≤10%) of stroke patients1. In the past decade, accumulating clinical trials
have shown that with the patients selecting by neuroimaging, the time window for reperfusion
has been iteratively extended (Table 1) (3–6). The results of these studies revolutionize the field
and suggested that “tissue window” might be more personalized than a “time window” to guide
precision medicine for ischemic stroke (7, 8). With the rapid development of imaging technology,
the ischemic penumbral tissue is now discernible and quantifiable, which provides the possibility
to detect salvageable tissue and select the eligible patients for reperfusion therapies (9, 10). A tissue

1https://seekingalpha.com/article/4263610-athersys-stem-cell-therapy-for-ischemic-stroke
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window defined by neuroimaging can serve as surrogate marker
for brain physiology in ischemic stroke and facilitate therapeutic
decision-making. Here we review the evolution of the time
window, address the advantage of tissue window for clinic
manage of ischemic stroke, and discuss the roles of neuroimaging
in defining a tissue window. We also emphasize metabolic
imaging and molecular imaging of brain pathophysiology, and
highlight its potential in patient selection and treatment response
prediction in ischemic stroke.

THE EVOLUTION OF TIME WINDOW FOR
REPERFUSION THERAPY

The main aim of existing therapies in ischemic stroke is
to restore the blood flow quickly and rescue the potentially
salvageable brain tissue. After ischemic stroke, the injured brain
is characterized by two major zones: the penumbra and the
infarct core. The penumbra is the region around the core
that neuronal function is partially preserved (11). The fate of
penumbral cells critically relies on regional cerebral blood flow
(CBF) and it worsens into infarct core in a time-dependent
manner. If reperfusion is established during the early hours, cells
in penumbra are salvageable (12). On the contrary, the blood
flow in the infarct core declines below to 15–20% of the baseline,
this would cause irreversibly damage within the first few minutes

TABLE 1 | Imaging modalities used in the key clinical trials to expand the therapeutic window of ischemic stroke.

Study Sample size Time window Imaging

modalities

Treatment Implications

EPITHET 101 3–6 h after onset PWI/ DWI Alteplase or placebo Alteplase increased

Reperfusion and neurological

outcome at 90 days

ECASS III 821 3–4.5 h after onset CT or MRI Alteplase or placebo Alteplase improved neurological

outcome at 90 days

MR CLEAN 500 6 h after onset CTA or MRA Intraarterial treatment or standard

care alone

Intraarterial treatment improved

neurological outcome at day 90

EXTEND-IA 70 6 h after onset CTP Alteplase with thrombectomy or

alteplase alone

Thrombectomy improved reperfusion,

early neurologic recovery, and

functional outcome

SWIFT PRIME 833 6 h after onset CTP, or PWI/DWI tPA, or tPA with endovascular

thrombectomy

Thrombectomy showed more

effective recanalization than tPA alone

REVASCAT 206 8 h after onset CT, DWI Thrombectomy or standard care

alone

Thrombectomy reduced the severity

of disability

ESCAPE 316 12 h after onset CT, CTA Thrombectomy plus standard care or

standard care alone

Endovascular thrombectomy

benefited the patients with

moderate-to-severe ischemic stroke.

DEFUSE-3 182 6–16 h after onset CTP, PWI/DWI Thrombectomy plus standard care or

standard care alone

Thrombectomy resulted in better

functional outcomes than standard

medical therapy alone

DOWN 206 6–24 h after onset DWI, CTP Thrombectomy plus standard care or

standard care alone

Thrombectomy improved the

outcomes at 90 days

WAKE UP 503 4.5 h to unknown

time of onset

DWI, FLAIR Alteplase or placebo Alteplase improved functional

outcome at 90 days

CT, computed tomography; CTP, computed tomography perfusion; CTA, computed tomography angiography; MRI, magnetic resonance imaging; MRA, magnetic resonance

angiography; DWI, diffusion-weighted imaging; PWI, perfusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; tPA, tissue plasminogen activator.

of the stroke onset (13). Unfortunately, methods of ischemic
core imaging, which is currently in clinical use, are unable to
discriminate between incomplete infarction and pan-necrosis. In
order to overcome it and revise the clinically relevant parameters
more accurately, Goyal et al. suggested replacing the “infarct
core” with “ischemic tissue with severity of uncertain viability
(SIT-uv)” (14). SIT-uv is considered as tissue that is potentially
salvageable by timely reperfusion. Therefore, “time is brain” is
still the most important principle guiding reperfusion therapy
since the 1990’s (15).

Two primary reperfusion strategies have been demonstrated
effectiveness: intravenous thrombolysis with tissue plasminogen
activator (tPA) and endovascular thrombectomy with stent
retrievers (16). However, the benefits of both tPA and
endovascular thrombectomy are strongly time-dependent and
restricted to only a fraction of stroke patients due to the
narrow time window and strict indications (17, 18). In 1995,
tPA was originally recommended to treat ischemic stroke within
3 h of the onset (19). Until 2008, Hacke et al. suggested that
administration of tPA could be extended to 4.5 h with computed
tomographic scan to exclude the patients with hemorrhage or
major infarction (20). Because of the narrow time window and
strict contraindications, only 2–5% of patients present with
ischemic stroke received tPA (21). Recently, guided by perfusion
imaging, the window for thrombolysis with alteplase was
extended up to 9 h after onset of stroke (EXTEND trial) (22, 23).
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However, the authors had certain doubts that positive results of
the WAKE-up trail nullified the equipoise and terminated the
trail early for this reason (3). Furthermore, due to the small
number of patients (225 patients from 27 hospitals over 8 years)
and because 80% of the patients had large vessel occlusions, the
conclusion of EXTEND trail was not reflected in the current
guidelines of American Heart Association (AHA). Still AHA
recommended taking into account the conclusion of WAKE-UP
trail, which stated that patients, who awoke with stroke or had
an unclear time of onset which might be more than 4.5 h of the
past (>4.5 h from the last known well) could be treated with
IV alteplase (24). The eligibility is magnetic resonance imaging
(MRI) mismatch between abnormal signal on diffusion-weighted
magnetic resonance imaging (DW-MR) and no visible signal
change on FLAIR. Present guidelines also endorsed the usage
of tenecteplase in patients eligible to mechanical thrombectomy
who do not have contraindications for IV fibrinolysis. There
is emerging evidence for the non-inferiority of tenecteplase
compared to alteplase, although it has not been widely accepted
in clinical practice yet (25).

In 2015, it was proven that mechanic thrombectomy
with/without intravenous thrombolysis can improve functional
outcomes within 6 h after stroke onset (26–28). In patients
who have proximal arterial occlusion and small infarct core,
mechanical thrombectomy can extend the therapeutic window
to 8 h (REVASCAT Trial) even to 12 h (ESCAPE Trial) (29–
31). Based on two other recent trials DEFUSE 3 and DAWN,
the therapeutic time window can be extended to 24 h since

stroke onset (5, 6). Case studies even reported that delayed
thrombectomy days or weeks after onset achieved good clinical
outcome (32, 33). Recent animal studies proved that delayed
recanalization at 3, 7, or 14 days after permanent middle cerebral
artery occlusion (MCAO) led to better functional and histological
recovery (34). These researches represent a new milestone in
acute stroke therapy (Figure 1). Imaging-based patient selection
plays a crucial role in the success of these clinical trials and
inspires us to rethink the principle “time is brain.”

The salvageability of the affected brain tissue depends
primarily on both the duration and the severity of ischemia.
The onset-to-treatment time is not the inflexible determinant of
reperfusion therapy when takes the collateral flow into accounts.
The more extensive the collateral flow, the longer the brain tissue
is tolerant to ischemia. However, the collateral flow is highly
variable among individuals, which results in variation in tissue
susceptibility and therapeutic window. The current “one-size-
fit-all” therapeutic time window does not consider the collateral
circulation and varied tissue susceptibility, and how to evaluate
the viability of the ischemic tissue quickly and accurately is a
challenge for the individualized reperfusion therapy.

DETECTION OF THE PENUMBRA

The penumbra was first experimentally delineated by Astrup in
a baboon MCAO model in 1977. Using somatosensory-evoked
potentials, he defined the penumbra as an area surrounding
the ischemic core in which neurons are affected but have the

FIGURE 1 | Evolution of the time window for recanalization therapies.

Frontiers in Neurology | www.frontiersin.org 3 September 2021 | Volume 12 | Article 697779

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Lu et al. Neuroimaging and Acute Stroke

potential for recovery. Neurons in this area are characterized
by low electric activity but sustained energy metabolism,
and they do not have noticeable morphological damage (35).
Because of the invasive method, it was difficult to translate this
experimental concept to clinic and improve stroke diagnosis and
treatment.Modern imaging techniques such as positron emission
tomography (PET), MRI, and computerized tomography (CT)
can distinguish salvageable tissue invasively by measuring
hemodynamics and energy metabolism. PET is considered as
the “gold standard” for penumbra imaging, however, MRI
is more favorable in practice. In addition, CT perfusion is
being increasingly used for its low cost and wide availability.
The strengths and weaknesses of these imaging modalities on
penumbra identification are summarized in Table 2.

PET
The existence of penumbra in stroke patients was demonstrated
for the first time by PET. In 1981, Baron et al. observed
decreased CBF and increased oxygen extraction fraction (OEF)
in an ischemic stroke patient by PET and coined this modality
as “misery perfusion” which indicated potential viable tissue
(36). This area with increased OEF was the original definition
of penumbra. Labeling arterial blood sample with 15O allows
PET to assess the regional CBF, OEF and cerebral metabolic
rate of oxygen (CMRO2) (CMRO2 = CBF × OEF × arterial
oxygen content) and determine the penumbra. Early PET studies
classified the ischemic tissue into 3 regions depending on CBF
rate: the infarct core with CBF <12 ml/100 g·min, the penumbra
with CBF of 12–22 ml/100 g·min and the oligemia with CBF
>22 ml/100 g·min (37–40). In practical applications, the extent
of penumbra is dynamic and time dependent process, which

TABLE 2 | Comparison of strengths and weaknesses of different imaging

modalities for penumbra identification.

Parameters Strengths Weaknesses

PET 15O-OEF
15O-rCBF
15O-CMRO2

Gold standard Technical difficulty

Invasive procedure

Radiation

High cost

MRI DWI/PWI
23Na/1H MRI

Sodium MRI

DWI/SWI

T2* OC/PWI

Easy-to-use

Good spatial

resolution

High sensitivity

Non-invasive

No radiation

Time-consuming

High cost

Inaccuracy

CT CBF

CBV

MTT

TTP

Tmax

Widely accessible

Easy-to-use

Radiation

Contrast agent required

Hard to standardization

PET, positron emission tomography; MRI, magnetic resonance imaging; CT, computed

tomography; OEF, oxygen extraction fraction; rCBF, regional cerebral blood flow; CMRO2,

cerebral metabolic rate of oxygen; DWI, diffusion weighted imaging; PWI, perfusion

weighted imaging; SWI, susceptibility-weighted imaging; OC, oxygen challenge; CBF,

cerebral blood flow; CBV, cerebral blood volume; MTT, mean transit time; TTP, time to

peak; Tmax, time to maximum.

varies with the severity and duration of ischemia. CBF value only
reflects the reperfusion status at the time of imaging. An initial
severe ischemiamay show a normal appearing CBF value because
of partial restoration of blood flow, but the ischemic tissue has
already irreversibly damaged (37, 41). The advanced 15O-O2 PET
can detect OEF and distinguish viable tissue from core infarction.
Thus, the mismatch between CBF and oxygen metabolism is
usually considered as the in vivo hallmark of penumbra region,
which maintains transient oxygen supply while suffering severe
hypoperfusion (40, 42). Recently, some advanced approaches
have been used to identify the penumbra. 11C-flumazenil (11C
FMZ), a marker of cortical neuron integrity, combine with 15O-
H2O PET can detect early neuronal death irrespective of time
elapse and without arterial blood sampling. Based on the specific
metabolic parameters, it is well-accepted that PET is the gold
standard for determining the penumbra (43, 44).

However, detection of penumbra by PET has several
limitations, such as technical difficulty, invasive procedures,
exposure to radioactivity and high cost, which prevent PET
from broad acceptance in clinical routine (44). Therefore, both
improvement of current methods and the development of other
imaging modalities are needed.

MRI
Compare to PET, MRI has better spatial and temporal resolution,
and no risk of radiation exposure of patients. MRI has largely
replaced PET in acute stroke imaging in clinic (45). The MRI-
based perfusion-diffusion mismatch (PDM) is a surrogate of
PET-based penumbra evaluation (Figure 2). Diffusion weighted
imaging (DWI) refers to the visualization of random Brownian
movement of water molecules in brain tissue. Lower diffusion
coefficients generally resulted from energy failure and subsequent
cytotoxic edema, and it is suggested to delineate infarct core
tissue that irreversibly damaged (Figure 3) (46). Perfusion
weighted imaging (PWI) measures brain perfusion dynamically
with such parameters as CBF, cerebral blood volume (CBV),
mean transit time (MTT) and time to peak (TTP) (Figure 3)
(47). PWI abnormality provides the information on both infarct
core and the surrounding hypoperfused tissue. Volumetric-based
PDM is usually defined as a mismatch ratio of PWI/DWI
≥1.2, which is postulated to represent the penumbra that
locates outside the infarct core but is at risk of infarction
(48). The concept of PDM has been proved practically in
both experimental and clinical studies (49–51). Early clinic
studies have shown that salvage of brain tissue delineated
by the PDM improved neurological functions (52, 53), and
selection of patients with PDM increased the rate of reperfusion
and achieved favorable clinical response when treated within
6 h (54, 55). However, this surrogate marker of penumbra is
challenged by several limitations (44). Comparative PET/MRI
studies confirmed the mismatch area imprecisely depicts elevated
OEF and overestimated the penumbra from benign oligemia
defined by PET. Because of the wide variation in thresholds,
DWI also overestimates the infarct core by including part of the
penumbra (56–58). And as the viability and metabolic state of
brain tissue strongly depends on the duration of ischemia, for
those “wake-up” patients who didn’t know stroke onset time
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FIGURE 2 | Current concept of the ischemic penumbra. Both clinical (Upper) and experimental (Below) MRI data showed early abnormality on DWI equals the infarct

core plus a part of tissue at risk (penumbra), and the perfusion deficiency on PWI includes part of the region of benign oligemia. MRI, magnetic resonance imaging;

PWI, perfusion-weighted imaging.

(SOT), it is hard to set threshold of the parameters [such as TTP
and time to maximum (Tmax)] (57).

Accumulating evidence has shown that there was no clear
association between PDM and penumbra (59–62), and the
inaccuracy of PDM in defining penumbra may be responsible
for the failure of some reperfusion and neuroprotection therapies
in clinic (63, 64). It is urgent to develop novel imaging
paradigms that can serve as a clinical marker of penumbra.
Several attempts have been made to improve the accuracy
of PDM in penumbra predicting. Combined 23Na-MRI to
1H-MRI was developed to complement PDM and serve as
a viability marker for penumbra detection in several animal
models. Tissue sodium concentration increased in the core and
decreased in the penumbra so that the viable penumbra could
be differentiated from the core in transient MCAO rats (65, 66).
In addition, it has been proposed that sodium MRI may help
determine the SOT by calculating this retrospectively (67, 68).
Susceptibility-weighted imaging (SWI) is also used to identify
the penumbra in stroke patients. SWI detects the paramagnetic

susceptibility difference between deoxygenated and oxygenated
hemoglobin, which reflects the OEF of brain tissue (69).
DWI-SWI mismatch is shown to be a promising marker
for evaluating penumbra (70). In addition, by mapping the
ratio changes of deoxyhemoglobin/oxyhemoglobin, T∗

2 oxygen
challenge combined PWI assessed the viability of penumbra
serially and showed advantages over PDM for penumbra
detection (71).

Computed Tomography Perfusion (CTP)
CTP is an imaging technique that is increasingly used for
determination of infarct core and penumbra in acute ischemic
stroke patients. The clear advantages of this technique are its
easily accessibility and fast acquisition (72). Similar to PWI MRI,
raw data of CTP is also displayed in parameter maps, including
CBF, CBV, MMT, TTP, and Tmax. Regions with dramatically
reduced CBF or CBV correspond to the core infarction,
while regions with prolonged MTT, TTP, or Tmax delineate
the penumbra (Figure 4) (73). However, there is significant
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FIGURE 3 | MR imaging of the patient with acute ischemic stroke. The patient, 71-year-old male, suffered from weakness of right limbs, alalia and was unable to walk

3 h prior to the imaging. Medical history included hypertension, diabetes and varicosity of both lower extremities. Physical examination showed right facial paralysis,

the muscle strength of right limbs was grade I, right Babinski sign (+), Chaddock sigh (+), and NIHSS score was 13. The diagnosis of the patient is acute ischemic

stroke. The patient was given multimodal MRI and MRA before and after recanalization. The first row showed perfusion-weighted imaging. a and b, Lower CBF in left

cerebral hemisphere. c, Higher CBV in left cerebral hemisphere. d, Longer MTT in left cerebral hemisphere. e, Longer TTP in left cerebral hemisphere. The second row

and third row showed MRI and MRA before recanalization and after recanalization, respectively. a, b, and c, In the left frontal lobe and lateral ventricle had sporadic

dots with slightly longer T1 signal, longer T2 signal higher signal, respectively, in T1WI, T2WI, DWI. d, No cerebral microbleeds in SWI. e, Original ASL. f, MRA showed

the intracranial segment of the left internal carotid artery and the left middle cerebral artery were significantly narrow in the second row, while recanalization got in left

internal carotid artery and middle cerebral artery. MR, magnetic resonance; MRA, magnetic resonance angiography; SWI, susceptibility weighted imaging; ASL,

arterial spin labeling; CBV, cerebral blood volume; CBF, cerebral blood flow; TTP, time to peak; MTT, mean transit time.

variability in CTP technique between different CT scanners,
processing software and prior institutional optimization, and
this results in controversy about the accurate measurement
of penumbra (74). Moreover, due to the delay of the arrival
of contrast to brain, CBV calculation always results in an
overestimation of the core lesion that leads to an underestimation
of penumbra (75). CTP still has the risk of radiation exposure and
toxicity of the contrast agent.

METABOLIC IMAGING OF ISCHMEIC
STROKE

For patients excluded from reperfusion therapy due to exit of
the therapeutic time window established by imaging strategy
mentioned above, there is another opportunity to expand the
treatable population: selecting of the patients by advanced
physiologic imaging. Both MRI-based PDM and CTP depend
on selecting threshold values of blood flow to differentiate the
penumbra from infarct core and benign oligemic brain tissue.
And these thresholds change with the evolution of stroke. So

far, there are no validated thresholds that accepted for routine
penumbra imaging in the clinical setting. Parameters which
display the physiology of brain immediately and independently
of the onset-time are in urgent need to delineate penumbra
accurately and guide the precision therapy in stroke. When
the blood flow is compromised, energy metabolism disturbance
occurs within seconds as brain has very limited supply of
energy producing substances and relies on oxidative metabolism
to meet its tremendous energy requirements (76, 77). The
metabolic stress induces ionic perturbations and oxidative stress
which trigger the cascade of pathophysiological events ultimately
resulting in neuronal death (78). Accumulating evidence has
suggested that energy status is associated with cell survival
and determines the fate of ischemic tissue (79–81). Direct
measurement of the metabolic status provides more accurate
information to delineate the viable tissue. Therefore, energy
metabolism can serve as a direct indicator of the salvageable
tissue in the penumbra zone. Quantification of cerebral oxygen
metabolism has shown great promise in revealing the viability of
ischemic tissue during stroke. Several imaging modalities, such
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FIGURE 4 | CT and CTP imaging of the patient with acute ischemic stroke. The patient, 80-year-old-female, suffered from weakness of right limbs, alalia and was

unable to walk 3.5 h prior to the imaging. Medical history included hypertension, atrial fibrillation and gout. Physical examination showed right facial paralysis, the

muscle strength of right limbs was grade I, right Babinski sign (+), and NIHSS score was 10. The diagnosis of the patient is acute ischemic stroke. The patient was

given multimodal CT and MRA before recanalization. a and b, The left bilateral basal ganglia and bilateral frontal lobe showed sporadic dots and patches with

low-density shadow on non-contrast CT scan. c, Contrast-enhanced CT showed no abnormal enhanced shadow. d, MRA showed the lumen of bilateral middle

cerebral artery was not smooth, the left cerebral artery M1 segment had multiple stenosis, and distal branch vessels were disappeared. e and f, Prolonged TTP and

MTT in the area of left middle cerebral artery. g and h, CBF and CBV showed no significant abnormal area. CT, computed tomography; CTP, computed tomography

perfusion; CBV, cerebral blood volume; CBF, cerebral blood flow; TTP, time to peak; MTT, mean transit time.

as PET and MRI, have been applied to image cerebral oxygen
metabolism in both experimental research as well as clinical
practice (82). These imaging methods and parameters they can
detect are summarized in Table 3. Furthermore, we review the
most recently advances in metabolic imaging, which may greatly
facilitate routine clinical applications to guide optimal therapy
decision for acute ischemic stroke as well as subacute or chronic
stroke with permanent large vessel occlusion.

PET Metabolic Imaging
As mentioned above, 15O multi-tracer PET can provide the
tomographic distributed imaging of brain oxygen extraction and
metabolism. More importantly, it is the reference standard for
quantitative evaluations of OEF, CMRO2, CBV, and CBF. In the
late 1970’s, scientists successfully measured the regional brain
CBV and CBF, and oxygen metabolism in stroke patients with
15O-labeled PET, and distinguished the severely hypoperfused
but potentially salvageable tissue from the irreversibly damaged
(83–85). Using 15O-H2O PET, Heiss et al. found that the misery
perfused tissue was salvaged by early intravenous thrombolysis
(86). This study is a millstone in stroke research. It revolutionized
the management of acute stroke patients by demonstrating the

positive result of rt-PA. However, due to the technical complexity,
15O PET is not widely performed in clinical settings, with issues
involving requirement of on-site cyclotron and radiochemistry
facility because of the short half-life of 15O (2min), real-time
artery blood sampling and analyzing to obtain the regional
CBF (rCBF), as well as complex post processing (87). Efforts
have been made to streamline the 15O-PET examination for
routine clinical practice, including: (i) quantitative voxel-by-
voxel maps of rCBF without a direct arterial input function
(88); (ii) shortening the clinical examination period by dual-
tracer (H15

2 O and 15O2) autoradiography approach (89); and
(iii) developing non-invasive techniques to assess CBF, OEF, and
CMRO2 (90). Attempts were also made in animal stroke studies.
Methodological inventions, such as intravenous administration
of injectable 15O2 and inhalation of 15O2 gas, had been tried to
facilitate the evaluation of CMRO2 and OEF in small animals
(91–93). These developments potentiate the possibility of using
PET in clinical routine to expand the treatable stroke patients in
early stage.

The improvement of the radiotracers has revolutionized
the use of PET in measuring OEF and CMRO2 and mapping
the cerebrovascular reserve and the penumbra. The newly
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TABLE 3 | The three major imaging methods for acute stroke and physiological

parameters they can detect.

Parameters PET MRI CT

Metabolism Oxygen

metabolism

15O-OEF
15O-CMRO2

OCI

Neuronal

death

11C-FMZ

Hypoxia 18F-MISO

Cu-ATSM

pH APT-MRI
13P MRS

Lactate 1H MRS
13C MRS

NAA 1H MRS

PCr/Pi 13P MRS

ATP 13P MRS

Pathophysiology Excitotoxicity 1H MRS

GluCEST

Apoptosis 1H MRS

Inflammation Cu-ATSM

TSPO

SPIO/USPIO

MNP-PBP

MPIO

BBB leakage DCE-MRI DCE-CT

Micro-CT

FMZ, flumazenil; MISO, misonidazole; Cu-ATSM, Copper-based Radiopharmaceuticals;

APT, amide proton transfer; MRS, MR spectroscopy; NAA, N-acetylaspartate;PCr,

phosphocreatine; Pi, inorganic phosphate; ATP, adenosine triphosphate; CEST, chemical

exchange saturation transfer;S PIO/USPIO, small and ultrasmall superparamagnetic iron

oxide particles; MNP-PBP, magnetic nanoparticle-P-selectin binding peptide; MPIO,

microparticles of iron-oxide; TSPO, translocator protein; DCE, dynamic contrast-

enhanced.

developed PET ligands, including radio-labeled FMZ, radio-
labeled fluoromisonidazole (FMISO), and copper-based
radiopharmaceuticals (Cu-ATSM) have been explored to
delineate the disease in preclinical and clinical research. In
1997, 11C-FMZ PET was used to indicate the development
of infarction in cat stroke model and showed the potential to
select eligible patients for early therapeutic intervention (94).
In 2000, a clinical trial proved that 11C-FMZ PET was able to
differentiate the viable tissue from the irreversibly damaged
at the early stage of acute stroke (95). In this study, the areas
with reduced perfusion but preserved 11C-FMZ binding could
benefit from reperfusion therapy, while the areas with 11C-FMZ
uptake defects were permanent lesions. Thiel et al. reported
that 11C-FMZ PET could be used to estimate rCBF in ischemia
without arterial input function (96). However, the application of
11C-FMZ PET in clinical practice is limited by several issues: the
requirement of cyclotron to produce 11C, the regional expression
of benzodiazepine receptors in cerebral cortex, and the low
affinity of 11C-FMZ to bind with its receptor at the acute phase
of ischemia/reperfusion (97). New PET tracers are still in urgent
need to meet the clinical requirements.

Compared with11C-FMZ PET, 18F-FMISO PET is more
broadly used (98). In a preclinical study, 18F-FMISO microPET
was used to map the brain hypoxia in the acute stage of

permanent distal MCAO rats, and supported that 18F-FMISO
might be a marker of core area as well as of penumbra (99).
Besides, 18F-FMISO uptake was also used to predict the tissue
fate. The patients without 18F-FMISO uptake had no infarct
growth on the follow-up DWI, while those with abnormally
increased 18F-FMISO uptake showed grown infarct (100). And
white matter was reported to take up more 18F-FMISO than
gray matter, indicating stronger resistance to ischemia than gray
matter (101). However, the penumbra outlined with 18F-FMISO
may be overestimated. When using 18F-FMISO in ischemic
stroke patients, large regions of hypoxic tissue was found
surrounding the ischemic core, which spontaneously reverted
back to normal (102). The major drawback of 18F-FMISO PET
is the slow kinetics of 18F-FMISO, which requires 2–3 h to clear it
from the hypoxic tissue. A faster kinetic and metabolic rate tracer
is needed for metabolic imaging. Compared with nitroimidazole,
Cu-ATSM is rapidly washed out, and the imaging can be finished
with 20–30min after injection (103). Cu-ATSM has also been
proved to modulate inflammation and has therapeutic potential
in experimental stroke (104).

MRI Metabolic Imaging
Studies have investigated MR-based PWI and DWI, and
suggested the PWI-DWI mismatch regions as potentially
salvageable tissue (51). This clinical routine protocol does not
define metabolic activity directly; however, PWI and DWI clearly
indicate different metabolic regions. The following sections
will carefully discuss related major MRI metabolic imaging
techniques, which have been summarized in Table 2.

Magnetic Resonance Spectroscopy
MRS acquires the signal arising from brain metabolites by
analyzing molecules such as hydrogen ions or protons. Because
of high spatial and temporal resolution, proton MRS (1H MRS)
is the more commonly used. The most assessed metabolites with
potential value for clinical stroke evaluation are lactate (1.30
ppm) and tNAA (2.02 ppm) (105–107). Preclinical studies have
shown that levels of total N-acetylaspartate (tNAA) decrease to
50% in the first 6 h after ischemic stroke, followed by a milder
decrease to 20% for the subsequent 24 h, and gradually returned
to 30% until 7 day (107). Clinically, the concentration of tNAA
in penumbra and in core infarction may even decrease below the
level of detection (108, 109). Severely decreased tNAA is related
to serious clinical syndrome and extensive infarction, which
means poor clinical outcome (110). Lactate is the end product
of anaerobic glycolysis and rises within minutes after ischemic
stroke. Elevated lactate in the core of ischemic tissue is positively
related to the final infarct size and neurological deficits (111).
The increase of lactate accompanied with reduction of tNAA
was observed in patients with large infarction and poor outcome
(110). Therefore, the level of lactate and tNAA is important for
evaluating the severity of stroke and predicting the recurrence of
ischemic events (112). Interestingly, a recent MRS stroke animal
study suggested that ML3 (bis-alyllic protons of polyunsaturated
fatty acids, 2.80 ppm), which was detected of a significant increase
at 7 days after stroke, may be a non-invasive surrogate biomarker
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of cumulative apoptosis in stroke, which could be used as a
clinical predictive marker (107).

13P MRS is also used to evaluate brain energy metabolism
in ischemic stroke by assessing the high energy phosphate
metabolism, particularly adenosine triphosphate (ATP) and
creatine phosphate (PCr) (113). A gradual decrease in ATP was
only exhibited in severe stroke, not mild stroke (114). The ratio
of PCr to inorganic phosphate (Pi) (PCr/Pi) showed a precipitous
decrease during ischemia as well as reperfusion (114). Cerebral
intracellular pH can also be measured by 13P MRS. It was
calculated by the chemical shift (δ) of the Pi resonance peak
relative to the PCr resonance peak (115).

Though MRS is of great value in assessing the severity of
ischemia and predicting the risk for recurrence, low signal-noise
ratio, long sequence duration and the risk of lipid contamination
make MRS not suitable for routine assessment of acute ischemic
stroke patients.

Oxygen Challenge Imaging
Oxygen challenge imaging (OCI) is based on blood oxygen
level-dependent (BOLD) contrast MRI that reflects the changes
in blood oxygen saturation. OCI uses transient hyperoxia
during T∗

2-weighted MRI to present dynamic changes in
deoxyhemoglobin concentration. Therefore, tissues in the
penumbra exhibit an increase in T∗

2 signal intensity, with
diminished or absent T∗

2 signal intensity in the infarct core. Time
to peak value from OCI offers additional information to facilitate
the identification of at-risk tissue in ischemic stroke rats (116).
The region of OCI response was reported to be larger than the
PWI-DWI mismatch region (117). The T∗

2 OCI was developed
using 100% normobaric hyperoxia and has showed clinical
translational potential for stroke diagnosis. However, inhaled
100% oxygen induces sinus artifacts in the front lobe. Decreasing
the concentration of inhaled oxygen can decrease these artifacts,
but makes more difficult to distinguish the penumbra from
surrounding tissues (117). Recently, the combination of 40%
oxygen and perfluorocarbons and fluorinated hydrocarbons
with respiratory gas significantly enhanced T∗

2 response to
40% oxygen in T∗

2 defined penumbra (118). The same group
also developed the GOLD (Glasgow Oxygen Level Dependent)
diagnostic imaging method by using T∗

2oxygen challenge (T∗
2OC,

100% inhaled oxygen) combined with lactate change MRS
technique (119). This method worked concurrently to identify
the salvageable tissue in penumbra based on the glucose
metabolic status in MCAO rats. However, the disadvantages
of OCI are, as mentioned above, the poor signal-to-noise due
to the limited oxygen that delivered to the tissues and the
artifacts caused by the paramagnetic effect of 100% O2 within the
paranasal sinuses (120).

pH-Weighted Imaging
Zhou et al. developed a new MRI approach which was
predominantly sensitive to the intracellular pH changes (121).
This method benefited from the chemical exchange processes,
which amide protons transfer between cellular peptides and
proteins in a pH-dependent manner. Because amide proton
transfer (APT) is pH dependent, measures of APT may be used

to measure pH value (122). Acute ischemic stroke causes an
accumulation of lactic acid and results in the decrease of pH,
which could be the earliest sign for the tissue at risk. Accordingly,
there were research data which suggested that pH imaging could
be used to define the ischemic penumbra. The hypoperfused
tissue with normal ADC and low pH may represent ischemic
penumbra (121, 123, 124). A further study suggested that an
additional pH-weighted imaging with PWI-DWI was superior to
PWI-DWI alone to predict the tissue outcome in ischemic stroke
rats (125).

Although most early studies, which investigated pH-weighted
imaging technique, were performed in rodents, there is
increasing translation of this technique to human studies.
Tietze et al., for the first time, demonstrated that clinical
application of pH-weighted imaging in acute stroke patients was
possible and could be quantified, which carried potential for
providing additional information on metabolic changes in acute
ischemia (126). Subsequently, scientists fromOxford successfully
identified the ischemic penumbra using pH-weighted magnetic
resonance imaging (127).

Although studies related to pH-weighted imaging have
provided important insights in the pathology of acute stroke,
they currently cannot be applied in clinical routine due to their
technical limitations, such as hardware constraints of human
MRI scanner (short repetition time and strong radio-frequency
saturation power), acquisition protocols selection (single-slice
or volumetric APT imaging) and analyzing techniques (128).
Consequently, pH-weighted imaging studies have paid more
attention to develop better quantifying approaches and improve
the APT MRI sensitivity to pH, thus, the acidosis in ischemic
penumbra can be more reliably delineated (128–130).

Other Mmetabolic Imaging Techniques
There are many other imaging modalities that are at early
stage of ischemic metabolic imaging, such as sodium imaging,
PET 17O imaging, and MR-derived cerebral metabolic oxygen
index (MR COMI) (131). While metabolic imaging is promising,
emerging imaging technologies require considerable validation
to consider how they fit into the current imaging protocols
and what information they accurately provide to guide the
recanalization therapy. Many of these techniques will require
technical refinement before they can be used in clinical acute
ischemic stroke.

MOLECULAR IMAGING OF
PATHOPHYSIOLOGY

Ischemia causes the shortage of glucose and oxygen and
subsequently depletion of ATP, which result in the dysfunction
of sodium-potassium pump andmembrane depolarization (132).
That induces multiple pathophysiological cascades, including
excitotoxicity, apoptosis, acidosis, blood-brain barrier (BBB)
leakage, and immune response, which lead to ischemic neuronal
loss (133).

Several imaging techniques have been used in the visualization
of ischemic stroke pathophysiology (134). For example, ischemia
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results in marked reduction of tissue pH that triggers neuronal
death (135). As mentioned above, pH-weighted MRI can detect
the changes of tissue pH value that reflect the progress of
acidotoxicity. MRS can evaluate tissue levels of lactate and ML3
that on this way estimate the status of acidosis and apoptosis.
Current developments of pathophysiology imaging facilitate the
in vivo assessment of pathophysiological markers and therapeutic
targets after stroke, and provide the opportunities for the
translation of multimodal imaging strategies in stroke diagnosis
and treatment. The pathophysiological parameters that can be
detected are summarized in Table 2.

Visualization of Excitotoxicity
Excitotoxicity caused by excessive release of glutamate is one
of the major culprits that responsible for the neuronal death
and neurological deficits after stroke. The levels of glutamate
can be detected by 1H MRS. In MCAO model in rats, Ramos-
Cabrer et al. demonstrated that the levels of glutamate increase
in center of the infarction core and then spread to the peri-
infarction. Within 24 h after stroke, glutamate levels decreased
significantly in the infarct core area, whereas regular levels were
detected in the periphery of the core lesion (136). A clinical
research found the differences of glutamate levels between
infarct core and reperfused ischemic penumbra. In the ischemic
stroke patients who received intravenous tPA within 4.5 h, high
glutamate concentrations in peri-infarct were observed in the
hyperperfused patients, while glutamate concentrations were
low in the non-hyperperfused patients (137). The evaluation
of glutamate depends on the magnetic field strengths. At low
magnetic field scanner, the peak of glutamate and glutamine are
consecutive that cannot distinguish glutamate from glutamine.
At field strengths of 3.0 T or higher, the separation of glutamate
and glutamine is feasible. Besides, 1H MRS technique requires
long acquisition times and has low spatial resolution.

Recently, a new MRI technique for imaging glutamate has
been developed based on chemical exchange saturation transfer
(CEST) effect. The CEST effects of amide and hydroxyl protons
have also been used to measure pH value changes after ischemic
stroke. It has been demonstrated that middle cerebral artery
occlusion (MCAO) induced about 100% elevation of glutamate
CEST (GluCEST) in the ischemic tissue compared with the
contralateral side in rats. This method images the relative changes
of glutamate and has the advantages of high spatial and temporal
resolution. However, GluCEST imaging is only achievable in
the human brain in ultrahigh field (7.0 T) and is not currently
accessible in the clinic (138).

Monitoring the Neuroinflammation and
Immune System
The immune system plays a pivotal role in the response to
ischemia and the eventual recovery of function (139). The
complex cascade of immune cells and inflammatory factors
contribute to the breakdown of BBB. After stroke, microglia
immediately respond to the ischemic insult, followed by the
proliferation of macrophages, dendritic cells, and lymphocytes.
With the occurrence of BBB breakdown, neutrophilic cells
permeate the infarct and peri-infarct region. The immune cells

release excessive pro-inflammatory cytokines (i.e., TNF-α and
IL-1β) and produce large amounts of free radicals, which
contribute to the upregulation of cell adhesion molecule and
further propagate the inflammatory response (133). Additionally,
inflammation elevates production of matrix metalloproteins
(MMPs) and myeloperoxidase, both of which are major factors
leading to BBB breakdown.

After ischemic stroke, the spatiotemporal profile of
neuroinflammation with cellular and molecular MRI has
been increasingly explored. In cellular and molecular MRI,
paramagnetic contrast agents such as gadolinium chelates and
small particles of iron oxide were used to detect specific leukocyte
populations or molecular inflammatory markers after stroke.
Several pre-clinical and clinical studies have demonstrated
the application of contrast agents to image the monocyte
infiltration after ischemic stroke. The most common strategy
for labeling circulating monocytes is the administration of iron
oxide nanoparticles. For the labeling, two kinds of particles can
be used: small and ultrasmall superparamagnetic iron oxide
particles (SPIO and USPIO, respectively) (140–144). SPIO and
USPIO shorten the transverse relaxation times T2 andT∗

2 , and
the cells taken up SPIO or USPIO present hypointense on T2 or
T∗
2-weighted images. Rausch et al. found that USPIOs distributed

in patches within the lesion and surrounding area on the first
2 days. On day 4, USPIOs expanded within the lesion core.
On day 7 they were found predominantly within the boundary
area. This strategy has been used in some human studies to
detect macrophage activity in stroke patients (140, 141). With
the target-specific contrast agents, molecular MRI have shown
the potential to examine inflammation markers in vivo in
experimental stroke. Jin et al. designed a magnetic nanoparticle-
P-selectin binding peptide (MNP-PBP) to image endothelial
P-selectin and E-selectin. MNP-PBP showed a notably greater
T2 effect in the infarction and had a tighter binding affinity with
selectin (145, 146). Vascular cell adhesion molecule (VCAM-1)
and MMPs are other targets for neuroinflammation imaging.
In a pre-clinical study, researchers developed microparticles of
iron-oxide (MPIO), an MRI contrast agent that could bind with
VCAM-1 on the cerebral vascular endothelium and visualize
the expression of VCAM-1 (147). The result showed the spatial
extent of VCAM-1 was considerably larger than the lesion
core area measured by DWI MRI. The authors thought that
this molecular MRI imaging of VCAM-1 might include both
ischemic core and potentially salvageable penumbral regions.

Microglial activation can be monitored by PET imaging
with related molecular biomarkers. The 18 kDa translocator
protein (TSPO) system is the most commonly used target
system for neuroinflammatory imaging. Due to the activation
of microglia, the TSPO density is elevated after ischemic
stroke. Furthermore, it has been demonstrated that using [11C]
vinpocetine, a prospective radio ligand of TSPO, the regional
changes of TSPO can be measured in the brain of ischemic stroke
patients (148). The elevated level of TSPO which indicated the
activated microglia was found both in the ischemic core and
peri-infarct area.

As far as imaging modalities concern there are only a few
options, which allow do discriminate different cell types in
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the infarcted tissue of patients. Molecular MRI has shown
promising futures regarding monitoring of inflammatory cells
such as neutrophils, leukocytes and microglia, but it is unable to
provide the information in regards of cell viability. Futhermore,
the molecular MRI is currently not highly specific and the
interpretation of obtained results is sometimes challenging.
The toxicity of contrast agents is another concern. All these
shortcomings complicate the clinical implementation of this
imaging technique.

Imaging Blood-Brain Barrier Leakage
Restoration of blood flow can induce reperfusion injury,
reperfusion injury is one of the events that compromises the
BBB. The leakage of BBB, which has been reported have a
biphasic pattern, can cause severe brain edema and hemorrhagic
transformation (149, 150). MRI and CT are the most widely used
clinical imaging tools to evaluate BBB disruption by detecting the
extravasation of the intravenously administered small molecular
weight contrast agents (151).

Dynamic contrast-enhanced MRI (DCE-MRI) is considered
as the gold standard MRI approach to evaluate BBB permeability
(152). Gadolinium-diethylenetriamine penta-acetic acid and
its variant gadolinium-diethylenetriamine penta-acetic acid-bis
(methylamide) are the most used contrast agents that are given
as intravenous bolus injection. The accumulation of contrast
agents in the extracellular matrix of ischemic tissues results
in increased longitudinal relaxation rate and hyperintensity in
T1-weighted MRI. DCE-MRI exploits this T1 enhancement to
extract quantitative or semi-quantitative information regarding
BBB integrity (153). Several pre-clinical studies using DCE-
MRI assessed BBB integrity after ischemic stroke. The results
consistently have shown a biphasic pattern of BBB permeability
after ischemic stroke. Compared to sham-operated animals, the
BBB permeability on ipsilateral striatum increased at 4 h after the
onset of ischemic stroke. Compared to the 4 h value, a significant
decline of stroke-induced BBB disruption was observed at 24 h.
Another rise of BBB permeability followed at 48 h. At this time
point, the BBB disruption was more prominent than at both 4

FIGURE 5 | Current imaging practice in stroke studies. MRS, magnetic resonance spectroscopy; GluCEST, glutamate weighted chemical exchange saturation

transfer; SPIO, superparamagnetic iron oxide; USPIO, ultrasmall superparamagnetic iron oxide; MNP-PBP, magnetic nanoparticle-P-selectin binding peptide; MRI,

magnetic resonance imaging; DCE, dynamic contrast enhanced; CT, computed tomography; MPIO, microparticles of iron oxide; TSPO-PET, translocator

protein-positron emission tomography; OEF, oxygen extraction fraction; rCBF, regional cerebral blood flow; CMRO2, cerebral metabolic rate of oxygen; DWI/SWI,

diffusion weighted imaging/ susceptibility weighted imaging; T*2OC/PWI, T*2 oxygen challenge/perfusion-weighted imaging; 11C-FMZ, 11C-flumazenil; 18F-FMISO,
18F-Fluoromisonidazole; Cu-ATSM, copper-diacetyl-bis(N4-methylthiosemicarbazone); ATP, adenosine triphosphate; OCI, oxygen challenge imaging.
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and at 24 h after stroke induction (154). The mechanisms of this
partial recovery in BBB function are not completely understood.
Besides, biphasic pattern of BBB permeability has not been
categorically confirmed in stroke patients.

CT can also be used to evaluate BBB integrity. Similar
with DCE-MRI, DCE-CT involves intravenous injection of
an iodinated contrast agent and voxel-wise measurement of
attenuation coefficient as a function of time (155). In the clinical
setting, the accessibility and the fast scanning speed of CT
makes it the first choice for making treatment decisions for
ischemic stroke. BBB disruption can potentially be assessed by
incorporating a DCE-CT protocol into the initial CT imaging of
a patient. Recently, Park et al. developed a new in vivo micro-
CT which uses iopromide to visualize the leakage of BBB. The
new micro-CT BBB imaging technique has a high resolution and
sensitivity (156).

Although some other imaging techniques (such as PET
and optical imaging) have been also used to evaluate BBB
permeability, their limitations, such as low resolution and inter-
rater reliability, restrict their application in the clinic setting
(157, 158).

CONCLUSIONS AND PERSPECTIVE

Reperfusion therapies are critically time dependent. The earlier
treatment within time windows leads to more benefits. For the
patients reached beyond the time windows, “tissue window”
should be considered. Emerging evidence from recent clinical
trials have recognized that tissue viability defined by the imaging
modalities might be a more precise and reliable surrogate
marker than time window (159). The newly issued guidelines
have recommended evaluation of the penumbra or infarction
by DWI, PWI, and CTP to expand eligibility for mechanical
thrombectomy in the 6–24 h window after stroke onset.
Compared to PDM, the novel imaging features on metabolism
and pathophysiology, are more specific and sensitive to examine
the salvageable tissue after stroke, and show great potential to
define the therapeutic window. However, there are still challenges
and controversies. Nonetheless, it needs to be said, that there is
no reliable setting to determine the viability of brain tissue in the
acute stage of stroke. Although visibility of such imaging setting

as oxygen challenge MRI and DCE-MRI/CT for the detection of
BBB leakage were tested in rodent studies, their usefulness for
clinic have not been evaluated yet. Others, such as pH-weighted
imaging and glutamate imaging, have only been validated in
human studies, but all the same the utility of the concepts
have not been evaluated in clinical trials yet (Figure 5). Though
PDM tempts us to differentiate the potential salvageable tissue
from infarction, unfortunately, the ideal imaging parameters and
their accuracy remain elusive. Definitive validation is necessary
in the future research and clinical trials. And because of
a lack of standardization, the incorporation of the imaging
modalities in clinical practice will be consequently limited. Future
investigations on standardization of the imaging sequences and
parameters to define tissue window are expected. Besides, the
restricted attainability and long time needed for examination

are burdens that limit PDM application for stroke patients. For
instance, in Europe on average only 4% of the decision in regards
of possible treatment will be based on MR perfusion and this
number varied greatly from country to country (160). The time
needed for an MRI perfusion scan is ∼16min. That is longer
than 10min, which are needed for CTP. However, it is possible
to standardized stroke MRI protocols and reduce time in this
way down to 10min or even to 6min by using echo planar
imaging at 3 T (161). It is clear that with increased availability and
standardization of the parameters, PDM could become the prime
imaging technique able to precisely define the tissue window and
identify patients eligible for endovascular thrombectomy.
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