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Abstract

Background: Color consistency in histology images is still an issue in digital pathology. 
Different imaging systems reproduced the colors of a histological slide differently. 
Materials and Methods: Color correction was implemented using the color 
information of the nine color patches of a color calibration slide. The inherent spectral 
colors of these patches along with their scanned colors were used to derive a color 
correction matrix whose coefficients were used to convert the pixels’ colors to their 
target colors. Results: There was a significant reduction in the CIELAB color difference, 
between images of the same H & E histological slide produced by two different whole 
slide scanners by 3.42 units, P < 0.001 at 95% confidence level. Conclusion: Color 
variations in histological images brought about by whole slide scanning can be effectively 
normalized with the use of the color calibration slide.
Key words: Color calibration, color correction, color normalization, color 
standardization, whole slide image, whole slide scanning

INTRODUCTION

The use of digital images for educational and 
histopathology diagnostic consults is imminent.[1‑7] In 
order for digital images to be fully effective for such 
purposes ways to further improve their quality were being 
investigated.[8‑12] Although image resolution is one of the 
most fundamental parameters in defining the quality of 
an image, color is also an important part of the image 
quality equation for stained histopathology images.

Figure 1 illustrates the four possible causes of the color 
variations in histological images, namely: (i) staining protocol; 
(ii) whole slide scanning; (iii) displays; and (iv) image viewer.

Staining Protocol
Tissue processing and staining protocols affect the 

staining conditions of histological slides. Parameters, 
such as tissue thickness, stain concentration, and staining 
time have been shown to have an effect on the resultant 
staining color of the sectioned tissue.[13‑15] For example, 
the staining color intensities of thicker tissue sections are 
stronger compared with thinner tissue sections.

Whole Slide Scanning
There are now a number of whole slide scanners available 
in the market which could digitize histological slides at 
high resolutions.[16,17] The production of digital slides 
involves a series of steps wherein specifications of the 
optical and hardware components of the scanner as well 
as the software design for the color image reproduction of 
the histological slides play critical roles. Since whole slide 
scanner makers don’t share common standards for the 
color reproduction software nor for the specifications of the 
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scanner’s components color variations exist in the digital 
slides produced by whole slide scanners of different makers.

Display
Displays are an integral part of a digital pathology 
system. Instead of examining stained histological 
slides under a microscope we view their digital images 
on computer displays. It is pointed out in[18] that 
the displays’ characteristics, i.e., luminance, contrast, 
resolution, color primaries, color gamut and white point, 
could have an effect on the color presentation of medical 
images. Various protocols to calibrate displays have been 
proposed in literatures.[19‑21] The authors in[18] particularly 
re‑introduced the calibration protocol in[19] to investigate 
the impact of calibrated displays on pathology diagnosis. 
Although the results of their study did not show 
significant difference in the diagnostic interpretations of 
pathologists on histopathology images shown on either 
un‑calibrated or calibrated color displays, the results 
showed that pathologists rendered their interpretations 
faster with properly calibrated displays.

Image Viewer
With the rising popularity of whole slide imaging it is 
now possible for user to view whole slide images with 
different viewer software. Whole slide image viewers are 
generally developed by vendors of whole slide scanners. 
The color reproduction parameters of an image viewer are 
therefore tuned to the characteristics of the vendor’s own 
whole slide scanner. It could then be possible to observe 
color variations in the original colors of the scanned 
images when they are viewed with an image viewer which 
was not originally designed for them. Integration of color 
enhancement in the image viewer color reproduction 
pipeline could also be another cause for color variations. 
To this date, there is no consensus yet for a standard 
image format for whole slide images. The way how 
different viewer software handles the color information 
embedded in the proprietary whole slide image formats 
could also cause the color of the displayed images to vary 
from their original scanned colors.

When assessing whether the colors of the digital slides (or 
whole slide images) reflect the colors of their physically 
stained slides, it is ideal that we have the physical slides. 
However, in the realm of digital pathology the physical 
slides are not necessarily available. To normalize the color 
variations in whole slide images produced by different 
whole slide scanners we introduced in this paper the use 
of a color calibration slide which was originally introduced 
in[13] to evaluate the color reproduction accuracy of display 
monitors. The color calibration slide is akin to that of a 
Macbeth color checker whose spectral colors are popularly 
utilized as reference in calibrating image acquisition 
systems[22] and displayed images.[23] The effectiveness 
of the color calibration slide in[13] to normalize the color 
variations in stained histological images was initially 
investigated in.[24] While there are already various methods 
proposed in literatures to normalize or standardize the 
colors of stained histological images[14,15,25‑28] the use of a 
calibration slide for color normalization or standardization 
is attractive since there is no need to calculate for the 
pixels’ color‑statistics, which could be very variable 
depending on the types of objects present in the image. 
In this work, we further investigated the utility of the 
color calibration slide introduced in[13] in normalizing the 
color variations in the scanned images of H & E stained 
histological slides. The results of the color correction 
were evaluated in two aspects: (i) colorimetric difference 
between the color‑corrected images of the same histological 
slide scanned with different whole slide scanners; and (ii) 
color analysis on the different tissue components.

MATERIALS AND METHODS

Color Calibration Slide
The color‑calibration slide for use in the color correction 
procedure was made in‑house. The calibration slide is 
made with a typical glass slide embedded with nine color 
patches. The color patches are made from polycarbonate 
plastic and deep dyed polyester and create colors 
by allowing only to pass specific wavelengths.[29] For 
instance the red color patch absorbs the green and blue 
wavelengths and allows only the red wavelengths to pass. 
The mechanism by which these color patches interact 
with light to achieve their colors is essentially similar to 
the way how stained tissue sections exude their unique 
colors. Stained tissue sections also absorb light of certain 
spectral wavelengths and pass the spectral wavelengths 
associated to their staining. Figure 2 provides the image 
of the color calibration slide wherein color patches of 
sizes around 4 mm2 are arranged at the center of the glass 
slide. The patches’ colors include basic colors, such as 
yellow, red, blue and green, and colors, which are generally 
observed from H & E stained tissue sections.[24] These 
colors were initially selected because their spectral colors 
span the visible spectrum, i.e., 380‑720 nm. Noting that 

Figure 1: Illustration on the causes of color variations in histological 
images
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whole slide scanners were made to image stained tissue 
sections on glass slides we anticipate that there will be no 
issue scanning the color calibration slide.

Color Spaces
Figure 3 shows the relation between color spaces. In the 
present color correction implementation we used the 
viewer software of the scanner to export the scanned 
images of the color patches and thereafter extract 
their colors. Since the viewer software outputs gamma 
corrected RGB (sRGB) images for display on computer 
monitors, inverse gamma correction was applied to the 
exported images to derive their linear RGB‑color values, 
which have a linear relationship with the CIE XYZ 
tri‑stimulus color components. The CIE XYZ color space 
is an additive color space, which implies that a color can 
be defined by adding two or three color primaries. The 
color spacing in the XYZ color space is not perceptually 
uniform. In contrast, the CIELAB color space is a 
perceptually uniform color space making it the choice 
for quantifying the perceptual color difference between 
images.[22] The perceptual color difference between two 
images can be determined by calculating the total color 
difference between the individual CIELAB color values 
of their pixels. Images are considered perceptually similar 
when their calculated CIELAB color difference is <2.2 
units.[30]

Color Correction Procedure
In[24] color correction is performed in the CIE XYZ 
color space, which means that to visualize the corrected 
images color space transformation, i.e., XYZ to RGB, is 
required. Instead of adopting this approach we adopted 
the approach proposed in[23] wherein color correction is 
implemented in the linear RGB color space rather than 
in the CIE XYZ color space. This could be advantageous 
with respect to computational cost considering the huge 
file size of the whole slide image. The process flow of 
the present color correction is illustrated in Figure 4a. 
First the non‑linear RGB colors (or gamma corrected 
RGB) are converted to their linear RGB equivalents 
using Eq. 1.[31] The variables fi and gi, {f gi i, } [0,1]∈ in the 
equation respectively refer to the pixels’ gamma corrected 
RGB (or non‑linear RGB) colors and their corresponding 
linear RGB color values at the i‑th color channel, i = R, 
G and B
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Let M represent the color correction matrix. Linear 
combination of the coefficients of this matrix and the 

linear RGB color vector of a pixel, g, results to a new 
set of 3 × 1 color vector, gn whose resultant color is, 
presumably, perceptually similar to the target color of the 
pixel. The linear process through which gn is derived can 
be expressed in the following form:

 ng =Mg  (2)

Gamma correction is applied to the results of Eq. 2 to 
effectively visualize the color corrected image on ordinary 
color display.

The core of the present color correction method is the 
derivation of the color correction matrix, M, which is 
unique to every scanner. Figure 4b shows a basic diagram 
on how the color correction matrix is determined. The 
calculation of the matrix M requires two color data sets: 

Figure 2: Color calibration slide with nine color patches

Figure 3: Relation between color spaces

Figure 4: (a) Color-correction scheme process flow; (b) illustration 
on the derivation of the color-calibration matrix for use in the 
color correction

b

a
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The target and the scanned colors of the color patches. 
We will discuss in the next sections how these data 
sets are collected and the method by which the color 
calibration matrix, M, is determined.

Color Data of the Color‑Patches
Target colors of the color patches
The target colors of the color‑calibration patches 
are determined from their representative spectral 
transmittance samples. Let t represents the N × 1, 
N = 63, spectral transmittance vector of a color‑patch’s 
pixel. If F is the 3 × N matrix of the CIE XYZ color 
matching function, E the N × N diagonal matrix whose 
elements correspond to the illumination spectrum, we 
can calculate the 3 × 1 XYZ tristimulus vector, z, of the 
pixel’s spectral transmittance, t as follows:[32]

  z=FEt  (3)

The linear RGB color vector of the spectral transmittance 
t can be determined by multiplying the results of 
Eq. 3 with the coefficients of the 3 × 3 XYZ to RGB 
conversion matrix, C:

g =Cz,t  (4)

Scanned colors of the color patches
The scanned colors of the color patches are determined 
from the average RGB colors of their pixels. To identify 
the pixels that belong to the color patches, color‑based 
segmentation followed by pixel classification is performed 
on the scanned image of the color‑calibration slide. The 
color‑based segmentation is implemented using the color 
saturation and value, in the HSV (Hue, saturation, 
value) color space, of the pixels as features. The HSV 
color space is closely related to how humans perceive 
colors. In this color space the color information of an 
image is represented by the hue and saturation of its 
pixels and its brightness is represented by the color value 
of its pixels. Hue is what distinguishes a red from a green 
color, whereas saturation is associated to the amount of 
gray (0‑100%) present in the color, i.e. a measure of 
the purity of a color.[33,34] To segment the color patches 
from the scanned image of the color calibration slide 
a threshold is imposed to the difference between the 
color saturation and value of the image pixels.[8] Pixels 
are labeled as color‑patch pixels and assigned a value 
of 1 when the difference between their color saturation 
and value is above the set threshold otherwise they are 
labeled as background pixels and assigned a value of 
0. To ensure that the segmented color‑patches do not 
include some background pixels, morphological filtering 
is applied to the segmentation result.[35,36] Classification 
of the detected color patch pixels into nine classes is 
implemented using a mean classifier[37] with the RGB 
colors of the pixels as classification features. Pixel 
classification results to a classification map in which 
0 is assigned to background pixels and numeric values 

1‑9 are assigned to the color‑patch pixels depending on 
their class. To reinforce the accuracy of the classification 
results, majority filter was applied to the classification 
map wherein the class of the center pixel within an 
m × m, m = 3, window is assigned to the class of the 
majority.

Color Correction Matrix
The color correction matrix, M, is derived using the 
target and scanned colors of the color patches. Let Gr 
and Gs be 3 × 10 matrices which respectively contain the 
target and scanned linear RGB colors of the nine color 
patches, and the maximum possible grey‑level values of 
a white area. The 3 × 3 color correction matrix M is 
determined using least square method as follows:

+= t sM G G  (5)

The coefficients of M will map the original color of the 
image pixels to their target colors. Moreover, the notation 

+
sG denotes the Penrose pseudoinverse of the matrix Gs.

Color Analysis
The uncorrected and color‑corrected scanned H & E 
stained images are compared and analyzed based on 
their CIELAB color difference values. The CIELAB 
color values of the image pixels can be determined in 
two steps. First, the linear RGB color values of a pixel 
are mapped into the CIE XYZ color space using Eq. 6. 
The results of Eq. 6 are then used in Eqs. 7 and 8 to 
determine the corresponding CIELAB color values of the 
pixel[38] The variables R, G, and B in Eq. 6 correspond to 
the linear RGB color values of a pixel and the variables 
X0, Y0 and Z0, in Eq. 7 correspond to the tri‑stimulus 
values of reference white point which, in our experiments, 
correspond to white point of the D65 light source.
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The perceptual color difference between two image 
pixels is proportional to the Euclidian distance 
between their respective CIELAB color components. 
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The color components in the CIELAB color space 
are the L*, a*, and b* where L* is correlated with 
brightness, a* with redness‑greenness and b*, with 
yellowness‑blueness.[33] The color difference, abdE ,∗

between two pixels whose respective L*a*b* values are 
( )1 1 1L , a ,b∗ ∗ ∗  and ( )2 2 2L , a , b∗ ∗ ∗ can be computed using the 
expression in Eq. 9.

( ) ( ) ( )ab 1 2 1 2 1 2dE L L a a b b
2 2 2∗ ∗ ∗ ∗ ∗ ∗ ∗= − + − + −  (9)

EXPERIMENTS AND RESULTS

Whole Slide Scanners
We used two different whole slide scanners, which we 
labeled as scanner A and scanner B, to scan a set of 
H & E stained histological slides. Both scanners feature 
full automatic scanning mode in which no intervention 
from the user is required to detect the tissue areas or 
identify the spatial locations of the best focus points. 
Although scanner A can scan a glass slide at 0.46 µ/pixel 
or 0.23 µ/pixel resolution its default scan‑resolution is 
at 0.46 µ/pixel. Moreover, scanner B scans a slide at a 
default resolution of 0.25 µ/pixel. Furthermore, both 
scanners have their own viewer software which allows us 
to view and navigate the digital versions of the histological 
slides at different magnifications. It was noted that the 
color of the patches do not significantly vary at different 
pixel resolution, i.e., 0.23 µ/pixel (40×) and 0.46 µ/pixel 
(20×). Images are considered to be perceptually similar in 
color when their CIELAB color difference, is below about 
2.2 units[30] and the resultant abdE ,∗  between the color 
patches at different pixel resolution is about 1.4 units.

Color‑Patches Data
Target Color of the Color Patches
63 spectral images, i.e., N = 63 bands, of the color 
patches with spatial dimensions of 1344 × 1024 were 
captured from 410 to 720 nm at a step of 5 nm using 
a microscopic multispectral imaging system.[39] From 
the multispectral image of a color patch, i.e. 63‑band 
image, 20 spectral transmittance samples were randomly 
extracted. The spectral characteristics of the color patches 
are represented by the mean spectra of their 20 spectral 
samples, as shown in Figure 5a. The resultant RGB colors 
calculated from the patches’ transmittances will serve as 
the target colors of the patches’ in the implementation 
of the color correction. The color palettes in Figure 5b 
demonstrate the target colors of the patches after 
applying gamma correction to the results of Eq. 3.

Scanned Color of the Color Patches
The color patches were detected and classified from the 
lower resolution version (~0.5×) of the high resolution 
whole slide images of the color‑calibration slide utilizing 
the procedure outlined in the color correction section in 
Method. The color strips at the upper panel in Figure 6 

demonstrate the scanned colors of the nine color patches 
as reproduced by scanners A and B. The bar plots in 
Figure 6b, which correspond to the CIELAB color 
difference between the scanned colors of the patches 
and their target spectral colors, demonstrate the color 
reproduction accuracy of the scanner with respect to the 
given color patches. The scanned color of a color patch 
is closer to its target spectral color when the height of 
its bar is shorter. Although both scanners exhibit similar 
error tendencies, they differ in their accuracy level in 
reproducing the colors of specific patches. For example, 
for the blue patch, i.e. patch #7 it is scanner A that is 
more likely to reproduce the patch’s color more accurately 
but for the red patch, i.e. patch #2 it is scanner B rather 
than scanner A.

Histological Images
H & E staining is by far the most popular staining used 
in histopathology laboratories. The stain emphasizes 
the difference between cytoplasm and nuclear regions. 
A poll of eight randomly‑selected H & E stained 
histological slides of different tissue types with varying 
staining condition and thickness (i.e., 4 or 5 µ) were 
considered in our experiments. The tissue types include 
liver, breast, lymph, intestine and brain. The slides were 
scanned with scanner A and scanner B, at their default 
resolutions, i.e., scanner A at 0.46 µ/pixel and scanner B 
at 0.25 µ/pixel.

Color Correction
Figure 7 displays the thumbnail images of the H & E 
stained whole slide images of lymph and liver tissues. 
The uncorrected images are displayed at the top panel 
and the color‑corrected images are displayed at the lower 
panel. Whereas color variations are evident between 
the uncorrected images of scanner A and scanner B, 
such color variations are not directly observed from 
the color‑corrected images at the lower panel implying 

Figure 5: (a) Characteristics spectral transmittance of the color 
patches; (b) red, green, and blue color representation of the color 
patches transmittance spectra

b

a



J Pathol Inform 2014, 1:4 http://www.jpathinformatics.org/content/5/1/4

that color variations among histological images can be 
normalized by applying the present color correction 
scheme. Details of the color analysis between the H & E 
stained scanned images will be presented in the next 
section.

Color Analysis
H & E stained images
Using the respective viewer software of the whole slide 
scanners A and B, we randomly identified 10 regions from 
each of the H & E stained whole slide images scanned 
at the default resolution of the scanners. Representative 
images of these regions were exported in Jpeg image 
format using the image‑export functions of the viewers. 
The exported images of scanner A and B have different 
spatial dimensions, 1280 × 960 pixels for scanner A 
and 1268 × 608 pixels for scanner B and different pixel 
resolutions. To evaluate the perceptual color difference 
between two images in pixel‑wise manner it is important 
that the images mirror each other, i.e. contain the same 
objects in the same orientations and spatial locations. 
Template matching algorithm, as implemented in Open 
Source Computer Vision,[35,36] was utilized to find for 
identical regions from the already re‑sampled images of 
scanner B using the 400 × 400 pixel images which were 
manually cropped from 1280 × 960 images of scanner 
A. A total of 320, 400 × 400 pixel images were collected 
from this process, i.e., eight histological slides × 10 
representative images × 2 regions of interest × 2 

scanners. The CIELAB color differences, abdE ,∗  between 
the 400 × 400 pixel images of scanner A and scanner 
B were calculated and the results are presented in 
Table 1. These results demonstrate the effectiveness of 
the color calibration slide to normalize color variations 
between histological images produced by different whole 
slide scanners. For instance, the average color difference 
between the breast images scanned with scanner A and 
that of scanner B before correction is 5.34, but this has 
been considerably reduced to 1.37 after application of 
the color correction. The significance of these results was 
further validated by the results of an independent t‑test 
statistical analysis. The analysis showed that the reduction 
in the average color difference between scanned images A 
and B after color correction, 

*
abdE( 2.31, 0.001 )p= < was 

significant at 95% confidence level.

Figure 8 displays representatives of the 320 400 × 400 
pixel images which were used to derive the results 

Figure 6: (a) Red, green, and blue colors of the color patches as 
reproduced by scanner A and scanner B. (b) CIELAB color difference 
between the scanned color of the color patches and their respective 
target colors

b

a

Figure 7:  Thumbnail images of the high resolution whole slide images 
of liver and lymph tissues. Images at the first rows correspond to 
liver tissue while those at the second rows correspond to lymph 
tissue. The uncorrected images at the top panel demonstrate the 
existence of color variations between images produced by the two 
scanners. The corrected images at the lower panel illustrate the 
effectiveness of the present color correction scheme to normalize 
the color variations

ba
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presented in Table 1. Images before and after correction 
are respectively arranged at the left and right panels. 
Moreover, the images of scanner A are arranged in columns 
A and those of scanner B are arranged in columns B. 
While the color difference between the original images of 
scanner A and B is obvious, this difference is minimized 
after the application of present color correction scheme. 
These images provide us visualization on the effectiveness 
of the present color correction scheme to normalize color 
differences between images produced by different whole 
slide scanners.

Tissue components
In most automated histopathology image analysis 
the colors of the tissue components are used as main 
features.[25,27] Digital image analysis algorithms require 
some parameters to be set to optimize the analysis 
results. Apparently, the parameter settings optimized 
for images produced by one whole slide scanner may 
not necessarily apply for images produced by another 

scanner. We investigated the effect of color correction on 
specific tissue components such as the nuclei, cytoplasm 
and red blood cells (RBC). For this experiment we 
considered the three histological slides of liver tissue. 
We extracted at least 4000 color samples for each of 
the different tissue components from the 400 × 400 
pixel images. Figure 9 shows the cluster plots of these 
tissue components in the chromatic plane, along a*−b* 
axes, of the CIELAB color space. The color clusters 
of the tissue components are labeled “A” and “B” to 
denote their source images, i.e., scanner A or scanner 
B images. An overlap between cluster A and cluster 
B implies that the colorimetric characteristics of the 
tissue component being compared are similar in both 
source images. We note that after application of color 
correction the clusters from different source images, 
i.e. scanner A and B images, overlap for the most part 
demonstrating that the present color correction was 
effective in normalizing the color differences in the tissue 
components. The histogram of the b* color components 
of nuclei and cytoplasm tissue components shown in 
Figure 10 further illustrate the effect of the present color 
correction in normalizing existing color differences. The 
results of an independent paired t‑test analysis revealed 
that the average mean reduction in the color difference 

Nu Cyto RBC( 5.32, 4.52, 4.88)µ µ µ= = = was significantly 
greater than 0 Nu Cyto RBC( 0.001, 0.001, 0.004)P P P< < =  at 
95% confidence level.

DISCUSSION

Whole slide imaging technology clearly has its benefits 
in pathology practice. However, there are still issues that 
needed to be resolved before it can be fully integrated 
to pathology diagnosis work flow. Color standardization 
of histological images is one of the impending issues in 
digital pathology.[13] In this paper, we proposed a method 
to normalize the color variations in images produced 
by different whole slide scanners. The color correction 

Table 1: Average color difference, 
*
abdE between 

the 400×400 pixel images of scanner A and 
scanner B

Tissue 
type

Before correction After correction

Mean Min Max Mean Min Max

Breast 5.34 4.26 6.23 1.37 0.44 2.58
Brain 3.63 3.31 4.0 3.57 3.15 3.99
Intestine 5.68 3.90 7.00 2.58 1.93 3.59
Lymph 6.90 4.96 8.25 1.44 0.18 2.95
Colon 5.17 4.37 6.03 3.00 2.05 3.70
Liver 1 5.81 4.67 7.30 2.59 1.90 4.19
Liver 2 6.24 4.80 7.37 2.10 1.42 2.72
Liver 3 6.98 4.72 9.55 1.82 0.41 4.42

*Min: Minimum CIELAB color difference, *Max: Maximum CIELAB color difference

Figure 8: 400 × 400 pixels high resolution (×20) images extracted 
from the whole slide images of the different histological slides. The 
left and right panels show the uncorrected and corrected images 
of scanner A and scanner B, respectively

ba
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Figure 10: Histograms of the CIELAB b* color values for Nuclei and cytoplasm. Each histogram was constructed using 5400 color samples. 
The scanner used to capture the images from which the tissue component samples were extracted is identified by the letter appended 
to the tissue component’s name, i.e., A or B; (a) before correction; (b) after correction

ba

Figure 9: Cluster plots of the different tissue components projected onto the a-b chromaticity axes of the CIELAB color space.  An overlap 
between A and B clusters implies that the color of the tissue components in scanned images A and B are similar

ba
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paradigm we proposed does not only provide consistent 
color visualization of the histological images, but it 
also preserves the color fidelity of the different tissue 
components, i.e. no color artifacts. The color correction 
method is also fully integrable to whole slide scanning 
process and could be easily added as feature to whole 
slide viewer software by keeping the color correction 
matrix as well as the target colors of the color‑calibration 
patches. Furthermore, the proposed color correction 
does not rely on the color statistics of the image pixels. 
In effect, color artifacts, which specially appear in the 
corrected image when different types of objects are found 
in target and test images do not necessarily appear in the 
corrected images.

Color‑Correction Implementation
There are two ways by which color standardization using 
the color calibration slide can be implemented: (i) During 
scanning of the histological slides; or (ii) after scanning. 
In both cases the data entries of the color calibration 
matrix, Eq. 5, are needed. This implies that the target 
colors of the color calibration patches have to be saved in 
an accessible drive directory, and the color calibration slide 
should be scanned first to determine the scanned colors 
of the patches. With the color correction matrix at hand, 
color correction can proceed as desired, either during the 
scanning or after the scanning. When color correction 
is implemented during slide scanning the target spectral 
colors of the color‑calibration patches can be incorporated 
into the color profile of the scanner. On the other hand, 
when color correction is desired to be implemented after 
scanning the histological slide, a special function could 
be integrated to the viewer software to allow users to 
interactively invoke the color correction procedure to 
correct the colors of the whole slide images. Although we 
implemented the color correction in the linear RGB space 
the present correction paradigm can also be implemented 
in the CIE XYZ or CIELAB color space.

Image Analysis Application
Digital image analysis algorithms designed for H & E 
stained images generally address the segmentation of 
nuclei, specifically the delineation between the cytoplasm 
and nuclei areas. The general approach to segment nuclei 
from H & E stained images is to employ a threshold on 
the color values of the pixels wherein the appropriate 
threshold value is determined from the color histograms 
of training images. This approach, however, will only 
yield good result when the training and test images 
exhibit similar colorimetric characteristics otherwise 
the result will be unpredictable. Nuclei are stained blue 
to purple by hematoxylin dye while cytoplasm and the 
connective tissues are stained pink to red by the eosin 
dye. The histograms of the b* color values, which express 
the pixels’ blueness, of the nuclei and cytoplasm shown 
in Figure 10 demonstrate that robust image analysis 
can be achieved with the integration of color correction 

process to the analysis pipeline. Application of color 
correction will allow identification of threshold value 
that works for different sets of images without regard of 
their colorimetric variations. Particularly, the histograms 
presented in Figure 10a illustrate that it is difficult to 
identify a threshold value which perfectly works for 
different sets of images, especially when the given sets 
of images have differing colorimetric characteristics. On 
the contrary, the histograms in Figure 10b show that 
by employing the present color correction, it could be 
possible to utilize the same threshold to segment the 
nuclei from different sets of images. These results are 
indicative of the need for color standardization to achieve 
consistency in histological image analysis results.

Limitations
The present color correction scheme is not without 
limitations. The heights of the bar plots in Figure 11 
correspond to the average color difference of the same 
tissue components found in scanned images A and B. It 
can be concluded from this plot that with the current 
color correction set‑up it is a challenge to correct the 
color of the RBC. In[40] the authors argued that it is not 
sufficient to use the dye amount information of the 
stained tissue images to correct the color of the RBC. This 
mainly implies that correcting the color of RBC requires a 
more sophisticated color correction approach than what we 
are currently proposing. However, since the main concern 
when we observe and analyze H & E stained images is the 
contrast between the nuclei and the cytoplasm regions this 
particular issue can be practically ignored.

Figure 1 illustrates to us the possible factors behind 
the color variations in digital slides. The method we 
present in this paper addresses the color variations due 
to utilizing different whole slide scanning systems. When 
the observed color variations are caused by variability in 

Figure 11: CIELAB color difference of the different tissue 
components between scanner A and scanner B images. The colors 
of the tissue component found in scanner A and scanner B images 
are closer when the heights of their bar plots are shorter
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the tissue’s staining conditions, and others, the present 
method may not effectively work.

CONCLUSIONS

There is a continued discussion on color standardization 
in whole slide images. We have mentioned four possible 
causes for the color variations in histological images. In 
this paper, we particularly focused on addressing the color 
variations caused by the different characteristics, both in 
hardware and software designs, of whole slide scanners by 
proposing the use of a color calibration slide. The color 
correction method presented in this paper can easily 
be integrated to the slide scanning process or added as 
feature to the whole slide viewer software. The method 
is also handy in the sense that the data needed for color 
correction are extracted from the color calibration slide 
wherein the number of color patches embedded on the 
glass slide and the spectral colors of these patches are 
known beforehand. The different color patches in the 
current color calibration slide were originally selected to 
correct H & E stained images.[13] The color specifications of 
the color patches and their count can also be modified to 
accommodate other types of staining. Moreover, although 
the effectiveness of the present color correction method has 
been demonstrated, especially on H & E stained images, it 
still remains to be investigated whether this has a profound 
impact on the accuracy of pathology diagnosis. An observer 
study would be the ultimate test in this respect.
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