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Simple Summary: The use of date palm pollen ethanolic extract (DPPE) is a conventional approach
in improving the side-effects induced by Doxorubicin (DOX).DPPE mitigated DOX-induced body and
heart weight changes and ameliorated DOX-induced elevated cardiac injury markers. In addition,
serum cardiac troponin I concentrations (cTnI), troponin T (cTnT), and N-terminal NBP and cytosolic
(Ca+2) were amplified by alleviating the inflammatory and oxidative injury markers and decreasing
histopathological lesions severity. DPPE decreased DOX-induced heart injuries by mitigating in-
flammation, fibrosis, and apoptosis through its antioxidant effect. To reduce DOX-induced oxidative
stress injuries and other detrimental effects, a combined treatment of DPPE is advocated.

Abstract: Doxorubicin (DOX) has a potent antineoplastic efficacy and is considered a cornerstone of
chemotherapy. However, it causes several dose-dependent cardiotoxic results, which has substantially
restricted its clinical application. This study was intended to explore the potential ameliorative effect
of date palm pollen ethanolic extract (DPPE) against DOX-induced cardiotoxicity and the mechanisms
underlying it. Forty male Wistar albino rats were equally allocated into Control (CTR), DPPE
(500 mg/kg bw for 4 weeks), DOX (2.5 mg/kg bw, intraperitoneally six times over 2 weeks), and DPPE
+ DOX-treated groups. Pre-coadministration of DPPE with DOX partially ameliorated DOX-induced
cardiotoxicity as DPPE improved DOX-induced body and heart weight changes and mitigated
the elevated cardiac injury markers activities of serum aminotransferases, lactate dehydrogenase,
creatine kinase, and creatine kinase-cardiac type isoenzyme. Additionally, the concentration of serum
cardiac troponin I (cTnI), troponin T (cTnT), N-terminal pro-brain natriuretic peptide (NT-pro BNP),
and cytosolic calcium (Ca+2) were amplified. DPPE also alleviated nitrosative status (nitric oxide)
in DOX-treated animals, lipid peroxidation and antioxidant molecules as glutathione content, and
glutathione peroxidase, catalase, and superoxide dismutase activities and inflammatory markers
levels; NF-κB p65, TNF-α, IL-1β, and IL-6. As well, it ameliorated the severity of histopathological
lesions, histomorphometric alteration and improved the immune-staining of the pro-fibrotic (TGF-β1),
pro-apoptotic (caspase-3 and Bax), and anti-apoptotic (Bcl-2) proteins in cardiac tissues. Collectively,
pre-coadministration of DPPE partially mitigated DOX-induced cardiac injuries via its antioxidant,
anti-inflammatory, anti-fibrotic, and anti-apoptotic potential.

Keywords: cardiac injury markers; oxidative stress; histopathology; Bcl-2; Bax; TGF-β1; date palm
(pollen extract); doxorubicin

Animals 2021, 11, 886. https://doi.org/10.3390/ani11030886 https://www.mdpi.com/journal/animals

https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0003-3915-4640
https://orcid.org/0000-0001-7208-7123
https://orcid.org/0000-0003-2722-2466
https://doi.org/10.3390/ani11030886
https://doi.org/10.3390/ani11030886
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ani11030886
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani11030886?type=check_update&version=2


Animals 2021, 11, 886 2 of 26

1. Introduction

Doxorubicin (Adriamycin®), an anthracycline chemotherapeutic medication, has been
effective against several types of malignancies since the 1960s [1,2]. It is the most valuable
cytotoxic medication approved by oncologists in tandem with other anti-tumor medications
or radiation and surgery [3]. It is highly potent and effective against solid tumors, i.e.,
breast, lung, bladder, gastrointestinal, thyroid, testicular, and ovarian carcinoma [4,5]. It is
also used for treating hematological cancers, i.e., Hodgkin’s and non-Hodgkin’s lymphoma
and pediatric leukemia [2,3]. Two proposed mechanisms for DOX antineoplastic effects
have been reported [6]. The first one is through DNA chelation as DOX interacts with
DNA, inhibits topoisomerase-II progression, and hinders DNA repair, which triggers
DNA damage and cell death [7]. The second mechanism includes reactive oxygen species
creation (ROS) and oxidative stress induction [8]. In vivo, DOX is metabolized into an
unstable semiquinone, which is transformed back to DOX in a reaction that discharges
ROS and reactive nitrogen species (RNS), causing lipid peroxidation, cell membrane, DNA,
and proteins damages, and prompts apoptotic pathways of cell downfall to kill cancer
cells [8,9]. Genes that can regulate this pathway include those involved with the oxidation
outcome (xanthine oxidase, NADH dehydrogenases, and nitric oxide synthases) and those
which disable free radicals, involving catalase (CAT), superoxide dismutase (SOD) and
glutathione peroxidase (GPx) [9,10]. Nevertheless, such effects are not selective for cancer
cells alone as the same mechanisms can also affect healthy cells [11,12].

It has been reported that DOX administration can induce structural and functional
cardiac alterations, i.e., ventricular distension, diminished output, systolic and diastolic
disturbance [13,14], congestive heart failure (CHF), left ventricular remodeling, and car-
diomyopathy [15,16]. The detailed mechanisms behind DOX-induced cardiac injury have
not been elucidated, but it is possibly involved with several paths. Previous studies re-
ported that DOX-induced cardiotoxicity involved the production of oxidative ROS [17].
As DOX enters the body, it binds tightly to cardiolipin present in the inner mitochondrial
sheath [18], accumulates in mitochondria, and affects the electron transport chain cre-
ation of ROS and RNS [19]. Later, they aggravate mitochondrial and cellular membrane
damage and diminish the antioxidant defense system [20,21], subsequently leading to cell
apoptosis [21].

Mitochondrial damage can also initiate intracellular Ca2+ imbalance [22], which fur-
ther affects the apoptosis paths and causes myocardial cell death [23]. DOX also interferes
with iron regulation [24], up-regulates NF-κB expression, which consequently causes the re-
lease of pro-inflammatory cytokines, i.e., tumor necrosis factor-alpha (TNF-α), interleukin-1
beta (IL-1β), and interleukin-6 (IL-6), and triggers vascular and cardiac inflammatory reac-
tion [25] and exaggerates their downstream apoptotic pathways [26]. In addition, oxidative
stress activates several pro-fibrogenic factors, which enhances the accumulation of extra-
cellular matrix and development of cardiac fibrosis [27], remodeling [28], and eventual
cardiac dysfunction [29]. DOX is still in use. To remain an efficient anticancer medication,
it is essential to find appropriate new therapeutic agents to serve as adjuvants to mitigate
DOX-induced cardiotoxicity. Several therapeutic strategies were developed to minimize
DOX-induced oxidative injury, inflammation, DNA damage, and apoptosis. However,
most of them interfere with DOX’s therapeutic effects, limiting their clinical use for cardio-
protection against DOX-induced cardiotoxicity [30] and up till now no specific effective
and safe drugs have been found.

Phytomedicine is one of the strategies that focus on chemical substances naturally
present in plants to improve health conditions and prevent, manage, and treat many
diseases. Plant phenolics are natural antioxidant agents that embrace an electron that forms
comparatively stable phenoxyl radicals and, consequently, interrupt the redox reactions
within the cells [31]. They were also found to activate a cellular redox defense mechanism
by stimulating endogenous antioxidant fractions [32] and keep the cells from xenobiotic
oxidative stress, DNA impairment, and apoptosis [33]. Much attention has been given
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to using plant chemicals as a defensive strategy to resolve cardiotoxicity triggered by
DOX [34–36].

Date palm pollen (DPP) is a powder formed from date palm (Phoenix dactylifera L.)
male reproductive cells. It has been utilized by the initial Chinese and the primeval Egyp-
tians as a regenerating factor and worldwide as a dietary supplement [37,38]. Yearly,
approximately one thousand tons of DPP are created in Arabic areas [39]. DPP is rich in
many health-promoting factors, i.e., flavonoids and volatile unsaturated fatty acids [40,41];
that have strong antioxidant properties in scavenging free radicals [41,42]. In addition,
DPP has anti-inflammatory, anti-coccidial, aphrodisiac, anti-apoptotic actions, and is a
hepatoprotective agent [43–46]. Egyptian DPP has been proven to have a vast range of nu-
tritionally and biochemically bioactive constituents, i.e., essential and non-essential amino
acids, nucleic acids, different carbohydrates, trace elements, minerals, and vitamins. It
also contains important phenolic compounds, including gallic, caffeic, coumaric, cinnamic,
ferulic acids, catechin, rutin, quercetin, and naringenin propyl gallate. It also contains
saturated (arachidic, capric, lauric, myristic, palmitic, and stearic) and unsaturated (arachi-
donic, linoleic, linolenic, oleic and palmitoleic) fatty acids,ω3,ω6 [47] and a lot of enzymes
and cofactors [38,48]. Furthermore, Egyptian DPP has estrogenic substances, i.e., estriol,
estradiol (E2), and estrone, which were recognized to alleviate male subfertility problems
through their gonadotrophic activity [49]. This study was intended to explore the potential
ameliorative effect of date palm pollen ethanolic extract (DPPE) against DOX-induced
cardiotoxicity and the mechanisms underlying it.

2. Materials and Methods
2.1. Chemicals, Kits, and Reagents

Doxorubicin HCl (Adricin®) injectable solution was procured from EIMC United
Pharmaceuticals (Badr City, Cairo, Egypt). Commercially available kits for the measure-
ment of ALT, AST, LDH, CK, CK-MB, GSH, GPx, CAT and SOD pursuits, and NO and
MDA contents were obtained from Biodiagnostic Co. (Cairo, Egypt). Rat specific ELISA
kits for cTnI and cTnT levels were gained from MyBiosource, Inc. (San Diego, CA, USA).
ELISA kit for NT-proBNP was obtained from CUSABIO (Hubei, China). A commercially
available colorimetric kit for Ca+2 was purchased from Elabscience Co. (Houston, TX, USA).
Rats-specific ELISA kits for IL-6, IL-1β, and TNF-α were bought from BD Biosciences (San
Jose, CA, USA). Masson’s trichrome was purchased from (Sigma Aldrich, St. Louis, MI,
USA). NF-κB p65 total ELISA Kit, hydroxyproline colorimetric assay kit, hematoxylin and
eosin stain (H&E), rabbit polyclonal anti-TGF-β1 antibody (Product# ab25121), rabbit poly-
clonal anti-cleaved caspase-3 antibody (Product# ab4051) and rabbit monoclonal anti-Bax
antibody E63 (Product# ab32503) were purchased from Abcam Co. (Cambridge Science
Park, Cambridge, UK). Rabbit polyclonal anti-Bcl-2 antibody (Product# PA5-27094) was
obtained from Thermo Fisher Scientific Co. (Waltham, MA, USA).

2.2. Date Palm Pollen Grains Collection and Ethanolic Extract Preparation

Date palm pollen grains were gathered from Phoenix dactylifera L. in March 2020 from
El-Beheira, Egypt. They are authenticated at the Department of Botany, Faculty of Science,
Alexandria University. After collection, the pollen grains were dissected from the bark and
washed with water, dried with air, and ground at room temperature using a grinder to fine
powder kept at 4 ◦C until use.

Two hundred grams of DPP powder was extracted twice with 1600 mL of 80% ethanol
for 24 h at room temperature. The extract was filtered in a Buchner funnel and then
centrifuged at 5000 radius centrifugation force (RCF) for 30 min. The obtained supernatant
was evaporated at 40 ◦C in a rotary evaporator under vacuum till complete dryness;
then, the final dry extract and stock solution was preserved in dark glass bottles in the
refrigerator at 4 ◦C for further analysis. The DPPE was re-dispersed in distilled H2O and
orally intubated to treated rats using an intragastric tube at the time of experimentation.
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2.3. Acute Oral Toxicity of DPPE “Median Lethal Dose, LD50”

Acute toxicity trial was carried out following the guidelines of the Organization for
Economic Co-operation and Development [50] to evaluate the acute oral hazard of DPPE.
The ‘Limit Test’ in the up and down procedure (UDP) was conducted to reduce the overall
animals’ suffering. A maximum of 5 male Wister albino rats per group was administered
sequentially with DPPE up to a test dose of 5000 mg/kg bw. Twenty-five adult male Wister
albino rats (180 ± 10 g bw) were allocated randomly into 5 groups (5 rats each) and were
acclimatized for 7 days. The rat groups were fasted overnight and the next morning, freshly
prepared DPPE was orally administrated to groups 1–5 at doses of 1, 2, 3, 4, and 5 g/kg
bw, respectively. The limit test involved dosing an animal with up to 5 g/kg bw. If the
animal managed to survive, two extra animals were dosed. If both animals stayed alive,
the LD50 was supposed to be higher than the limit dose, and the test was finished. The
rats were observed every 2 h for 24 h, and again at 48 and 72 h to record any behavioral
changes, signs of toxicity, and mortalities. The survived animals were observed for any
delayed toxic signs or death for the next 14 days.

2.4. Animals Experimentation and Sampling

Forty adult male Wister albino rats weighing approximately 190 ± 10 g (10 weeks-old)
were purchased from the Medical Research Institute, Alexandria University, Egypt. The
rats were kept in stainless-steel boxes at controlled environment “temperature 25 ± 5 ◦C
and humidity 55 ± 5%” with a 12 h light/dark cycle and free access to standard rat feed (El-
Nasr Co., Cairo, Egypt) and water for 2 weeks before the experiment to follow-up normal
growth and behavior. The animals were given humane treatment in compliance with
the Institutional and National Procedures for the Care and Use of Experimental Animals
(NIH). They were declared by the Local Committee of the Faculty of Veterinary Medicine,
Alexandria University (Ethical Committee Approval Number: 2020/013/59) and ethical
approval of Taif University (42-0081).

After acclimatization, the rats were randomly distributed into 4 equal groups (10 rats
each). Group I (CTR) rats weighing approximately (192 ± 3.6) were orally intubated with
1 mL distilled water using a stomach tube daily for about 4 weeks. Group II (DPPE-treated)
rats weighing approximately (190 ± 8.1) were orally intubated with DPPE at a dose of
0.5 g/kg bw daily for 4 weeks. Groups I and II were also intraperitoneally injected with
0.5 mL isotonic saline solution six times over the last two weeks of the experiment. Group
III (DOX-treated) rats weighing approximately (195 ± 5.2) were orally intubated with 1 mL
distilled water for 4 weeks and were DOX injected intraperitoneally at a dose of 2.5 mg/kg
bw six times over the last two weeks of the experiment [51] with an accumulative dose of
15 mg/kg bw. Group IV (DPPE + DOX) weighing approximately (194 ± 4.5) rats obtained
DPPE and DOX at the same dosage used in groups II and III. DPPE was administrated to
rats an hour before DOX administration (Figure 1).

At the end of the experimentation, the animals were only allowed free access to water
and fasted for 12 h. After that, they were weighed, and blood samples were obtained
just before euthanasia from the retro-orbital plexus of the inner eye canthus under diethyl
ether anesthesia. The collected blood was centrifuged for 10 min at 3000 rpm, and then
the resulting sera samples were kept at −20 ◦C for further analysis. Subsequently, rats
were euthanized by cervical dislocation. The heart was rapidly harvested, rinsed with
saline, dried, weighted, and dissected. The cardiac specimens were immediately frozen
and kept at −80 ◦C. In an ice-cold phosphate buffer saline, the frozen samples were thawed
and homogenized. (0.1 M pH 7.4) utilizing a homogenizer with a Teflon pestle and then
centrifuged at 5000× g for 15 min. at 4 ◦C. Aliquots of the supernatant were frozen at
−80 ◦C for the chemical analysis. In neutral buffered formalin 10% solution, other heart
specimens were immediately fixed for the histopathological and immunohistochemical
assessment.
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Figure 1. A schematic overview of the experimental protocol. CTR, Control group; DPPE, date
palm pollen ethanolic extract-treated group; DOX, doxorubicin-treated group, DPPE + DOX, date
palm pollen ethanolic extract- and doxorubicin treated group. * DPPE was given an hour before
DOX administration.

2.5. Assessment of the Body, Heart, and Relative Heart Weights

At the end of the experimentation, in each rat, the body and heart weight were
recorded. The relative heart weights (RHW) were estimated using the following formula:

RHW =
Heart weight (g)
Bodyweight (g)

× 100

2.6. Assessment of Cardiac Injury Biomarkers and Cytosolic Calcium (Ca+2)

The serum ALT, AST, LDH, CK, and CK-MB levels were estimated as instructed by
the manufacturers. The serum cTnI, cTnT, and NT-proBNP (a marker of heart failure)
concentrations were also measured using the corresponding enzyme-linked immunosor-
bent assay (ELISA) kits using ELISA Plate Reader (Bio-Rad, Hercules, CA, USA). The
supernatant obtained by centrifugation of cardiac tissue homogenate was used to evaluate
the concentration of cytosolic Ca2+ using the Ca2+ colorimetric assay kit, as instructed by
the manufacturer.

2.7. Estimation of Cardiac Nitro-Oxidative Stress and Lipid Peroxidation

The concentration of nitric oxide (NO) was assessed in the supernatants of the cardiac
homogenates based on the enzymatic reduction of nitrate to nitrite. For nitrite detection,
the colored azo dye product “Griess reaction” was spectrophotometrically monitored
at 550 nm absorbance [52]. The levels of MDA [53] and GSH [54] and the activities of
GPx [55], CAT [56], and SOD [57] were spectrophotometrically estimated in the cardiac
tissue homogenates. The total protein content was also assessed [58].

2.8. Assessment of Inflammatory Markers

The cardiac total NF-κB p65, TNF-α, IL-1β, and IL-6 were measured in the supernatant
obtained by centrifugation of cardiac tissue homogenate using the corresponding rat-
specific ELISA kit following the manufacturer’s protocols.



Animals 2021, 11, 886 6 of 26

2.9. Estimation of Hydroxyproline Content

Briefly, about 100 mg of the right ventricle was homogenized in double-distilled water.
In a tightened screw-capped polypropylene vial, the tissue homogenates were mixed with
conc NaOH (10 N) and then boiled for an hour at 120 ◦C. The alkaline lysate was ice-cooled,
neutralized to pH 7.0, and centrifuged to get off supernatants. The hydrolysates were hot
air-dried, chloramine T-oxidized, and finally reacted with Ehrlich’s reagent. The resultant
colored product was measured at 560 nm absorbance, and the amount of hydroxyproline
content was detected by comparing it with a standard curve [59].

2.10. Histopathological Assessment and Semi-Quantitative Scoring Approach

Cardiac samples were immediately fixed in phosphate-buffered formalin (10%, pH 7.4)
after necropsy for 24 h, then were handled using the conventional paraffin embedding
method. The 5 µm thick pieces were cut and placed on slides, deparaffinated in xylene, and
rehydrated using decreasing concentrations of ethanol. One set of slides was hematoxylin
and eosin (H&E)-stained for the routine histopathological setting. An additional set was
Masson’s trichrome-stained for detecting the amount and distribution of collagen fibers [60].
Stained sections were blindly examined using light microscopes and photographed using a
digital camera at a magnification of 400× (Nikon Corporation Co., Ltd., Tokyo, Japan).

To convey the occurrence and severity of the histopathological lesions, a semi-quantitative
scoring approach was used. In each animal group, seven H&E-stained slides (one slide/rat)
were examined, and 10 random fields per slide were used for grading the various patholog-
ical lesions in a blinded fashion. The severity of pathological lesions was asessed according
to the percentage of tissue affected in the entire section as None (−): normal histology with
zero immersion of the inspected field, Mild (+): 5–25% of the tested field was involved,
Moderate (++): 26–50% of the inspected field was involved, Severe (+++): >50% of the
examined field was applied. The incidence represented the number of lesion rats per
total examined.

2.11. Immunohistochemical Assessment

According to Hsu, et al. [61], the immunodetection was assessed using four overlap-
ping paraffin-embedded cardiac tissue sections. Sections were sliced at 4 µm thicknesses
utilizing a microtome and put-on slides that are positively charged. Then, the sections
were deparaffinized, rehydrated in xylene, then in different graded ethanol solutions and
underwent antigen repossession using sodium citrate buffer (10 mM, pH 6.0) in the mi-
crowave at 105 ◦C for 10 min. Then, the activity of endogenous peroxidase was inhibited
with 3% H2O2 for 10 min.; the non-specific proteins were blocked with 5% goat serum
for 30 min at room temperature. The cardiac tissue slices were washed thrice in Dako
Tris-buffered saline (TBS) and then incubated with the specific rabbit primary antibodies:
polyclonal anti-TGF-β1 (dilution 1/200), anti-cleaved caspase-3 (dilution1/100), mono-
clonal anti-Bax (dilution1/250), and anti-Bcl-2 (dilution 1/100) at 4 ◦C overnight. In the
negative control sections, normal IgG was substituted for the primary antibodies at the
same concentration and antibody species. Following PBS washing, the tissue sections were
incubated for an hour with goat anti-rabbit biotin-labeled secondary antibody, rinsed in
PBS for 2 min. Then the sections were incubated with streptavidin-horseradish peroxidase
reagent (VECTASTAIN1 Elite ABC kit, Vector Laboratories, Inc., Burlingame, CA, USA) at
37 ◦C for 20 min then washed with rinsing buffer and incubated with 3,3-diaminobenzidine
tetrahydrochloride (DAB Substrate Kit, Thermo Fischer Scientific, Rockford, IL, USA) as
the chromogen to developed peroxidase reaction. The sections were finally objected to
Mayer’s Hematoxylin to augment the nuclear staining and mounted with di-poly cysteine
xylene (DPX). All slides were assessed blindly and photographed using a digital camera.

2.12. Histomorphometric Assessment

The assessment was performed using H&E, Masson’s trichrome, and immunostained
cardiac sections (one section from each rat and seven per group). The digital images (ten
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different fields per section at ×400 magnification power) were blindly analyzed using
image analysis software (ImageJ Version 1.47, National Institutes of Health, Bethesda, MD,
USA, wayne@codon.nih.gov. The ten values were averaged in each animal, and the average
was used as individual sampling data.

Using H&E-stained sections, the cross-sectional area of cardiomyocytes was assessed
in the left ventricular wall. Fifteen cardiomyocytes with a visible nucleus and intact cellular
membrane were selected per field for the measurement and analysis [62].

Using Masson’s trichrome-stained sections [63], the collagen volume fraction (CVF %)
and perivascular collagen area (PVCA %) percentage were estimated as per the follow-
ing formulas:

CVF (%) =
Collagen area

Total area
× 100;

PVCA (%) = area occupied by the collagen/total area of the vessel sec tion × 100 .

Using images of immunostained slides, the area percentage (%) of TGF-β1, cleaved
caspase-3, Bax, and Bcl-2 immunopositive cardiomyocytes were estimated as area percent
(%) across ten different fields/sections [64].

2.13. Data Analysis

One-way Variance Analysis evaluated the numerical data estimation (ANOVA)test us-
ing SPSS data analysis software (Version 21; SPSS Inc., Chicago, IL, USA) and summarized
it as means ± (SEM). Tukey’s post-hoc test was used to ascertain the statistical difference
between experimental groups. * p < 0.05 was set as statistically significant.

3. Results
3.1. Median Lethal Dose, Mortality, and Survival Rates

Rats of DPPE groups did not exhibit any behavioral changes, toxic side-effects, or even
mortalities after 24 h and 14 days post-treatment. Thus, dosing was ceased at 5 g/kg bw.
Consequently, the LD50 of DPPE was evaluated to be more than 5 g/kg bw. The CTR and
DPPE group did not exhibit any mortality all over the experimental period. However, the
DOX group showed a scruffy appearance and exhibited 30% mortality (three dead rats),
and DPPE + DOX group exhibited 10% mortality (one dead rat) (the data not shown).

3.2. Body, Heart, and Relative Heart Weights and Myocyte Cross-Sectional Area

As demonstrated in Table 1, CTR and DPPE groups exhibited a statistically non-
significant change in the body weight, heart weight, RHW, and myocyte cross-sectional area.
Conversely, the DOX group displayed a significant reduction in body weight (≈0.86-fold)
and a substantial rise in the heart weight, RHW, and the myocyte cross-sectional area
(1.6, 1.7, and 1.52-fold, respectively) compared to CTR values. Nevertheless, DPPE +
DOX group exhibited a non-substantial rise in body weight (≈1.08-fold) and a consider-
able reduction in heart weight (≈0.76-fold), RHW (≈0.71-fold), and the myocyte cross-
sectional area (≈0.73-fold) compared to DOX group values. In comparison with the CTR
group values, DPPE + DOX group expressed a non-significant reduction in body weight
(≈0.93-fold), a significant rise in the heart weight (≈1.22-fold), a non-significant increase
in the RHW (≈1.2-fold), and a substantial increasing in the cardiomyocyte cross-sectional
area (≈1.22-fold).
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Table 1. Effect of date palm pollen ethanolic extract (500 mg/kg bw/day) and/or doxorubicin (2.5 mg/kg bw/day) on
body, heart, and relative heart weights myocyte cross-sectional area of control and treated rats.

Groups Initial Body
Weight (g) Body Weight (g) Heart Weight (g) RHW (%) Cardiomyocyte

Cross-Sectional Area (µm2)

CTR 194 ± 4.5 218.43 ± 4.86 0.85 ± 0.013 0.52 ± 0.07 138.03 ± 3.90
DPPE 195 ± 5.2 221.85 ± 6.51 0.87 ± 0.023 0.49 ± 0.06 135.40 ± 2.65
DOX 190 ± 8.1 189.14 ± 8.36 * 1.36 ± 0.047 * 0.88 ± 0.11 * 210.87 ± 5.26 *

DOX + DPPE 192 ± 3.6 204.43 ± 2.72 1.04 ± 0.061 † 0.63 ± 0.09 154.94 ± 2.06 †

Control (CTR); date palm pollen ethanolic extract (DPPE); doxorubicin-treated (DOX); doxorubicin and date palm pollen ethanolic
extract-treated (DOX + DPPE) groups, and relative heart weight (RHW). (n = 7). Each value is the average of 7 observations. Values are
mean ± standard error (SEM). Mean values within the same columns were statistically different from CTR and DPPE (* p < 0.05). CTR,
DPPE and DOX († p < 0.05).

3.3. Cardiac Injury Biomarkers and Cardiac Cytosolic Calcium (Ca2+)

As demonstrated in Table 2, the CTR and DPPE groups disclosed a statistically non-
significant change in the activities of ALT, AST, LDH, CK, CK-MP, and the levels of cTnI,
cTnT, NT-pro BNP, and cardiac Ca2+. Meanwhile, the DOX group exhibited a significant
increase in ALT (≈1.52-fold), AST (≈1.42-fold), LDH (≈2.49-fold), CK (≈2.8-fold) and CK-
MP (≈2.03-fold) activities, and cTnI (≈5-fold), cTnT (≈3.44-fold), NT-pro BNP (≈2.38-fold),
and cardiac Ca2+(≈1.74-fold) levels as compared to CTR values. In contrast, DPPE + DOX
group demonstrated a significant reduction in ALT (≈0.79-fold), AST (≈0.85-fold) LDH
(≈0.73-fold), CK (≈0.7-fold) and CK-MP (≈0.72-fold) activities, and cTnI (≈0.57-fold)
fold, cTnT (≈0.54-fold), NT-pro BNP (≈0.63-fold) and cardiac Ca2+ (≈0.82-fold) levels,
as compared to DOX values. In addition, this group showed a significant increase in the
activities of ALT (≈1.2-fold), AST (≈1.22-fold), LDH (≈1.83-fold), CK (≈1.97-fold), and
CK-MP (≈1.48-fold), and the levels of cTnI (≈2.89-fold), cTnT (≈1.84-fold) NT-pro BNP
and cardiac Ca2+(≈1.43-fold), as compared to the CTR values.

Table 2. Effect of date palm pollen ethanolic extract (500 mg/kg bw/day) and/or doxorubicin (2.5 mg/kg bw/day) on
serum cardiac injury biomarkers and cardiac cytosolic calcium of control and treated rats.

Parameters CTR DPPE DOX DPPE + DOX

ALT (U/L) 69.26 ± 1.98 66.39 ± 4.25 105.09 ± 3.71 * 83.71 ± 3.04 †

AST (U/L) 143.99 ± 4.74 140.25 ± 5.32 203.97 ± 6.98 * 175.36 ± 6.27 †

LDH (U/L) 496.99 ± 18.28 485.76 ± 31.16 1237.62 ± 65.72 * 908.19 ± 9.61 †

CK (U/L) 218.63 ± 17.16 203.71 ± 5.81 612.92 ± 7.97 * 431.50 ± 17.14 †

CKMP (U/L) 458.99 ± 24.39 440.86 ± 32.52 934.56 ± 41.55 * 682.14 ± 37.44 †

CTnI (pg/mL) 0.37 ± 0.05 0.30 ± 0.05 1.85 ± 0.38 * 1.07 ± 0.13 †

CTnT (pg/mL) 0.91 ± 0.018 0.87 ± 0.03 3.15 ± 0.17 * 1.69 ± 0.15 †

NT- ProBNP (pg/mL) 63.45 ± 3.73 57.31 ± 2.089 151.17 ± 3.44 * 96.55 ± 4.02 †

Ca+2 (µg/g tissue) 32.80 ± 3.60 31.81 ± 2.95 77.35 ± 5.54 * 54.03 ± 5.17 †

Control (CTR); date palm pollen ethanolic extract (DPPE); doxorubicin-treated (DOX); doxorubicin and date palm pollen ethanolic
extract-treated (DOX + DPPE) groups; alanine aminotransferase (ALT); aspartate aminotransferase (AST); lactate dehydrogenase (LDH);
creatine kinase (CK); creatine kinase-cardiac type isoenzyme (CK-MB); cardiac troponin I (CTnI); cardiac troponin T (CTnT); N-terminal
pro-brain natriuretic peptide (NT-proBNP) and cardiac cytosolic calcium (Ca+2). (n = 7). Each value is the average of seven observations
Values are mean ± standard error (SEM). Mean values within the same lines were statistically different from CTR and DPPE (* p < 0.05).
CTR, DPPE and DOX († p < 0.05).

3.4. Cardiac Nitro-Oxidative Stress and Lipid Peroxidation

As demonstrated in Table 3, the CTR and DPPE groups revealed a non-significant
change in the concentrations of NO, lipid peroxidation marker (MDA), and antioxidant
parameters (GSH level and GPx, CAT, and SOD activities). Meanwhile, the DOX group
disclosed a statistically substantial increase in the quantities of NO (≈3.61-fold), MDA
(≈1.86-fold), and a significant reduction of the GSH level, and GPx, CAT, and SOD pursuits
(≈0.46, 0.31, 0.54 and 0.31-fold, respectively) compared to the CTR values. Quite the
opposite, the DPPE + DOX group demonstrated a considerable drop in the levels of NO
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(≈0.58-fold) and MDA (≈0.69-fold) and a significant rise in the GSH level and GPX, CAT,
and SOD activities (≈1.67, ≈2.18, ≈1.41 and ≈2.28-fold, respectively) equated to the
DOX group values. Compared to the CTR group values, DPPE + DOX group showed a
significant rise in the levels of NO (≈2.11–fold), MDA (≈1.29–fold), and a considerable
reduction in the GSH level, and GPx, CAT, and SOD pursuits (≈ 0.77, 0.68, 0.77 and
0.72-fold, respectively).

Table 3. Effect of date palm pollen ethanolic extract (500 mg/kg bw/day) and/or doxorubicin (2.5 mg/kg bw/day) on
cardiac nitro-oxidative stress lipid peroxidation in control and treated rats.

Parameters CTR DPPE DOX DPPE + DOX

NO (µmol/g tissue) 4.84 ± 0.93 3.32 ± 1.09 17.49 ± 2.45 * 10.25 ± 1.07 †

MDA (nmol/g tissue) 37.35 ± 2.41 34.48 ± 2.73 69.52 ± 3.52 * 48.3726 ± 2.29 †

GSH (mmol/g tissue) 25.27 ± 2.96 28.71 ± 1.65 11.73 ± 1.55 * 19.63 ± 0.85 †

GPx (U/g tissue) 17.23 ± 1.48 19.08 ± 2.21 5.42 ± 1.26 * 11.84 ± 1.48 †

CAT (U/g tissue) 34.61 ± 2.19 37.64 ± 2.38 18.92 ± 2.44 * 26.75 ± 2.70 †

SOD (U/g tissue) 13.71 ± 1.318 15.45 ± 1.21 4.31 ± 1.22 * 9.85 ± 1.51 †

Control (CTR); date palm pollen ethanolic extract (DPPE); doxorubicin-treated (DOX); doxorubicin date palm pollen ethanolic extract-
treated (DOX + DPPE) groups; nitric oxide (NO); malondialdehyde (MDA); reduced glutathione (GSH); glutathione peroxidase (GPx);
catalase (CAT) and superoxide dismutase (SOD). (n = 7). Each value is the average of 7 observations Values are mean ± standard error
(SEM). Mean values within the same lines were statistically different from CTR and DPPE (* p < 0.05). CTR, DPPE and DOX († p < 0.05).

3.5. Inflammatory Markers

As shown in Table 4, the CTR and DPPE groups displayed a statistically non-significant
change in the NF-κB p65, TNF-α, IL-1β, and IL-6 concentrations. Meanwhile, the DOX
group exhibited a significant rise in the quantities of NF-κB p65 (≈2.63-fold), TNF-α
(≈2.35-fold), IL-1β (≈1.74-fold), and IL-6 (≈1.85-fold) equated to CTR values. Conversely,
DPPE + DOX group disclosed a significant reduction in the concentrations of NF-κB p65
(≈0.72-fold), TNF-α (≈0.63-fold), IL-1β (≈0.82-fold), and IL-6 (≈0.74-fold) compared to
the DOX group values. Compared with CTR values, DPPE + DOX group exhibited a
significant rise in the NF-κB p65 (≈1.9-fold), TNF-α (≈1.48-fold), IL-11β (≈1.43-fold), and
IL-6 (≈1.36-fold) levels.

Table 4. Effect of date palm pollen ethanolic extract (500 mg/kg bw/day) and/or doxorubicin (2.5 mg/kg bw/day) on
cardiac inflammatory biomarkers hydroxyproline content in control and treated rats.

Parameters CTR DPPE DOX DPPE + DOX

NF-κB p65 (ng/g tissue) 90.23 ± 3.5 83.65 ± 3.8 238.09 ± 22.5 * 172.11 ± 14.8 †

TNF-α (pg/g tissue) 34.29 ± 1.65 32.89 ± 1.89 80.75 ± 5.87 * 50.67 ± 4.81 †

IL-1β (pg/g tissue) 79.81 ± 1.6 81.54 ± 1.7 138.85 ± 3.23 * 114.24 ± 3.65 †

IL-6 (pg/g tissue) 47.20 ± 2.66 44.13 ± 1.71 87.63 ± 2.93 * 64.64 ± 2.21 †

Hydroxyproline (µg/g tissue) 22.67 ± 2.03 20.61 ± 1.92 46.33 ± 2.21 * 38.3 ± 2.87 †

Control (CTR); date palm pollen ethanolic extract (DPPE); doxorubicin-treated (DOX); doxorubicin date palm pollen ethanolic extract-
treated (DOX + DPPE) groups; nuclear factor- kappa B (NF-κB p65); tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and
interleukin-6 (IL-6). (n = 7). Each value is the average of seven observations Values are mean ± standard error (SEM). Mean values within
the same lines were statistically different from CTR and DPPE (* p < 0.05). CTR, DPPE and DOX († p < 0.05).

3.6. Cardiac Hydroxyproline Content

As demonstrated in Table 4, the CTR and DPPE groups displayed a non-significant
change in the hydroxyproline concentrations. Meanwhile, the DOX group exhibited a
substantial rise of about 2-fold when equated with the CTR quantity. In contrast, the DPPE
+ DOX group displayed a significant reduction (≈0.83-fold) compared to DOX values and
a considerable enhancement (≈1.6-fold) compared to the CTR value.
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3.7. Histopathological Results and Lesions Scoring

Figure 2 demonstrated the histomorphological results of H&E-stained cardiac tissue
sections. Table 5 also illustrated the prevalence and severity of the identified pathological
lesions in various treatments.
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Figure 2. Histopathological changes of rats’ cardiac tissues (H&E, ×400). A rat from the control (a)
and a rat from date palm pollen ethanolic extract-treated (b) groups, respectively showing normal
histoarchitecture of the cardiomyocytes with well-organized and branched cardiac myofibers (black
arrow), centrally located oval nuclei (white arrow), and minimal interstitial connective tissue with few
interstitial fibroblasts (red arrow) in between. Doxorubicin-treated rats (c–g) showing vacuolization
of the sarcoplasm (black arrowhead), Zenker’s necrosis (black arrow), wavy muscle fibers (orange
arrowhead), loss of myofibrils (orange arrow), myocardial necrosis (star), mononuclear inflammatory
cells infiltrations (yellow arrow), fibroblasts proliferation (red arrow), and hyperemic interstitial
blood vessels (green arrow). DPPE + DOX-treated rat (h) showing marked improvement in muscle
fibers striation, which almost looks like the control. However, minute areas of myocardial necrosis
with inflammatory cells infiltration (yellow arrow) and hyperemic interstitial blood vessels (green
arrow) are still evident. (n = 7). Each value is the average of seven observations.
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Table 5. Incidence and severity of cardiac histopathological lesions in the examined cardiac tissues in the control group and after various treatments in male Wistar albino rats.

Groups (n = 7) Lesion Severity Loss of Muscular
Striations

Myocardial
Vacuolation

Myocardial
Necrosis

Myofibrillar
Loss

Interstitial
Inflammatory Cells

Infiltrations

Hyperemic Blood
Vessels Interstitial Edema Interfibrillar

Hemorrhage
Myocardial

Fibrosis

CTR

None 6 7 7 7 7 7 7 7 7
(−) −85.71% −100% −100% −100% −100% −100% −100% −100% −100%

Mild 1 0 0 0 0 0 0 0 0
(+) −14.28% 0% 0% 0% 0% 0% 0% 0% 0%

Moderate 0 0 0 0 0 0 0 0 0
(++) 0% 0% 0% 0% 0% 0% 0% 0% 0%

Severe 0 0 0 0 0 0 0 0 0
(+++) 0% 0% 0% 0% 0% 0% 0% 0% 0%

DPPE

None 7 7 7 7 7 7 7 7 7
(−) −100% −100% −100% −100% −100% −100% −100% −100% −100%

Mild 0 0 0 0 0 0 0 0 0
(+) 0% 0% 0% 0% 0% 0% 0% 0% 0%

Moderate 0 0 0 0 0 0 0 0 0
(++) 0% 0% 0% 0% 0% 0% 0% 0% 0%

Severe 0 0 0 0 0 0 0 0 0
(+++) 0% 0% 0% 0% 0% 0% 0% 0% 0%

DOX

None 0 0 0 0 0 0 0 0 0
(−) 0% 0% 0% 0% 0% 0% 0% 0% 0%

Mild 0 0 0 1 0 0 1 1 1
(+) 0% 0% 0% −14.28% 0% 0% −14.28% −14.28% −14.28%

Moderate 2 6 5 6 7 5 6 5 6
(++) −28.57% −85.71% −71.42% −85.71% −100% −71.42% −85.71 −71.42% −85.71%

Severe 5 1 2 0 0 2 0 1 0
(+++) (71.42%) −14.28% −28.57% 0% 0% −28.57% 0% −14.28% 0%

DPPE + DOX

None 0 0 0 1 0 0 1 2 0
(−) 0% 0% 0% −14.28% 0% 0% −14.28% −28.57% 0%

Mild 5 5 4 4 2 5 5 3 5
(+) (71.42%) −71.42% −57.14% −57.14% −28.57% (71.42%) −71.42% −42.85% −71.42%

Moderate 2 2 3 2 5 2 1 2 2
(++) −28.57% −28.57% −42.85% −28.57% −71.42% −28.57% −14.28% −28.57% −28.57%

Severe 0 0 0 0 0 0 0 0 0
(+++) 0% 0% 0% 0% 0% 0% 0% 0% 0%

Control (CTR); date palm pollen ethanolic extract (DPPE); doxorubicin-treated (DOX); doxorubicin and date palm pollen ethanolic extract-treated (DOX + DPPE) groups. The severity of pathological lesions in
different groups of rats was determined according to the percentage of tissue affected as: None (−): normal histology with zero involvement of the examined field, Mild (+):5–25% of the examined field is
involved, Moderate (++): 26–50% of the examined field is involved Severe (+++): ≥50% of the examined field is involved. Incidence is the number of rats with lesions per total examined. (n = 7).
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Heart tissues from the CTR (Figure 2a) and DPPE (Figure 2b) groups revealed normal
histoarchitecture with well-organized and branched cardiac myofibers. The cardiomy-
ocytes were closely arranged with oval centrally located nuclei, eosinophilic cytoplasm,
and cross striations. In addition, minimal interstitial connective tissue and few fibrob-
lasts were noticed. Meanwhile, the DOX group exhibited moderate to severe histological
alterations and high lesion scores (Table 5), wherein disoriented cardiac myofibers with
wavy appearance were evident. Furthermore, myocardial degenerative changes such
as sarcoplasmic vacuolization (Figure 2c), myofibrillar flocculation, and fragmentation
were noticed. Many cardiomyocytes showed Zenker’s degeneration. Meanwhile, others
exhibited Zenker’s necrosis. Myocytolysis (Figure 2d) and multifocal zones of myocardial
necrosis combined with infiltrations of mononuclear inflammatory cells (Figure 2e) were
obvious. Additionally, hyperemia of interfibrillar blood vessels (Figure 1f), perivascular
edema with inflammatory cell infiltrations (Figure 2g), intramyocardial edema, fibrin depo-
sition, and focal areas of hemorrhage were noticed. There were interfibrillar infiltrations of
active fibroblasts with a hypertrophic nucleus and marked myocardial and perivascular
fibrosis. On the contrary, the DPPE + DOX group displayed a marked enhancement in
cardiac tissue structure and integrity. Nevertheless, they were not identical to the CTR
limits. Compared with the DOX group, the previously noted lesions were less in severities
and distribution in the DPPE + DOX group (Figure 2h, Table 5).

3.8. Masson’s Trichrome Staining and Histomorphometric Findings

As illustrated in Figure 3, the cardiac tissue sections of the CTR (Figure 3a,e) and DPPE
(Figure 3b,f) groups displayed normal spreading of greenish delicate collagen fibers in
between the cardiomyocyte fibers and around the intramyocardial coronary vessels. They
also revealed non-significant changes (p > 0.05) in the mean CVF% (Figure 3i) and PVCA%
(Figure 3j). Conversely, the DOX group (Figure 3c,g) exhibited an apparent increase in
the amount of collagen fiber deposition as well the mean CVF % (≈8.5-Fold) and PVCA%
(≈3.09-fold) as compared to the CTR values (Figure 3i,j, respectively). However, the DPPE
+ DOX group revealed a marked reduction in collagen fiber deposition (Figure 3d,h).
Meanwhile, the mean CVF % and PVCA% showed significant (p > 0.05) decrease with
approximately 0.61-fold and 0.68-fold, respectively, when linked to DOX group values
and significant (p > 0.05) increases with approximately 5.24 and 2.11-fold, correspondingly
when equated to the CTR values (Figure 3i,j, respectively).
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3.9. Immunohistochemical Analysis 

Figure 3. Histopathological changes of rats’ cardiac tissues (Masson’s trichrome, ×400, arrows: green
stained collagen fibers). Rats from the control (a,e) and DPPE (b,f) groups, respectively showing
scanty collagen fibers deposition. DOX treated rat (c,g) showing increased collagen deposition. DPPE
+ DOX-treated rat (d,h) showed a relative reduction in collagen deposition. Quantification of collagen
volume fraction (CVF%), and perivascular collagen area (PVCA%) (i,j), respectively, ×400 across 10
different fields/section), n = 7 rat/group. Mean values were statistically differ from CTR (# p < 0.05),
DPPE (* p < 0.05), DOX ($ p < 0.05) groups.

3.9. Immunohistochemical Analysis

For the expression of TGF-β1 in the cardiac tissue of the control groups, the CTR
(Figure 4a) and DPPE (Figure 4b) groups revealed a normal expression of TGF-β1 (brown
color). Both groups showed no significant alterations in the mean immune-stained area %
of TGF-β1 (Figure 4e). Conversely, DOX-treated rats exhibited a noticeable increase in
TGF-β1 expression (Figure 4c) with a substantial (p < 0.05) rise of the mean immune-stained
area% (≈2.6-fold), as associated with the CTR group value (Figure 4e). However, DPPE +
DOX-treated rats exhibited a conspicuous decrease in TGF-β1 expression (Figure 4d) with
a substantial (p > 0.05) decline in mean immune-stained area% (≈0.7-fold) as compared
to the DOX group value and a significant (p > 0.05) increase (≈1.84-fold) concerning CTR
group quantity (Figure 4e).
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Figure 4. Immunohistochemical staining of transforming growth factor β1 (TGF-β1) in the experi-
mental rats’ cardiac cells (IHC, ×400). A control (a), DPPE-treated (b) DOX-treated (c) and DPP +
DOX-treated (d) rats. (e) Quantification of TGF-β1 expression, the immunohistochemical staining of
TGF-β1 was measured as area percent (%) across 10 different fields/section, n = 7 rat/group. Mean
values were statistically differed from CTR (# p < 0.05), DPPE (* p < 0.05), DOX ($ p < 0.05) group.

Referring to cleaved caspase-3, Bax, and Bcl-2 expressions, the control (Figures 5a, 6a and 7a)
and DPPE (Figures 5b, 6b and 7b respectively) groups revealed weak representation of
cleaved caspase-3 and Bax. In addition, both groups showed a robust expression of Bcl-2
with dispersed, intensely brown stained immune-reactive cardiomyocytes. There were
no significant alterations in the mean area% of cleaved caspase-3, Bax, and Bcl-2 immuno-
stained cells (Figures 5e, 6e and 7e, respectively). Meanwhile, DOX-treated rats’ cardiac
tissues displayed moderate to strong expression and immune-staining of cleaved caspase-
3 (Figure 5c) and Bax (Figure 6c) and weak expression and immune-staining for Bcl-2
(Figure 7c). Relative to the CTR group values, the mean area% of immune-stained cells
showed a substantial (p > 0.05) rise for cleaved caspase-3 (≈8.95-fold) and BAX (≈2.37-fold)
and a significant decrease for Bcl-2 (≈0.3-fold) (Figures 5e, 6e and 7e, respectively).
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Figure 5. Immunohistochemical staining of cysteine aspartate specific protease-3 (cleaved caspase-3)
in the cardiac cells of the experimental rats (IHC, ×400). A control (a), DPPE-treated (b) DOX-treated
(c) and DPP + DOX-treated (d) rats. (e) Quantification of caspase-3 expression, the immunohistochem-
ical staining of cleaved caspase-3 was measured as area percent (%) across 10 different fields/section,
n = 7 rat/group. Mean values were statistically different from the CTR (# p < 0.05), DPPE (* p < 0.05),
and DOX ($ p < 0.05) groups.
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Figure 6. Immunohistochemical staining of Bcl2 associated X protein (Bax) in the experimental rats’
cardiac cells (IHC, ×400). A control (a), DPPE-treated (b) DOX-treated (c) and DPP + DOX-treated (d)
rats. (e) Quantification of Bax expression, the immunohistochemical staining of Bax was measured as
area percent (%) across 10 different fields/section, n = 7 rat/group. Mean values were statistically
different from the CTR (# p < 0.05), DPPE (* p < 0.05), and DOX ($ p < 0.05) groups.

The cardiac tissues of DPPE + DOX-treated rats exhibited weak expression and
immune-staining of cleaved caspase-3 (Figure 5d) and Bax (Figure 6d). It also showed mod-
erate to strong expression and immune-staining of Bcl-2 (Figure 7d). Constantly, the mean
immune-stained areas % in DPPE + DOX group showed a significant (p < 0.05) reduction
for cleaved caspase-3 (≈0.39-fold) and Bax (≈0.72-fold) and a considerable increase for
Bcl-2 (≈1.9-fold) as associated with the DOX treated group values (Figures 5e, 6e and 7e,
respectively). Meanwhile, they showed a substantial (p < 0.05) surge for cleaved caspase-
3 (≈3.55-fold) and Bax (≈1.72-fold) and a significant decrease for Bcl-2 (≈0.59-fold), as
equated with the CTR group (Figures 5e, 6e and 7e, respectively).
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Figure 7. Immunohistochemical staining of B-cell lymphoma-2 (Bcl-2) in cardiac cells of the experi-
mental rats (IHC, ×400). A control (a), DPPE-treated (b) DOX-treated (c) and DPP + DOX-treated (d)
rats. (e) Quantification of Bcl-2 expression, the immunohistochemical staining of Bcl-2 was measured
as area percent (%) across 10 different fields/section, n = 7 rat/group. Mean values were statistically
different from the CTR (# p < 0.05), DPPE (* p < 0.05), and DOX ($ p < 0.05) groups.

4. Discussion

Anthracyclines, including doxorubicin, play a crucial role in chemotherapy for the
medication of numerous solid organ tumors and hematologic malignancy [12,16]. However,
dose-based cardiotoxicity of anthracyclines is frequently reported to limit their therapeutic
efficacy [5,65,66]. Since the DOX cardiotoxic effects are generally irreversible, searching for
new protective approaches that could interrupt DOX-induced pathogenic events and confer
protection against its cardiotoxicity should be developed [67]. Currently, the handout study
is nearly the first to verify the meliorative potential of DPPE on DOX-induced cardiotoxicity.
DOX cardiotoxicity is the ultimate obstacle to be solved to enhance its clinical usage [68].
In this work, rats were treated with 15 mg DOX/kg bw as a cumulative dose to mimic its
chronic cardiotoxicity, as seen in clinical therapies [69]. Several pathways participate in
DOX-induced cardiotoxicity.

However, the main mechanism involved is ROS generation, which causes peroxidation
of lipids and depletion of antioxidant enzymes [35]. The cardiac tissue has many mito-
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chondria because it needs much energy, making it more susceptible to DOX toxicity [67].
They have a high DOX affinity because their inner membrane encompasses cardiolipin, an
anionic phospholipid with a high binding affinity to cationic DOX [67,70]. In mitochondria,
cytochrome p450 reductase, xanthine oxidase, and NADPH dehydrogenase have to convert
DOX into a semiquinone radical that interacts with molecular oxygen forming superoxide
anion and an extra ROS [67]. Since free radicals act as the main contributor to DOX-induced
cardiotoxicity, antioxidant compounds are known to be possible protective and therapeu-
tic agents [71,72]. Dexrazoxane is the only synthetic medication used for cardiotoxicity
prevention in clinical conditions [73,74]. DPP contains polyphenols and flavonoids with
effective antioxidant and anti-inflammatory potentials that clarify its prospective use in
many diseases. It also has antimicrobial, anti-coccidial, anti-apoptotic, and hepatopro-
tective potential [43,44,46]. Similarly, DPP is used as an anti-toxicant [42] and provides
a cardio-preventive ability against isoproterenol-triggered myocardial infarction [42]. Its
effect against DOX-induced cardiotoxicity has never been investigated.

The DOX group showed a scruffy appearance and exhibited 30% mortality. This
result was parallel to those reported by Wu, et al. [75]. However, in DPPE + DOX-treated
animals, there was relatively low mortality, reflecting that pre-cotreatment with DPPE
might improve the survival of DOX-intoxicated rats. Additionally, the DOX persuaded
a significant reduction in body weight [76,77], which might be due to decreased appetite,
reduced protein synthesis, mucositis, and/or inadequate assimilation of nutrients [78–80].
The improved body weight in DPPE + DOX-treated animals mirrored the protective effects
of DPPE. Cardiomyopathy caused by DOX is a shift from myocardial hypertrophy to
heart failure [81]. In animals, myocardial hypertrophy is mainly assessed by measuring
heart index weight [82]. In the current work, the DOX caused an increment in heart and
relative heart weights and cardiomyocyte cross-sectional area, which indicated ventricular
hypertrophy [75,81,83–85]. However, pre-cotreatment with DPPE revealed a reduction in
the previous parameters, suggesting the ability of DPPE to maintain the normal integrity
of cardiomyocytes. The cardiac enzymes ALT, AST, CK, CK-MB, LDH, CK, LDH, cTnI,
and cTnT are a dynamic bioindicator of myocardial injury [35]. The DOX-induced cardiac
damage was evident through the substantial rise of cardiac injury biomarkers: ALT, AST,
LDH (not very specific biomarkers), CK, CK-MB, cTnI, and cTnT (more specific and sensi-
tive biomarkers) activities, reflecting cardiomyocyte membrane disruption and extensive
cardiomyocyte damage [59,76,86]. However, they were reduced following pre-cotreatment
with DPPE, suggesting its competency to maintain the normal integrity of cardiac mus-
cle and to inhibit DOX-induced myocardial damage [42]. An earlier study showed that
antioxidant compounds could decrease cardiac function biomarkers in DOX-intoxicated
rats [35].

The N-terminal pro-brain natriuretic peptide is a peptide produced to control blood
pressure fluid equilibrium. It is liberated from the heart following ventricle volume
expansion and/or pressure overload [87]. A large amount of NT-pro BNP is released
into the blood during cardiac insufficiency, so it is considered a sensitive biomarker of
congestive heart failure [88]. It is also a valuable predictor in patients with anthracycline
chemotherapy as a vital biomarker of left ventricular dysfunction [89]. Herein, the DOX-
induced, a dramatic increment of serum NT-pro BNP level, demonstrating that it can cause
acute cardiac failure [35,90]. However, pre-cotreatment with DPPE lowered NT-pro BNP
serum level, suggesting that DPPE may defend the heart from DOX-induced toxicity and
cardiac damage.

The generation of large quantities of ROS and O−
2 in DOX metabolism results in DNA

and mitochondrial injury, therefore enhancing lipid peroxidation in the cell membrane and
increased MDA levels in cardiac cells [91]. In turn, free radicals released in response to
DOX can interfere with the balance between oxidative and antioxidants agents, followed
by depletion of the endogenous myocardial antioxidant compounds (GSH) and enzymes
(GPx, SOD, and CAT) [77]. Herein, DOX-intoxicated rats exhibited increased oxidative and
nitrosative stresses, indicated by an increment of MDA and NO, and a substantial decline
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in antioxidant enzyme activity [76,92]. The recorded decline in the antioxidant enzyme
activity could be attributed to their utilization in the fight against oxidative stress [35].
Remarkably, pre-cotreatment with DPPE diminished MDA and NO levels, and improved
antioxidant activity in cardiac tissue, suggesting the antioxidant ability of DPPE against
DOX-induced oxidative/nitrosative stress. Furthermore, DPPE expressed antioxidant activ-
ity and defensive mechanisms by restoring oxidative stress/antioxidant balance in several
toxic modules [40,49,93]. Many earlier studies of phytochemical or antioxidant elements
have demonstrated their ability to reduce lipid peroxidation and improve the value of an-
tioxidant markers in DOX cardiotoxicity [21,35,71,76,94,95]. The mechanism for protecting
the DPPE may include de-activating potentially toxic metabolites and free radicals and
potentiation of antioxidant paths [96]. Other investigators claimed that DPPE incorpo-
rates considerable amounts of flavonoids, phytosterols, and carotenoids [42,97], which are
antioxidants with redox activities acting as reducing agents ROS/NOS quenchers [98].

It is well established that increased free radicals output with excitotoxicity and lipid
peroxidation accelerates inflammatory conciliators’ synthesis and thus activates the in-
flammatory response in the cardiac tissue [99]. NF-κB, a transcription factor, is involved
in cell survival, inflammation, and immune responses. NF-κB p65 modulates the inflam-
matory responses, whereas its translocation to the nucleus enhances transcription of the
pro-inflammatory cytokines, i.e., TNF-α, IL-1β, and IL-6 [100,101]. In turn, they provoke
leukocyte infiltration into the myocardium and aggravate inflammatory injury [102]. Con-
sistently, DOX stimulated NF-κB p65, TNF-α, and IL-1β production in cardiac tissues,
which can also cause cardiomyocyte apoptosis by increasing Ca2+ store of heart muscle
cells [26]. As well, DOX provoked a substantial rise in NF-κB level and correspondingly
induced an increment in TNF-α and IL-1β quantities, reflecting enhanced inflammatory
responses [71]. However, DPPE pre-cotreatment generated a substantial decline in NF-kB’s
cardiac contents and the related downstream pro-inflammatory cytokines, TNF-α and
IL-1β, indicating its potential to suppress the initiated inflammatory cascade.

Disruption of Ca2+ homeostasis is another pathway implicated in DOX-generated car-
diac toxicity. It is documented that DOX cardiotoxicity is accompanied by a high overload
of Ca2+ in cardiomyocytes, resulting in inadequate contraction and interference with Ca2+

regulation, thus triggering ROS generation and leading to cell dysfunction [103–105]. In
the present work, DPPE was found to mitigate oxidative stress-mediated Ca2+ overload in
DOX-challenged cardiac tissues. This may be attributed to DPPE’s antioxidant properties,
which suppress ROS generation and consequently reduce such high Ca2+. Moreover, ROS
and O−

2 exaggerated cardiac dysfunction and mitochondrial damage induced in DOX
therapy [17]. The formation of the Fe-anthracycline complex catalyzes the transformation
of H2O2 to OH• radicals, resulting in severe cytoskeleton injury and plasma membrane
disruption followed by myofibril loss, sarcoplasmic reticulum dilation, and myocardial
necrosis [24,106].

The findings of the cardiac tissues histopathological analysis supported the biochem-
ical interpretations. Due to enlargement of the sarcoplasmic reticulum, DOX induced
several degenerative changes in heart tissue, including myocardial hyalinization, and
sarcoplasmic vacuolization [107], wavy myocardial fibers flocculation, and fragmentation.
In addition, multifocal areas of myocardial necrosis, myofibrillar loss, inflammatory cell
infiltrations, myocardial fibrosis, hemorrhage, vascular congestion, and interfibrillar edema
were observed [71,74,100,108,109]. On the contrary, cardiac tissues of DPPE plus DOX-
treated animals showed a marked improvement in cardiac tissue structure and integrity.
According to the histomorphometric analysis, the previously declared lesions were less
in incidence and severity. These remarks were comparable with other experiments that
verified the potential of DPPE as anti-myocardial damage [42]. The literature reviewed
that DPPE contains bioactive substances, including estradiol [110], stigmasterol [111], β-
sitosterol [112], carotenoids lutein [113,114], δ-tocotrienol [115], and isorhamnetin [116],
which have potential cardioprotective activities.
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Fibrosis is a reparative reaction to DOX-induced cardiotoxicity [85]. The necrotic or
apoptotic cardiomyocytes are replaced by overproduced collagen by fibroblast. However, it
contributes to heart rigidity and instability [85,117]. DOX-induced cardiac fibrosis is based
on the inflammatory and growth factors signaling paths regulated by TGF-β1. Increased
oxidative stress and the subsequent antioxidant depletion and lipid peroxidation trigger
tissue inflammation and necrosis and enhance tissue fibrogenesis progression [35,59,118].
TGF-β1 is another key factor in the regulation of collagen production in DOX-induced
cardiomyopathy. The pro-fibrogenic cytokine, TGF-β1, is a proliferation-mediated fibrotic
protein produced by cardiac myofibroblast and is responsible for cardiomyocyte hypertro-
phy, apoptosis, and fibrosis. It may stimulate cardiac fibroblastic hyperplasia, increased
production of type I and III collagen fiber and fibronectin, and cause increased extracellular
matrix and decreased extracellular matrix degradation through inhibition of collagen en-
zyme release [28,119]. In the current work, DOX elevated the cardiac hydroxyproline level,
the major component of fibrillar collagen [59]. Additionally, DOX-induced remarkable
hypertrophy of fibroblast increased collagen deposition, and fibrosis was further confirmed
by Masson’s trichrome staining of the cardiac tissues [120]. DOX also increased the TGF-β1
expression in cardiac tissues [85,121–123]. However, DPPE pre-cotreatment induced a
marked reduction in collagen fiber deposition between cardiac muscle fibers and around
the intramyocardial coronary vessels, hydroxyproline content, and TGF-β1 expression in
cardiac tissues. Therefore, DPPE has a potential aptitude to maintain the normal integrity
of cardiac muscle and inhibit DOX-induced myocardial damage, which attenuated fibrosis
development via modulation of fibrogenic genes.

The major regulators of apoptosis are Bcl-2 family members, which involve pro-
apoptotic protein (Bax, caspase-3) and anti-apoptotic (Bcl-2) proteins [74]. During apoptosis,
the Bcl-2 expression declines, while Bax and caspase-3 expressions rise [124]. Bax stimula-
tion ensures cell damage by forming a pore in the mitochondrial membrane, leading to
poly (ADP-ribose) polymerase cleavage and mitochondrial cytochrome-c induction, which
mediate apoptosis [125]. Meanwhile, the Bcl-2 inhibits apoptosis by inhibiting mitochon-
drial permeability transition [126] in cardiomyocytes protecting mitochondrial structure
and function [124]. Caspases are essential parts of the apoptotic process. Opened mitochon-
drial pores lead to mitochondrial cytochrome-C release, and activated caspase-3 triggers
proteolytic degradation of cellular components death [127]. Herein, the immunohistochem-
ical staining of myocardial tissues showed that DOX caused an increase in the cleaved
caspase-3 and Bax expressions and decreased Bcl-2 expression, which reflected apopto-
sis’s role in DOX-induced cardiomyopathy [76,86,128]. Nevertheless, pre-cotreatment
with DPPE reduced cleaved caspase-3 and Bax and enhanced Bcl-2 expressions, imply-
ing that DPPE’s anti-apoptotic activity could conserve myocardial integrity and mitigate
myocardial damage.

5. Conclusions

Collectively, for the first time from these observations, it is indicated that date
palm pollen ethanolic extract displayed an effective cardioprotective potential against
doxorubicin-induced cardiac myopathy. The antifibrotic and anti-apoptotic mechanisms of
DPPE were attributed to suppressing cardiac oxidative/nitrosative damage, pro-inflammatory
cytokines production, and fibrogenic and apoptotic gene expressions, thereby reducing
myocardial myopathy and detrimental structural alterations. Accordingly, DPPE is highly
recommended as an adjunct to avert the toxic side-effects caused by doxorubicin.
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Abbreviations

ALT alanine transaminase
AST Aspartate aminotransferase
Bax Alanine aminotransferase
Bcl2 B-cell lymphoma 2
BW body weight
CAT Catalase
CHF congestive heart failure
CK creatine kinase
CK-MB creatine kinase-cardiac type isoenzyme
CVF collagen volume fraction
cTnI Serum cardiac troponin I
cTnT Troponin T
DOX Doxorubicin
DPPE date palm pollen ethanolic extract
GPx glutathione peroxidase
GSH reduced glutathione
IL-1β interleukin-1 beta
IL-6 interleukin-6
LDH lactate dehydrogenase
MDA Malondialdehyde
NO nitric oxide
NT-pro BNP N-terminal pro-brain natriuretic peptide
PVCA collagen area
RCF radius centrifugation force
RNS reactive nitrogen species
ROS Redox Oxygen species
SOD superoxide dismutase
TNF-α tumor necrosis factor-alpha
UDP up and down procedure
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