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Introduction
One of the goals of livestock genomics research is to identify 
the genetic variation responsible for variation in phenotypic 
traits, particularly those of economic importance. Character-
izing the genetic variation is an important step toward linking 
genes or genomic regions with phenotypes. The duck is one 
of the most economically important waterfowl as a source of 
meat, eggs, and feathers.1 The duck is very important in some 
regions of the world, mainly in eastern and southern Asia. The 
total number of slaughtered ducks has increased significantly 
for several years in the commercially slaughtered poultry.

The completion of the duck genome sequence and recent 
advances in DNA sequencing (DNA-seq) technology allow 
for in-depth characterization of the genetic variations present 
in duck. Duck genome assembly is based on a domesticated 
individual from the Beijing breed, containing 78,487 scaf-
folds with an N50 value of 1.2 Mb and a set of 19,144 genes. 

The size of the duck genome assembly is 1.1 billion bases, 
and the heterozygosity rate was estimated to be 0.26%.1 The 
single-nucleotide polymorphisms (SNPs) identified in the 
duck represent an essential step for future improvement of 
economically important traits through genetic association 
studies. Certain SNP markers associated with reproductive 
traits in ducks, especially hatchability, were identified, such as 
lysozyme,2 ovomucoid gene,3 and COLX gene.4 However, to 
date, very limited SNPs have been identified within the whole 
duck genome assembly.

Transcriptome analysis has rapidly been shaped by 
next-generation sequencing technologies, as the benefits of 
RNA sequencing (RNA-seq) were acknowledged. The direct 
sequencing of cDNA libraries in RNA-seq allows for the 
discovery of new genes, transcripts, alternative splice junc-
tions, fused sequences, and novel RNAs. RNA-seq has exten-
sively been used to study the profile of gene expression, allelic 
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difference in expression, transcriptome characterization, RNA–
protein interactions, and alternative splicing.5 However, very 
few studies have reported on the viability of SNP detection 
using RNA-seq.6–10 Accurate mapping of junction reads to 
their genomic origins is crucial for avoiding mismatches that 
are interpreted as false SNPs. However, to date, very few com-
putational pipelines for SNP calling have the ability to map 
reads in a splice-aware manner,11 which poses a challenge to 
accurate SNP detection in RNA-seq data rather than that in 
DNA-seq data (whole-genome resequencing or exome data).

The complete intraspecific genome can be applied to 
inspect variants that have been subject to positive selection in 
the recent past. In theory, a beneficial variant that has been 
under the pressure of selection will generate distinct patterns 
in the respective region of the genome, such as reduction in 
variability and increase in linkage disequilibrium. Accordingly, 
the beneficial loci can be detected by examining the SNP pat-
terns in intraspecific genome alignments. A  number of statisti-
cal methods based on different demographic models have been 
proposed in the recent decades, such as  Tajima’s D,12 Hud-
son–Kreitman–Aguadé test,13 Fay and Wu’s H test,14 fixation 
index,15 composite likelihood ratio (CLR),16 extended haplo-
type homozygosity,17 and integrated haplotype score.18 Recently, 
the technical development of sequencing and SNP chips has 
provided us with high-density markers, enabling the identi-
fication of genome-wide selection signatures. Nielsen et al.19 
introduced two major modifications to the CLR method16 
for detecting selective sweeps in whole- genome data, which 
were based on the site frequency spectrum (SFS) method and 
implemented in the software, SweepFinder. Based on the code 
of SweepFinder, Pavlidis et al.20 developed a faster and more 
accurate selective sweep detector, termed SweeD. A neutral 
SFS can be obtained in SweeD without the need to compute 
the empirical average SFS for the genome. If successful, the 
detection of selection signatures can provide a straightforward 
insight into the mechanisms of artificial selection and further 
uncover the causal genes related to the phenotypic variation.

Here, we describe the transcriptome sequencing of 15 
ducks from distinct breeds for the purpose of identifying 
and annotating the novel forms of genetic variation in ducks 
using highly accurate SNP calling methods. By analyzing the 
nucleotide diversity using sequencing data, we aim to iden-
tify genomic regions exhibiting the signatures of selection 
and positional candidate genes reported in proximity to the 
genomic positions, showing the most significant indications 
of selection, and to gain a further insight into the genome-
wide footprints of duck selection. In addition, the functions 
associated with the genes putative under selection regions were 
investigated by gene set enrichment analysis on gene ontology 
(GO) annotations.

Materials and Methods
experimental animals. In this experiment, four indi-

viduals from the Baigai breed, two from the Ma breed, one 

from Liancheng White, and one from Longsheng Green were 
sampled. The RNA-seq data of seven HBK–SPF individuals 
from Peking duck breed were retrieved from NCBI SRA 
database. Three feather bulbs from the same individual were 
pooled as one sample. All research involving animals were 
conducted according to the regulation (No. 5 proclaim of the 
Standing Committee of Hubei People’s Congress) approved 
by the Standing Committee of Hubei People’s Congress, and 
the ethics committee of Huazhong Agricultural University, 
P. R. China.

Preparation of Illumina libraries and sequence analysis. 
Feather bulbs were put into 2-mL tubes containing 1-mL 
TRIzol reagent (Invitrogen). A magnetic bead homogenizer 
was used to homogenize the tissue and TRIzol. The quality 
and quantity of RNA samples were detected by Spectropho-
tometer ND-1000 (NanoDrop) and denaturing agarose gel 
electrophoresis. All RNA samples were treated with DNAse 
I for later use. RNA-seq libraries were constructed using the 
mRNA-Seq Prep Kit (Illumina) and then sequenced using 
the paired-end sequencing module of the Illumina HiSeq 
2000 platform (100 bp at each end). Low-quality reads were 
trimmed by trimmomatic toolkit with default options.21

sNP calling. The scaffold sequences and transcrip-
tome sequences of the duck genome were retrieved from the 
Ensembl database. We used two approaches to identify SNP: 
(1) GATK–DNA-seq22 combined SNPiR pipeline11 and 
(2) the recently developed GATK–RNA-seq.

In the first approach, we used the Burrows–Wheeler 
Aligner23 to map RNA-seq reads against both the reference 
genome and the transcriptome. We mapped each of the paired-
end reads separately to the reference genome using the com-
mands “bwa aln fastqfile” and “bwa samse -n4.” We use BWA to 
map the data to transcriptome with commands “bwa aln fastq-
file1,” “bwa aln fastqfile2,” and “bwa sampe.” For the mapped 
reads, we used IndelRealigner (default), TableRecalibration 
(default), and UnifiedGenotyper (“stand_call_conf = 0,” “stand_
emit_conf = 0,” and “output mode = EMIT_ALL_CONFI-
DENT_SITES”), successively, from GATK for DNA-seq22 to 
local realignment, base score recalibration, and candidate SNP 
calling nearly as suggested by “Best Practices Workflows” in the 
manual of GenomeAnalysisTK−2.8–1. We called variants with 
these loose criteria in GATK, which allowed a high sensitivity 
of SNPiR pipeline11 to filter the candidate SNPs. We required 
candidate SNP call with the quality of Q . 20. These filters in 
the SNPiR pipeline included the removal of false calls in dupli-
cated regions, mismatch sites at 5′ read ends, sites in repeti-
tive regions according to RepeatMasker annotation, intronic 
sites within 4 bp of splice junctions, and sites in homopoly-
mer runs of .5 bp. Then, BLAT24 was used to map all reads 
against the duck genome to support unique mapping of the 
SNPs. In the second approach, we applied a method recently 
developed in GTAK 3.0 specifically for calling variants in 
RNA-seq (GATK–RNA-seq). In brief, the key modifications 
made to GATK–RNA-seq focus on handling splice junctions 
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correctly, which involves specific mapping by STAR aligner25 
and the procedures, including SplitNCigarReads (with param-
eters: -RMQF 255 -RMQT 60 -U ALLOW_N_CIGAR_ 
READS), Recalibration (default parameters), Haplotype-
Caller (with parameters: -dontUseSoftClippedBases -stand 
_call_conf 20.0 -stand_emit_conf 20.0), and HaplotypeCaller 
(with parameters: -window 35 -cluster 3 -filterName FS -filter 
“FS . 30.0” -filterName QD -filter “QD , 2.0”). We merged 
the resulting variants in VCF4.0 format from the two SNP 
calling approaches. The consensus variants, with the SNP 
quality of Q , 20, with minor allele frequency of ,0.05, or 
with .50% missing genotypes within the sampled individuals, 
were filtered.

The gene-based analysis of SnpEff software26 with stan-
dard settings was used to functionally annotate the putative 
SNPs. For each SNP, the location (exonic, intronic, intergenic, 
5′UTR, 3′UTR, splice acceptor or donor site, downstream or 
upstream) and the functional annotation (nonsynonymous, 
synonymous) were determined based on the duck reference 
genome.1 Gene annotations used in this analysis were taken 
from the Ensembl database (BGI_duck_1.0.75). For genome-
wide detection of positive selection signatures, we converted 
the genome coordinates of SNPs from scaffold level to duck 
chromosomes using information from duck Radiation Hybrid 
(RH) genome maps (unpublished), which was built from the 
duck RH panel.27

detecting positive selection. We first conducted the 
admixture analysis using NGSadmix28 to roughly estimate the 
introgression among different populations. Then, we performed 
the CLR test using the information from allele frequencies to 
identify completed sweeps, and the statistic was calculated for 
a nonoverlapping sliding window of 100 kb across each chro-
mosome respectively. In this process, the SFS of the entire 
chromosome was considered as the background SFS to calcu-
late the composite likelihood of a recently completed selective 
sweep in each window. To obtain the empirical distributions of 
CLR, a neutral sequence equal to each chromosome in length 
was simulated 10,000 times using ms29 with the given epoch 
demography of the instantaneous size change followed by 
exponential growth (with parameters: ms 30 10000 -t 80 -G 
6.93 -eG 0.2 0.0 -eN 0.3 0.5). To convert from the ms param-
eter, we assumed a mutation rate of 10−8 per site per generation 
and considered a segment 100 kb pairs long. Then, a threshold 
value of significant CLR for each chromosome is determined 
at P # 10E-4.

The GO terms were performed using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID).30 
First, we retrieved the Ensembl IDs of the genes, which were 
 considered to be overlapping if their positions were con-
tained inside the candidate regions of selection. The DAVID 
was used to analyze enrichment in the GO terms using 257 
human orthologs from the 329 duck genes. The GO terms with 
P- values , 0.05 and with a false discovery rate of ,25% were 
used for further analysis in our study.

results and discussions
We identified SNPs in the transcriptome of 15 samples using 
the GATK–DNA-seq22 combined with the SNPiR pipeline.11 
In total, we were able to detect 916,407 variants by mapping 
to the reference genome, and 175,998 variants were called by 
mapping to the transcriptome, yielding 974,251 unique vari-
ants in total (Fig. 1). Utilizing the transcriptome for mapping 
short reads only provides an additional 57,844 variants, mainly 
because the splice junctions from gene models annotated in the 
reference duck genome are currently limited. Thus, we applied 
an approach recently developed in GATK–RNA-seq. Then, 
1,196,422 variants were detected in the RNA-seq of 15 sam-
ples according to the Best Practices Workflows of GATK–
RNA-seq (Fig. 1). We merged the resulting variants from 
the two SNP calling approaches to obtain 1,468,452 unique 
SNPs in the duck genome (Fig. 1). The resulting SNPs were 
deposited into the Database of Short Genetic Variation build 
145 (http://www.ncbi.nlm.nih.gov/snp/) with NCBI Submit-
ted SNP (ss) number (1939971667–1947221053). Our result 
exhibited a transition-to-transversion (ts/tv) ratio of 2.06 for 
the entire duck genome, which is similar to the overall ts/tv 
ratio of 2.0–2.1 for the entire human genome.31 Previous stud-
ies have established an expected higher ts/tv ratio (3–4) for 
human coding regions.32 We found an estimated ts/tv ratio of 
3.51 for duck exonic regions in our study, a good reflection of 
the genomic variation in transcribed regions.

To date, a specific challenge to call a variant in RNA-seq 
data is to quantify accurately a different number of mapped 
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Figure 1. Comparison of SNPs identified by the two approaches. We 
detected 916,407 snPs by mapping to the reference genome (green) 
and 175,998 snPs were called by mapping to the transcriptome (purple), 
which composed 974,251 unique variants using GatK–Dna-seq 
combined with the snPir pipeline. Besides, we applied the approach of 
GatK–rna-seq and then detected 1,196,422 variants (red).
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reads to the reference genome and then to determine whether a 
variant exists. Accurate variant calling could be hampered by (1) 
highly similar regions in the genome, (2) the library construc-
tion for mRNA-seq and the inability to map reads in a splice-
aware manner, and (3) the RNA-editing and allele-specific 
expression, which could mimic SNPs or bias allele frequencies.33 
These hindrances, especially the last one, may have resulted in 
false positive SNP calling in our study. However, there are not 
yet any other sources of duck SNP data (like resequencing or 
exome data) to validate our result variants.

The admixture proportions were estimated from geno-
type likelihoods using NGSadmix.28 A graphic representa-
tion of cluster structure analysis is depicted in Figure 2. There 
had already been a significant differentiation between Baigai 
White, Ma–Liancheng White, and Peking duck populations, 
while Longsheng Green had shown admixture with all three 
of those populations.

enrichment of variants in functional categories. After 
SNP calling, we assigned a functional class to each SNP 
and provided several fields of information describing the 
affected transcripts and proteins, if applicable. The RNA-seq 
data allowed us to enrich SNP variants than whole-genome 
sequencing in coding exons (8.12%), untranslated regions 
(UTRs; 1.42%), upstream/downstream (33.41%), and introns 
(23.56%). The annotated SNPs identified in this study can 
serve as useful genetic tools and as candidates in searches 
for phenotype-altering DNA and transcript differences. The 
resulting SNPs were highly abundant in these four categories 
(Table 1). Although the libraries for mRNA-seq are supposed 

to be enriched for mRNAs via poly(A)+ selection, a certain 
amount of immature pre-mRNA, which carries the introns, 
usually infiltrates into the libraries. Introns compose a much 
larger fraction of the duck genome than exonic regions. Those 
two facts mainly explain why so many SNPs exist in introns 
than in exonic regions. Most of these variant calls in intronic 
and intergenic regions are usually of low quality because of 
low coverage of short reads (Fig. 3). Only a small fraction, 
26.75%, of SNPs fell into intergenic regions, which compose 
65.46% of duck genome.

RNA degrades quickly, so poly(A)+ selection may catch 
the 3′ end of an mRNA that is already breaking down, which 
means that some portion of the 5′ end has already been lost. As 
a result, mRNA-seq coverage when polyA selection protocols 
have been used in our study is deeper at the 3′ end of genes and 
comparatively sparse at the 5′ end. For example, of 165 genes, 
as shown in Figure 3, there is ∼10 × coverage at the 3′ end 
(3′UTR and last intron on the far right), trailing off to ∼3 × by 
the time you get to the 5′ end (5′UTR and first intron on the 
far left).

Genome-wide scanning for selection signatures. We 
applied the CLR test to scan for genomic regions show-
ing the signals of recent selection in the duck genome.20 
The regional SFS was compared with the background SFS 
to calculate CLR, which indicates the likelihood of a sig-
nal at each window of 100 kb in length across the whole 
genome. Significance was determined by the threshold value 
deriving from the empirical distribution of neutral scenar-
ios simulated in the software ms.29 A total of 126 windows 

Table 1. summary of snPs in ducks.

CATEgoRY CoUNT PERCENT (%) NoTE

sample size n = 15 – sPlicE_sitE_rEGion’ means 
that a variant is within 2 bp of a 
splice junction.

‘sPlicE_sitE_accEPtor’ 
means that the variant hits a splice 
acceptor site (defined as two bases 
before exon start, except for the first 
exon).

‘sPlicE_sitE_Donor’ means 
that the variant hits a splice donor 
site (defined as two bases after 
coding exon end, except for the 
last exon).

‘UPSTREAM/DOWNSTREAM’ 
means that a variant overlaps 
with the 1 kb region upstream/
downstream of the gene end site.’ 
number of effects is larger than the 
number of snPs because a variant 
is annotated for two or more effects. 

snP 1,468,452 –

uPstrEam 269,271 11.48

utr_5_PrimE 2,778 0.12

Exonic 190,444 8.12

non_coding_exon 1,207 0.05

frameshift 885 0.04

non_synonymous 57,628 2.46

synonymous 130,575 5.57

nonsyn/syn ratio (ω) 0.44 –

intron 552,382 23.56

sPlicE_sitE_rEGion 115,458 4.92

sPlicE_sitE_Donor 34,861 1.49

sPlicE_sitE_accEPtor 13,864 0.59

utr_3_PrimE 30,477 1.30

DOWNSTREAM 507,849 21.66

intErGEnic 627,198 26.75

number of effects 2,344,610 100
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had a P-value of ,10E-4, indicating that the CLR of these 
windows surpassed every CLR obtained from the distribu-
tion of 10,000 neutral simulations. As some of the 126 win-
dows were adjacent to each other, these correspond to 76 
distinct core regions (CRs) where the observed CLR value 
significantly exceeded neutral simulations. The results are 
presented in Table 1, which also includes the  number of 
candidate regions and SNPs putative under selection for 
each chromosome. As shown in Figure 3, the transcriptome 
sequencing has significantly lower sequence coverage in non-
coding regions, which certainly affects accurate variant calls 
in these regions compared with coding regions, and may bias 

the quality of CLR scan. We found that the DAF (absolute 
allele frequency) of coding SNPs is significantly larger than 
that of noncoding SNPs (one-tailed t-test, P , 2.2E-16), 
indicating that the SFS in coding and noncoding regions 
differs strongly. However, if regions with less callable reads 
were excluded, power to detect a selective sweep through the 
CLR could be lowered. We extracted all the 227,948 SNPs 
in UTR/exon regions and performed a CLR scan. The sweep 
result from the data of UTR/exon SNPs was comparable to 
the sweep result from that of whole SNPs.

We investigated genes in the candidate regions of selec-
tion, and corresponding genes were identified by comparing  

Table 2. Summary of significant CRs (P # 0.01) and distribution of SNPs in five duck populations.

ChR wINDowS 
(N)1

CR 
(N)2

CR SNPS 
(N)3

ChR  
SNPS (N)4

CR LENgTh 
(kb)

ChR  
LENgTh (MbP)

CR  
gENE (N)

ChR 
gENES (N)

chr1 29 11 3,682 186,609 4,200 198.28 43 2,124

chr2 17 12 1,890 121,342 3,000 154.285 38 1,365

chr3 10 9 2,684 103,474 1,900 115.727 24 1,207

chr4 17 9 2,573 59,448 2,900 74.523 46 758

chr5 6 5 1,249 75,816 1,100 63.518 20 947

chr6 4 3 1,614 38,315 800 36.433 13 514

chr7 2 2 694 41,748 400 39.268 7 527

chr8 3 2 386 44,361 500 31.228 4 522

chr9 5 3 904 41,473 800 26.143 15 448

chr10 0 0 0 28,568 0 18.705 0 320

chr11 1 1 181 37,742 200 21.689 2 419

chr12 0 0 0 29,961 0 20.949 0 350

chr13 0 0 0 35,703 0 21.836 0 338

chr14 4 4 2,292 36,637 800 19.493 16 345

chr15 0 0 0 36,406 0 17.612 0 430

chr16 2 1 448 35,585 300 15.016 13 374

chr17 0 0 0 4,888 0 0.387 0 39

chr18 1 1 624 32,263 200 11.812 7 308

chr19 3 3 984 27,947 600 12.468 11 318

chr20 0 0 0 32,858 0 11.803 0 343

chr21 4 3 1,226 25,870 801 15.674 20 346

chr22 0 0 0 26,388 0 7.939 0 251

chr23 0 0 0 9,916 0 4.482 0 111

chr24 0 0 0 25,486 0 7.225 0 240

chr25 0 0 0 15,503 0 7.33 0 175

chr26 0 0 0 7,475 0 1.284 0 80

chr27 0 0 0 27,757 0 6.462 0 257

chr28 0 0 0 19,044 0 4.768 0 201

chr29 1 1 629 21,146 200 4.454 11 198

chrW 1 1 188 1,491 200 2.089 10 40

chrZ 16 5 947 32,634 2,300 74.036 29 735

total 126 76 23,195 1,263,854 21201 1046.918 329 14,630

Notes: 1Windows of size 100 kb with P , 10E-4. 2Distinct crs with P-value , 10 E-4. 3Total number of SNPs forming significant CRs. 4total number of snPs used 
in the chromosome.
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their genomic locations with the available annotation 
of the duck genome. In total, 329 genes were located 
on the 76 distinct CRs (Table 2 and Fig. 4). The region 
with the largest CLR in the duck genome is located on 
chromosome 1 (Figs. 4 and 5). This region consists of 
eight adjacent 100 kb windows with P-value , 10E-5.  
There are several protein coding genes in this top-scoring 
1 Mb region (chr1: 28.7 Mb–29.7 Mb), including the protein 
coding genes DNAJB9 (ENSAPLG00000007950), THAP5 
(ENSAPLG00000008047),        AVPR2 (ENSAPLG00000008090), 
 PNPLA8 (ENSAPLG00000008096), NRCAM (ENSAPLG000 
00008656), and CNTN1 (ENSAPLG00000010381). The region  

contains 13 nonsyn onymous SNPs that passed the quality filtering: 
one coding change (KB743050.1:385586 | His . Arg) in 
DNAJB9, one coding change (KB743050.1:396307 | Thr . Ile) 
in THAP5, two coding changes (KB743050.1:607259 | 
Phe . Val and KB743050.1:620545 | Asn . Ser) in NRCAM, 
and nine coding changes in PNPLA8. The PNPLA8 gene 
encodes a member of the patatin-like phospholipase domain-
containing protein family, and the product of PNPLA8 is a 
 calcium-independent phospholipase. Mutations in PNPLA8 are 
associated with mitochondrial myopathy with lactic acidosis.34

Involved genes and biological processes under selec-
tion. We then sought to investigate the functions associated 
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Figure 4. circos plot of the global distribution of genes, snP variants, and signature of selective sweep along with the genome. the circles from outside 
to inside illustrate gene density (yellow), SNP density (green), and CLR values (blue). The genes located in regions with significant strong sweep 
signatures are presenting as outliers. High values in each layout (gene density . 10/100 kb, snP density . 1000/100 kb, and clr value . 30) were 
marked in red histograms.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Lin et al

74 Evolutionary Bioinformatics 2015:11(s1)

with the genes putative under the 76 selected regions. The 
analysis of overrepresented annotations and pathways was per-
formed using DAVID with those 329 genes.30 If the P-value 
was ,0.05 for GO annotation, it was considered significant. 
We identified 21 enriched GO categories (P , 0.05; Table 3). 
The top three terms with the lowest P-values were positive 
regulation of binding (GO:0051099, P = 5.4E-3), pancreas 
development (GO:0031016, P = 1.4E-2), and intracellular 
transport (GO:0046907, P = 1.5E-2). There are two kinds of 
pancreatic secretion function: one is exocrine secretion, which 
mainly secretes digestive enzymes; the other is endocrine 
secretion, which secretes the islet A and B cells. The poultry 
pancreas is one of the important digestive glands. Amylase, 
protease, and lipase in the small intestine, which are the most 
important enzymes of the digestive system, are mainly derived 
from the pancreas.35 We found that the EIF2AK3 gene is 
 connected with the development of pancreas. Studies also 
have shown that EIF2AK3 kinase activity is essential for 
normal development of the islet B cell.36 In humans, muta-
tions in the EIF2AK3 gene will result in neonatal or early 
infancy type 1 diabetes.37 There are five nonsynonymous 
SNPs in the EIF2AK3 gene (Gly . Arg at the position of 
the 223th amino acid, Cys . Trp at position 233, Ile . Leu 
at position 981, Gln . Arg at position 1005, and Lys . Arg 
at position 1006). Evidence of more effective selection in birds 
than that in humans can be seen from the previous observa-
tions of a higher proportion of nonsynonymous substitutions 
in birds.38,39 These specific SNPs in the gene suggest potential 
functional changes that would be useful for further genetic 
study of the gene in birds.

Furthermore, the significant GO terms also included “fatty 
acid biosynthetic process (GO:0006633)” and “regulation of insulin 
secretion (GO:0050796).” As the fat traits in duck are related to 
meat quality and nutritive value, the fatty acid biosynthetic process 
is essential for duck breeding. The ELOVL2 gene is involved in 

the fatty acid biosynthetic process. Duck ELOVL2 may have the 
ability to convert α-linolenic acid to docosahexaenoic acid,40 which 
is an important omega-3 fatty acid for humans. A previous study 
has reported that insulin plays an important role in the metabolism 
of glucose and lipid in poultry.41 As  insulin secretion is associated 
with pancreas development, the TCF7L2 gene takes part in pan-
creas development and regulation of insulin secretion. One non-
synonymous SNP was also found in the TCF7L2 gene (Val . Ala 
at the position of the 145th amino acid). ∆N-Tcf7l2 transgenic 
mice, which lack the N-terminal β-catenin-binding domain, show 
impaired glucose tolerance with insulin secretion decreased.42 
Long-chain fatty acid transporter activity (GO:0005324, P = 5.9E-
2) and fatty acid transporter activity (GO:0015245, P = 8.7E-2) 
were found to be significant in molecular function. The FABP1 
and FABP2 genes, which were involved in those two terms, encode 
the fatty acid-binding  protein (FABP) found in the liver or in the 
intestines. It is thought that the roles of FABPs include fatty acid 
uptake, transport, and metabolism.43 We speculated that reasonable 
regulation of fat in domestic ducks was to cater to the requirements 
of humans. A previous study has reported that a number of genes in 
the significant CRs under selection may be important for control-
ling abdominal fatness in domestic chicken lines.44

The current annotation of the duck genome has a limi-
ted availability of GO terms, which decreases the sensitivity 
of the analysis. Therefore, we could provide only suggestive 
evidences for the overrepresented annotations affected by 
positive selection.

In conclusion, we achieved high accuracy of SNP call-
ing and enrichment of variants in functional categories 
using the RNA-seq data. This study provides a genome-
wide map of selection signatures in duck genomes and yields 
insight into the mechanisms of selection in duck breeding. 
Our results show that genes related to the function of the 
digestive system and lipid metabolism may also experience 
positive selection.
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Figure 5. the result of selective sweep for the entire chromosome 1. (A) the scan of clr for the sweep signal at each window of 100 kb in length across 
chromosome 1. We found outlier genomic regions with significant strong sweep signatures at a threshold of 10E-4 (shown in red). (b) the scan of clr for 
the sweep signal at each window of 100 kb in length across the across chromosome 1 using only snP data from the exon/utr regions.
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