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Abstract

We shed light on the potential of entorhinal grid cells to efficiently encode variables of dimen-

sion greater than two, while remaining faithful to empirical data on their low-dimensional

structure. Our model constructs representations of high-dimensional inputs through a combi-

nation of low-dimensional random projections and “classical” low-dimensional hexagonal grid

cell responses. Without reconfiguration of the recurrent circuit, the same system can flexibly

encode multiple variables of different dimensions while maximizing the coding range (per

dimension) by automatically trading-off dimension with an exponentially large coding range.

It achieves high efficiency and flexibility by combining two powerful concepts, modularity and

mixed selectivity, in what we call “mixed modular coding”. In contrast to previously proposed

schemes, the model does not require the formation of higher-dimensional grid responses, a

cell-inefficient and rigid mechanism. The firing fields observed in flying bats or climbing rats

can be generated by neurons that combine activity from multiple grid modules, each repre-

senting higher-dimensional spaces according to our model. The idea expands our under-

standing of grid cells, suggesting that they could implement a general circuit that generates

on-demand coding and memory states for variables in high-dimensional vector spaces.

Author summary

Entorhinal grid cells in mammals are defined by the periodic arrangement of their firing

fields and play a major role in the representation of 2D spatial information. At the same

time, they represent a variety of non-spatial cognitive variables. It is thus natural to ask

what kinds and dimensions of variables it is theoretically possible for grid cells to represent.

We show that grid cells can provide a neural vector space for unambiguous integration,

memory, and representation of a variety of different (Euclidean) variables of much higher

dimension than two, without requiring higher-dimensional grid-like responses. The same

circuit can flexibly represent variables of different dimensions, doing so with high dynamic

range and at low neural cost, without any reconfiguration of the recurrent circuitry.

Introduction

It is widely believed that entorhinal grid cells in mammals play a central role in the representa-

tion of spatial information. But recent evidence indicates that grid cells are more versatile than
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initially assumed and also represent cognitive variables other than (self-)location in physical

space. Grid cells respond to the location of visual gaze [1–3], the locus of covert attention [4],

or the values of two parametrically varied features of cartoon bird images [5]. In all these cases,

the recorded cells exhibit a response structure that matches that of grid cells during spatial

exploration, with single unit recordings in rodents indicating that the same grid cells are

reused across variable types [6, 7]. This suggests that all of these variable types are represented

by a single population of grid cells, which underlie very general types of cognitive representa-

tion. All these examples involve 2-dimensional (2D) variables. However, cognitive variables

are not limited to two dimensions, and it is a natural question to consider what kinds and

dimensions of variables, theoretically, it is possible for grid cells to represent.

At the same time grid cell responses are structurally and dynamically constrained. Across a

range of novel, familiar, and distorted spatial environments [8], during navigation on sloped

terrains [9, 10] or one-dimensional tracks [11], and most strikingly, across sleep states when

the animal receives no external spatial inputs and is rather driven by presumably high-dimen-

sional internal spontaneous activity [12, 13], grid cells are confined to a fixed set of states with

preserved cell-cell correlations that match those measured during awake exploration in famil-

iar 2D spatial environments. The fact that grid cells conserve the pairwise firing relationships

they exhibited in their spatial responses directly suggests that the dynamics of a grid module

are confined to a 2D set of states that is invariant across time, task, and behavioral state. Even

the physical layout of grid cells in the brain is organized in a grid-like topographical pattern

[14, 15] that mirrors—and likely drives—the functional response of grid modules. But how

generally useful can the grid code be, if the autonomous states of each grid module are inher-

ently 2-dimensional?

We propose a coding scheme for high-dimensional variables that is consistent with these

structural and dynamical constraints and assume that the activity of each grid module remains

confined to a 2D toroidal attractor in the associated neural state space.

From a purely mathematical viewpoint, the possibility of encoding higher-dimensional

variables using grid cells is not surprising—after all the combined state space of multiple (M)

2-dimensional toroidal attractor manifolds, formed from the 2D grid responses of the M indi-

vidual modules, is already a high-dimensional (2M-dimensional) toroidal manifold.

However, the current literature does not offer any concrete coding schemes that exploit this

fact. On the contrary, existing proposals and experimental searches center around the forma-

tion of individual grid modules that individually support high-dimensional grid responses [16,

17]. These models face two major problems. The first is a question of resources. The formation

of high-dimensional modules is costly, running head-on into the curse of dimensionality: The

number of cells needed to form a single stable N-dimensional continuous attractor network

with K resolvable states per dimension is * KN while the same state capacity can be achieved

by* NK cells by forming NK lower dimensional attractor networks representing one dimen-

sion each.

The second is a question of flexibility. The recurrent connectivity of an attractor network

must be tailored to the dimension and geometry of the attractor manifold and cannot be

easily reconfigured on demand. The construction of a 3D grid requires entirely different

connectivity from a 2D grid. This is particularly problematic if the actual dimension of the

input might vary; what if the circuit encodes a variable that appears to be low-dimensional

but eventually turns out to vary in more dimensions than initially expected, or if the circuit

must represent variables of different dimensions at different times? For the same circuit to

alternate between representing a 2D and 3D variable would require a full rewiring of the

recurrent circuit at each alternation, for which there is no known mechanism that is reason-

ably fast.
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In addition to solving the problems of efficiency and flexibility in representing variables of

different dimensions, we will show that our proposed coding scheme exhibits a smooth and

automatic handoff in the allocation of coding states toward additional dimensions based on

demand and toward increasing the coding range per dimension when the number of dimen-

sions shrinks, all without changing previously assigned codewords or recurrent connectivity.

These properties are enabled by combining the power of nonlinear mixed selectivity with com-

positional modular representations in grid cells.

Results

Modular codes, in which a set of neurons is divided into a number of disjoint groups, each

dedicated to encode different aspects of the represented variable, enable a high-dimensional

state space for a cheap number of cells; thus avoiding the “curse of dimensionality” we men-

tioned in the introduction. This can obviously be exploited for the representation of higher-

dimensional variables but relies on a pre-partitioning depending on variable dimension.

Perhaps less widely known, the immense capacity of modular codes can alternatively be

leveraged for the representation of a fixed, low-dimensional variable, and produce a massive

library of unique coding states. The high-level idea is that the joint coding space can be effi-

ciently packed with a well-folded lower-dimensional manifold to produce a very large coding

range. The prime example of the use of this strategy in the brain is the modular grid cell sys-

tem. The grid code is efficient on two levels, capacity (it utilizes a sizable fraction of the avail-

able coding space) and fast mapping of input to representation (as opposed to a slow learned

lookup table). It is flexible to a limited extent: we know that the same circuit is used for 1d and

2d variables.

The ability to encode either dimensions or range per dimension raises the interesting ques-

tion of whether modularity can be exploited simultaneously for both, and whether a coding

scheme exists that can flexibly hand-off excess capacity in range for dimension and vice versa,

without reconfiguration (or pre-partitioning). We show below that the answer can be affirma-

tive, by combining properties of mixed representations with modular codes in grid cells.

To quantify the capacity of our model, we define the coding range of a code to be the maxi-

mal side-length of a hypercube of dimension N over which no two points are assigned similar
grid codes. We consider two codes to be similar if their distance falls below a previously fixed

threshold Δ (see Methods for details), which represents a finite coding resolution, consistent

with encoding and reading out a variable using a population of neurons with noisy responses;

it can be thought of as the inverse square-root of the Fisher information about phase in neural

spike counts across the grid modules [18].

The remainder of the section is organized as follows: We start with a brief review of grid

cells. From there we proceed with the definition of two distinct coding schemes, illustrating

efficiency and flexibility of a code, followed by the presentation of our numerical results. We

conclude the section with a characterization of our model’s tuning curves.

The grid code in 2D

Mammalian grid cells are defined by their periodic firing fields in planar environments: they

fire at multiple locations corresponding to the vertices of an equilateral triangular lattice (Fig

1a). A grid module is a discrete sub-network of grid cells with common underlying lattices

(same period and orientation) that differ only by translational shifts. The firing fields of all the

cells within a module uniformly cover the entire space such that at any time some sub-popula-

tion within the module is active. A grid module represents the animal’s time-varying location

x(t) as a 2D phase ϕ(x) [18]. Combining the phase information from multiple modules
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produces an unambiguous positional code over an extremely large range [18–20] that is expo-

nentially bigger than the scale of the individual lattice periods, with the exponent growing in

proportion to the number of modules. We refer to the combined activity of multiple distinct

modules, or equivalently the set of phases, as a grid code; Fig 1 provides a schematic picture

illustrating the key mechanism and properties of the “classic” grid code.

The internal state in a module ϕ is updated as [21–24]:

d�
dt
¼ A � dxdt : ð1Þ

Here A 2 R2�2 is a linear operator that governs how the animal’s velocity dx
dt in 2D space is

mapped to changes in the internal 2D phase. The phases are obtained by forming the quotient

of the Euclidean plane (the co-domain of A) and a hexagonal lattice Λ. Mechanistically, these

phase updates can be implemented in a recurrent continuous attractor network with feedfor-

ward velocity inputs. Once the module is anchored, by assignment of a particular phase φ0 to a

specific position x0 in the environment (e.g. through place cells or other spatially-specific cells

[25, 26]), the circuit will automatically generate a grid code (phase) for any other location x in

the environment reached via a path γ connecting x and x0. If x lies in Euclidean space, the

assigned phase is guaranteed to be independent of the particular path, ensuring a well-defined

code for x regardless of trajectory:

�ðxÞ ¼ φ
0
þ

Z

A � dgdt dt ¼ φ
0
þ Aðx � x0Þ ðmod LÞ: ð2Þ

The responses of different modules during 2D spatial navigation can be generated by a simple

scalar gain variation that premultiplies a common operator A, according to models as well as

(still accruing) empirical support [8, 24, 27].

The grid cell coding description above applies immediately to the local representation of

arbitrary (locally Euclidean) 2D variables x, not just 2D spatial position. The only required

change to represent a new cognitive space is the construction of a separate feedforward projec-

tion A mapping velocities in the external space to the velocity inputs of the grid modules.

Under this view, existing grid cell models that integrate velocity inputs [24, 28] can already

explain how the same network can represent both spatial and non-spatial 2D variables [1–7]

without reconfiguration of the recurrent circuit, merely by changing the velocity operator A
that feeds into the grid cell modules. This idea will be key for our model to form high-

Fig 1. (a) Firing fields and their hexagonal arrangement shown for two simulated grid cells from two modules of different scale. (b) Schematic

picture of the origin of periodic firing fields. Left: a schematic environment (black line) with cell responses (green, blue) of two grid cells from

two modules of different scale. Right: schematic picture of two grid modules depicted as 1-dimensional circular continuous attractors. The

colored triangles symbolize recording devices whose responses are shown on the left. A positional change (small arrow on left-hand side)

corresponds to a change in phase (small arrows on right-hand side) in each module. Both phase-changes are related by a fixed scalar factor

resulting in different spatial periodicity. (c) Schematic picture of the coding space (gray box) spanned by multiple, here 2, grid modules (blue

and green). The modulo-arithmetic nature of the grid code enables an extraordinarily huge coding range by tightly “packing/folding” an

environment (black line) into code space (gray). The fixed ratio of module scales results in a linear embedding with fixed “slope”.

https://doi.org/10.1371/journal.pcbi.1007796.g001
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dimensional representations. But first let us take a look at another conceptually simpler model

to set a baseline for the performance of our model and to highlight key properties of our model.

Disjoint modular grid code: An efficient baseline for our model

We can now return to the question of cell-efficient encoding of variables of higher dimensions

with 2D grid cells. We first present a conceptually simple disjoint modular grid coding scheme

that is efficient for both dimensionality and range, yet inflexible.

For simplicity, assume that the number of modules, M, is a multiple of N, the dimension of

the encoded variable x. Divide the modules into N disjoint groups of M/N modules, and let

each group separately encode a single coordinate of x, so the problem has been decomposed

into the task of separately encoding N variables of dimension 1 each (manifold factorization).

The coding range L will then be determined by the minimum coding range of one of the

groups, that is

L ¼ minfL1; . . . ; LNg; ð3Þ

where Li (i = 1, . . ., N) denotes the 1-dimensional coding range of the ith group.

We know from previous theoretical work that if the population response in each grid mod-

ule in some time-bin determines position as a spatial phase with resolution Δ (meaning that

the intrinsic uncertainty in estimating phase from the population response is Δ), and if all grid

periods are distinct but have a similar spatial scale (magnitude), which we denote as λ, then the

1-dimensional coding range per group scales as (cf. [18] and S1B Fig):

EðLiÞ / l � D �
1

D
2

� �M=N

: ð4Þ

The expectation value is taken over random choices of how to “slice” each 2D grid module to

represent one component of x [11]. When M is a multiple of N, we can compute the empirical

distribution for the Li (S1a Fig) as well as an expected value for the overall coding range L,

which we will come back to later. We can also obtain a coding range when M/N� 1 is not an

integer by interpolating between the distributions of L. The disjoint modular grid code thus

enables representation of an N> 2-dimensional variable with a coding range per dimension

that increases exponentially with the number of modules. Thus, unlike a code based on the

construction of high-dimensional grids, the above scheme is efficient with regards to cell-num-

ber and coding range.

However, it must be constructed for the specific dimension of the input (this determines

how the modules are grouped, and once the modules are grouped, the range per dimension is

fixed). If the dimensionality of the encoded variable shrinks, modules must be reallocated to

reflect this change before the encoding range per dimension can increase. Hence, the code is

not flexible, in contrast to what we propose next.

Mixed modular grid code: Our model

In the previous section we exploited the modular structure of the grid code in two consecutive

steps. We first formed different groups each dedicated to encode a single coordinate of the

input variable (multiple periodic modules assigned to each coordinate ensure an efficient

disambiguation of position along that dimension over a large range), and then leveraged the

groups as disjoint modules encoding different 1-d inputs (to efficiently represent higher-dimen-

sional variables), resulting in a code that is efficient but inflexible. We are now going to merge

these two steps such that each grid module receives a linear combination of all input velocity

components, and not just one coordinate—this can be viewed as a form of mixed selectivity

PLOS COMPUTATIONAL BIOLOGY Flexible representation of higher-dimensional cognitive variables with grid cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007796 April 28, 2020 5 / 15

https://doi.org/10.1371/journal.pcbi.1007796


[29] generalized to a set of analog rather than discrete variables. Though the mixing of input

velocity components is linear, the periodic code itself is nonlinear, resulting in nonlinear mixed

selectivity which we will show is important for flexibility.

The central observation of this paper is that just as multiple modules operating indepen-

dently to integrate velocity solve the problem of the ambiguity of representation by periodic

responses, they can simultaneously solve the ambiguity that results from the compression of

higher-dimensional inputs to two-dimensional responses: Suppose that the grid cell system

constructs M distinct and independent projection operators Aα (of size 2 ×N each). Each oper-

ator projects N-dimensional velocities from an N-dimensional space into a 2D signal for input

to one of the M grid modules. These velocity signals are not related simply by a scalar gain, as

for 2D spatial responses, but must differ more fundamentally in their responses to each input

dimension (Fig 2c). We choose Aα to be independent random projections for each module.

These M independent projections can be viewed as a single matrix of size 2M × N, which is of

full-rank almost surely if N� 2M. This implies that the intersection of the kernels of all projec-

tions is trivial, consisting solely of the zero vector. In consequence they compress different por-

tions of the input space and can mutually resolve their ambiguities (Fig 2c and 2d). With

realistic estimates for the number of grid modules (M = 4, . . ., 8) the code could represent vari-

ables of dimension as large as N = 8, . . ., 16, Fig 2c and 2d. We will now turn our attention to

the coding range of our model and show that mixed random projections allow us to leverage

the modular structure of the code for both dimension and range.

Fig 2. (a) If the encoded variable is 3D (here, the animal leaves the 2D plane), simple projection down to the 2D phase is ambiguous and

consistent with multiple locations in the z-direction. (b) There are two sources of ambiguity, the periodicity of the grid code within the xy-

plane, and the ambiguity in the z-direction. (c) Two different 2D phases for two modules are set by two distinct projections (red and blue) of

the 3D value onto a plane. Together they are able to simultaneously resolve both sources of ambiguity. (d) Estimates of the value of the

encoded 3D variable obtained by combining the ambiguous estimates of 1, 2, 3, and 4 modules as in (c). Given the cell responses we compute

a probability estimate and show only areas that exceed a fixed threshold (blue blobs). The spacing between the blobs defines the coding range,

that is, the range over which the code is unique. With an increasing number of modules the range quickly grows larger than the individual

periods.

https://doi.org/10.1371/journal.pcbi.1007796.g002
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Efficiency of our model

Recall that we described the coding range of the disjoint modular grid code for ND variables

in terms of the coding range for a 1D variable. Though shown to be exponential in how the

1-dimensional coding range scales with number of modules, it cannot be analytically com-

puted because it depends on number-theoretic interactions between the different real-valued

periods and finite phase resolution [18, 19]. Similarly, we cannot obtain an analytical expres-

sion for the coding range over which a mixed multi-module code can provide unambiguous

(unique) code-words.

However, we can numerically compute how the code scales by using the following approach

[18]: Begin at some arbitrary point x0 in the N-dimensional external variable space, and assign

this point to a fixed phase ϕ0 in the joint coding space of all modules (because the grid code is

translation-invariant, this choice does not incur a loss of generality). Next, center a box around

x0, and expand this box progressively along all N dimensions, checking for when any of the

points at the frontiers of the box first maps back into a Δ-ball of the starting phase ϕ0 (Meth-

ods). When such a “collision” first occurs, the code has reached its capacity, and no longer sup-

plies unique code-words for the encoded variable. The side-length of the box, just before the

collision, corresponds to the coding range as described earlier.

In this way, we numerically compute the coding range as a function of the number of

encoding grid modules (M = 1, . . ., 9) for input variables of various dimensions (N = 3, . . ., 6),

Fig 3a (white squares show the mean value over different random samples of the projection

matrices). Because of our emphasis on flexibility, the projections operators Aα are always of

Fig 3. Capacity grows exponentially with module number. All plots show the dynamic coding range of our model

(see Methods section). (a) Exact coding range of the grid code for variables of dimension 3 to 6, assuming an overly

conservative phase resolution of Δ = 0.2 to reduce time of computation. We show the geometric mean and standard

deviation over 1000 different draws of the projection matrices A for each pair M, N. The entries of the matrices are

sampled independently from a standard normal distribution. To compute the expected value EðWÞ of the benchmark

in Eq 3, we also run this simulation with N = 1 (S1 Fig), solid line. The capacity grows exponentially with the number

of modules; the benchmark provides an estimate of the expected capacity. (b) We use the benchmark to show the

coding range for more realistic values of phase resolution (Δ = 0.2, . . ., 0.025). We chose the benchmark rather than

measuring the exact range for practical reasons (the run-time scales with the volume of the coding range not its side-

length). Results shown for M/N� 1.

https://doi.org/10.1371/journal.pcbi.1007796.g003

PLOS COMPUTATIONAL BIOLOGY Flexible representation of higher-dimensional cognitive variables with grid cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007796 April 28, 2020 7 / 15

https://doi.org/10.1371/journal.pcbi.1007796.g003
https://doi.org/10.1371/journal.pcbi.1007796


dimension 2 × 6 and the projection matrices are held fixed even as the input dimension N is

varied between 1 and 6 (though only the corresponding sub-matrix of dimension 2 × N is used

when N< 6). We find that the mixed modular grid code generates unique code-words for var-

iables in high dimensions, and does so over ranges per dimension that far exceed the individ-

ual periods, Fig 3a. As we will show through a conceptual argument and plot later, linear

mixing together with nonlinear periodic responses are important for the functionality of the

code. In fact, the coding range per dimension clearly grows exponentially with the number of

modules, regardless of variable dimension. More specifically, the exponential growth of coding

range per dimension is in the excess dimension of the representation, which we define as 2M −
N. This rate of exponential growth in the mixed modular scheme closely matches that of the

disjoint modular scheme, Fig 3a, illustrating its efficiency.

For reasons of computational complexity, our primary numerical calculations are per-

formed with a rather conservative (low) phase resolution (Δ = 0.2). To gain a more realistic

picture of model performance with finer phase resolution, we consider the dependence of

coding range on phase resolution for a moderate number of modules and dimensions (S2 Fig)

and also consider how the disjoint modular grid code range, which serves as an efficiency

benchmark for the mixed modular grid code, changes with phase resolution (Fig 3b). Consis-

tent with [18], range grows as a power of phase resolution, regardless of the dimensionality of

the encoded variable. Plausible phase resolutions, combined with exponential scaling of range

in the excess dimension, lead to very large ranges per encoded dimension. Next, we consider

the model’s flexibility.

Flexibile tradeoff between range and dimension

When we fix the random projections Aα, but decrease the dimensionality of the input variable,

the same projection appropriates states previously allocated to encoding different dimensions

to encoding a larger range per dimension, as can be seen because the coding range grows as

the input dimension is decreased, Fig 4a. The conceptual reason for the flexibility of the mixed

modular grid coding scheme is illustrated in Fig 4b (right panel).

First, consider the conventional 2D grid code for 2D variables (x,y): starting at some point in

the multi-modular coding space (Fig 4b, black dot in left panel), it is only possible to move along

a specific direction to move through the coding space—different modules are constrained to

change phases by a fixed proportion, given by the ratios of their periods. Thus, there is only one

way to reach an unused coding state (Fig 4b, white dot in left panel), which is to keep moving an

increasing distance along the 2D input space until that coding point is reached.

In contrast, consider the disjoint modular grid code. Here, some modules are entirely given

over to representing a different dimension (z) in the input space. Starting from some point in

coding space (Fig 4b, black dot in middle panel), the only way to reach another point that is

offset along the z-devoted module (Fig 4b, red dot in middle panel) is to move along z in the

input space. It is not possible to reach and thus use this point in coding space by increasing dis-

placements in x, y. States cannot be traded to exchange coding range for coding dimension,

thus such codes are not flexible.

Finally, consider the mixed modular code. As in the disjoint modular grid code, updates in

different modules are decoupled, but this time each module participates in the representation

of all input dimensions. The mixed projections together with the periodicity of the code, an

essential nonlinearity, makes it possible to connect (thus use) two coding states in different

ways, slicing through both represented range and dimension: by moving along a different

input dimension or continuing along the same dimension (Fig 4b, right panel, red and black

arrows, respectively). In this way, modules are neither exclusively allocated to specific input
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coordinates or dimensions, nor exclusively allotted to produce a given range for each dimen-

sion. The full coding space can be used by changes in either property (dimension or range per

dimension) of the input variable, and the same space can be used interchangeably by both.

Predicted tuning curves for N-dimensional representations

Will it be possible to identify whether grid cells can and do perform flexible representation of

high-dimensional variables? For the grid cell system to work according to our model, different

modules have to be capable of changing their internal states independently of each other,

through the action of separate velocity projection operators. A tantalizing hint that this is pos-

sible appears in [30], where different grid modules in the same individual animal appear to

rescale by different amounts in response to an environmental deformation.

A key signature of our proposed scheme involves differences in tuning curves across mod-

ules. Even after recording neural responses in higher-dimensional spaces, it remains practically

difficult to characterize tuning curves in higher dimensions. However, characterizing the high-

dimensional responses by plotting the tuning curves along any 2D subspace of the explored N-

dimensional input space already provides highly diagnostic information. The basic prediction

of a mixed modular grid code is that when encoding higher-dimensional variables, different

modules will exhibit differently shaped tuning curves that do not look simply like scaled ver-

sions of each other. Specifically, the different modules will be lifts of some 2D grid along some

plane, but the planes along which each module looks like a regular grid will differ from each

other. Thus, along a common 2D subspace, the tuning of cells in different modules will look

like differently oriented random slices of a high-dimensional lift of a 2D grid.

For instance, if the input variable is 3D, the 3D tuning curves in different modules are dif-

ferent lifts of a 2D grid. A 3D lifted response of a 2D grid consists simply of elongated fields

along one direction, consistent with empirical findings in [9]. The responses of cells in

Fig 4. Flexibility of the mixed modular grid code: Conceptual explanation. (a) Change of coding range while increasing the dimensionality of the

input (N) and keeping the projection fixed (per trial), illustrating the flexibility of the scheme (10 trials are shown). (b) Left: The conventional grid code

encodes only 2D variables (x, y, black arrows; and not z, red); movements in x, y result in phase changes across modules, but changes in z do not. These

phase changes evolve along only one direction in the coding space (here, showing 2 modular phases), governed by the ratios of the grid periods. Middle:

The disjoint grid module code: Modules are partitioned into disjoint groups, one set coding x, y, the other coding z. Changes in x, y update one set of

phases, changes in z another; the red circle cannot be reached from the black by only changing x, y, without changing z. Right: Updates in module

activity are decoupled as for the disjoint code but each module participates in the representation of all input dimensions. The periodicity of the code

makes it possible to reach (and thus use) the white coding state from the black in two ways: by moving along x, y, or along z (red and black arrows).

https://doi.org/10.1371/journal.pcbi.1007796.g004
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different modules along a common 2D subspace will look like differently oriented slices

through this lifted response (Fig 5a, M = 1), which will then resemble distorted grids (Fig 5e),

ranging from perfectly equilateral triangular grids to non-grid-like and relatively complex, for

instance, bands of bands (Fig 5e, 2nd row). (In the atypical case where the 2D subspace exactly

aligns with one of the null or lift directions of a module, those cells will have periodically

arranged stripe responses; see S3 Fig for a broader sampling of possible grid cell response

geometries).

Within a module, the responses of different cells are generated from translations of the tun-

ing of the module (each row of Fig 5e shows co-modular responses over 2D slices). If plotted

over a large enough area, these translational relationships will be apparent, but when plotted

over smaller areas, they need not appear as simple shifts of a canonical 2D response pattern

(e.g. Fig 5e, top row), similar to the relationships seen in co-modular cells in 1D environments

which are generated by cutting a lower-dimensional slice through translations of a higher-

dimensional (2D) lattice [11]. Nevertheless, the common origins of the response of co-modu-

lar cells means that they are predicted to obey systematic invariant cell-cell correlation rela-

tionships across environments and variables of different dimensions.

Many cells in entorhinal cortex and hippocampus in bats and in some rat experiments

express spatial fields in 3D environments that are less structured than grid cells. According to

our model, if some entorhinal and hippocampal cells were combining inputs from two or

Fig 5. Predictions about grid cell firing. For ease of illustration, we consider here the encoding of a variable in three

dimensions. (a) Left-most column (M = 1): 3D tuning curves of two grid-cells from different modules using our coding

model. Remaining columns (M> 1): 3D tuning curves of two conjunctive cells reading from M different modules using our

coding model. (b) 3D tuning curve of a conjunctive cell. The xy-plane shows a projected tuning curve taking the maximum

along the z-axis. (c) Realistic tuning curves implemented by simulating multiple continuous attractor grid cell network

modules with noisy neural activity. (d) Auto-correlations of grid responses along a vertical plane according to our model.

The auto-correlations resemble those recorded from rats climbing a “pegboard” in [9]. (e) Each row shows the 2D responses

of 4 co-modular cells over a randomly chosen tilted plane (shown on the left in gray) in 3D space. Different rows correspond

to different modules and the modules encode space according to our model.

https://doi.org/10.1371/journal.pcbi.1007796.g005
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three grid modules, these conjunction-forming cells would exhibit localized 3D fields with

some regularity in spacing, but without full grid-like periodicity and thus no clear notion of a

spatial phase (Fig 5a).

In sum, a central prediction of the mixed modular coding hypothesis in which the grid cell

system could collectively and flexibly use its multiple modules to encode variables of higher

dimension than two is that the projections to different modules should be different, and there-

fore that in such situations, the responses of grid cells in different modules will differ in the

geometry of their tuning curves.

Discussion

Implications for computation

The multi-module representation of grid cells provides a pre-fabricated, ready-to-use, general

high-dimensional neural affine vector space that can be used for both representation and

memory of arbitrary vectors (of dimension� 2M), and more specifically, for integration of

vector inputs. (The term affine makes explicit the lack of a preferred “zero” element. Each

point in the space admits a neighbourhood that naturally carries the structure of a vector space

with the point at its origin.) The representation is efficient: it generates exponentially many

states with linearly many neurons, thus solving the curse of dimensionality problem faced by

more naive coding schemes (e.g. by the formation of unary codes or grids in higher dimen-

sions). The update mechanism of grid cells permits vector-algebraic operations between the

stored vectors, required for vector integration in higher-dimension abstract spaces. So long as

displacements in the abstract spaces are provided as inputs to the network, the network can

thus efficiently represent, hold in memory, and perform algebraic sum operations on general,

abstract vectors of different dimensions without any reconfiguration of the recurrent grid cell

network. We believe these results and implications fulfill, at least in theory, intuitive expecta-

tions that the very peculiar grid code might be extraordinary in the computations it enables.

Observed 3D responses in grid cells, entorhinal cortex, and hippocampus

In some studies of animals exploring higher-dimensional spaces, specifically 3D spatial envi-

ronments, the response of grid cells is elongated and undifferentiated along one dimension,

while remaining grid-like in the other two [9]. This kind of tuning is consistent with our pre-

diction, and we have shown it allows for unique coding along the third dimension if the pro-

jections (and thus the undifferentiated direction) are not aligned across modules.

Most of the field elongations recorded in [9] were close to perpendicular to the level

ground, while mixed modular coding would predict elongations along different directions in

different grid modules. It is unclear whether the specific setup of the experiment favored a

strong prior bias favoring an internal 2D world interpretation, level with the physical ground,

and whether in non-spatial cognitive navigation the same bias would persist. It will be impor-

tant to systematically study across-module tuning in high-dimensional coding scenarios.

Recently, grid cell responses have been examined in bats flying through 3D environments.

Bats crawling on 2D surfaces exhibit the same 2D triangular grid cell tuning [31] as rats and

mice. In 3D, consistent with our theory, the responses seem not to clearly exhibit regular 3D

grid patterns [32]. However, the fields do seem to be localized in all 3 dimensions, at least in

the vicinity of a tree around where the bats forage for food—to our knowledge the cells have

been recorded either exclusively during flight or during crawling. It is possible in this case that

localized higher-dimensional fields are formed in the hippocampus or the lateral entorhinal

cortex based on spatial landmarks. Alternatively, localized fields seen in medial entorhinal cor-

tex and hippocampus in 3D could be formed by conjunctions of grid cells encoding higher-
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dimensional spaces according to our model, as shown in Fig 5a, which qualitatively matches

some of the reported properties of entorhinal cells in flying bats. A similar situation might

hold for the observed localization of fields in 3D, in rats navigating 3D wire mesh cubes [16].

However, an absence of band-like structure in grid cells along all dimensions during 3D cod-

ing would not be consistent with our theory.

Mixed modular grid codes and mixed selectivity

The mixed modular grid code combines two powerful concepts: the compositionality of mod-

ular codes for high capacity and cell-efficiency, and mixed selectivity coding for flexibility in

trading off the available coding capacity for use in either representing large ranges per dimen-

sion of the encoded variable or representing higher-dimensional variables, without any recon-

figuration of the recurrent circuitry. It generalizes the concept of nonlinear mixed selectivity

[29] to show how it can be used effectively for representing analog, metric Euclidean variables,

with a special form of nonlinearity (periodic phases) that does not damage the ability of the

code to represent, in a translation-invariant way, variables that are translation-invariant.

Methods

Numerical computation of capacity

Numerical computation of capacity for mixed modular grid code: Given the number of mod-

ules M, a maximum input dimension Nmax, and a phase resolution Δ, a single trial consists of

sampling a random matrix Aα of size 2 × Nmax for each module and computing the coding
range L = L(M, N, Δ) for all input dimensions N� Nmax (in order to support the model’s flexi-

bility). The entries of the matrices were independently sampled from a standard normal

distribution.

Recall that a grid code consists of an ordered set of 2d-phases on a twisted torus. The dis-

tance of two grid codes is determined by the maximum of their component-wise distances. We

determine the coding range of the code by computing the side length of a maximal collision-

free cube centered at the origin of the encoded variable; see S4 Fig. Here we consider two grid

codes to collide if their distance in coding space is smaller than or equal to half the phase reso-

lution—this is based on the assumption that we only observe noisy samples from a distribution

which is centered at the true phase and whose support is determined by Δ (S4 Fig; pink region

on the right). However, in a small neighbourhood of the origin (moving along each dimension

by an amount smaller than all the grid periods) the encoding map is one-to-one. Any point

thus admits a small neighbourhood of points whose associated phases are closer than Δ (S4 Fig;

pink region on the left); it is necessary to ignore these points while performing our search for

collisions for the capacity computations. We therefore compute the minimal hyper-rectangle

enclosing these ignored points and then incrementally extend this box outward to find the

maximal collision-free rectangular regions. We measure the coding range in units determined

by the size of this minimal hypercube; this is also referred to as dynamic range in the literature.

In other words, we use the side-lengths of the minimal box as the units of measurement and

adapt our coordinate system in the input space accordingly. In this adapted coordinate system

both the minimal box and the maximal collision-free region are in fact cubes (S4 Fig).

The search for collision follows a divide-and-conquer approach that extends the search

region and then subdivides the new frontier region into smaller pieces for which collisions

with the origin can be computed deterministically. This means that our collision search is not

based on sampling the high-dimensional input space and ensures that we do not miss any col-

lision within the search region.
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Tuning curves

Idealized tuning curves were computed as follows: As an idealized attractor manifold we chose

a twisted torus obtained by the quotient of the Euclidean plane and a hexagonal lattice Λ with

basis ð1; 0Þ
T
; cos p

3
; sin p

3

� �T
n o

. For each module we randomly sampled a (2 × 3)-matrix A;

we compute a module’s phase associated to x as ϕx = A � x (mod Λ). The rate map of an ideal-

ized grid cell at position ϕ0 (for convenience we chose ϕ0 = 0) within a module was then com-

puted as

gðx;AÞ≔expð� dð�x; �0Þ
2
Þ;

where d(ϕx, ϕ0): = minλ2Λ kx − λk2. The rate map of a conjunctive cell combining the activity

of m idealized grid cells in distinct modules with projections A1, . . ., Am was computed as

cðx;A1; . . . ;AmÞ≔
Xm

i¼1

gðx;AiÞ

The firing fields in Fig 5a, 5b and 5c were obtained by thresholding the rate map c of a con-

junctive cell at θ = min c + 0.8 � (max c − min c) over a cube with side-length 2.

Realistic tuning curves were implemented by simulating multiple grid cell modules with

noisy neural activity, as in [24], and driving these networks with randomly projected velocity

inputs. The center of the encoded space was treated as a landmark that served to reset the grid

phases to a correct value for that location, to avoid the accumulation of excessive errors. These

more realistic tuning curves are shown in Fig 5b and 5c.

Supporting information

S1 Fig. 1-dimensional capacity. (a) Histograms of the 1D capacity data. Note that for each M
the distribution is roughly log-normally distributed (1000 data-points for each M). For all

computations the phase resolution is Δ = 0.2. (b) The 1D capacity of our randomized approach

(blue error-bars). We show geometric mean and standard deviation of the data (1000 data-

points for each M). The capacity grows proportional to the benchmark Δ � (1/Δ2)M (thick black

line); cf. [18].

(TIF)

S2 Fig. Capacity as a function of phase resolution. Capacity grows as a power of phase reso-

lution, regardless of the dimensionality of the encoded variable.

(TIF)

S3 Fig. A zoo of firing fields. (a) A tilted plane (blue) in 3D space and 16 different projections

(magenta lines) onto a common 2D input subspace (gray) along which the responses are an

equilateral triangular lattice. (b) 6 × 6 different Firing fields on the blue plane induced by a

family of 6 × 6 projections whose angles vary as indicated in (a).

(TIF)

S4 Fig. Coding range. Left: Schematic picture of input space. Pink region contains points

whose phase is in the Δ-neighbourhood of the associated phase on the right (pink box on the

right). Right: Schematic picture of joint coding space of multiple grid modules. Black thick line

represents the image of the box on the left hand side under the grid coding map. Black dots rep-

resent two encoded positions: the phase representing the origin in input space is surrounded

by a Δ-neighbourhood (pink) of noise. The other dot illustrates a collision.

(TIF)
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