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Abstract

Background: Brucella abortus is an intracellular pathogen which can infect and persist in host cells through
multiple interactions. Above all, its interaction to host cell receptor is important to understand the pathogenic
mechanisms of B. abortus. Accordingly, we demonstrated that platelet-activating factor receptor (PAFR) affects

host cell response against B. abortus infection.

Results: First of all, B. abortus infection to macrophage induces secretion of platelet-activating factor (PAF), which is
a PAFR agonist. The stimulation of PAFR by PAF remarkably increases B. abortus uptake into macrophages. It induces
Janus kinase 2 (JAK2) and p38a phosphorylation, indicating that PAFR-mediated activation of JAK2 signaling leads to

enhanced uptake of B. abortus. Moreover, the dynamics of F-actin polymerization revealed that PAFR-mediated B.
abortus uptake is related with the reorganization of F-actin and JAK2. Upon B. abortus phagocytosis, reduced PAFR
in the membrane and subsequently increased levels of PAFR colocalization with endosomes were observed which
indicate that B. abortus uptake into macrophages allowed PAFR trafficking to endosomes.

Conclusions: This study demonstrated that PAFR has a compelling involvement in B. abortus uptake as a promoter
of phagocytosis, which is associated with JAK2 activation. Thus, our findings establish a novel insight into a receptor-

related phagocytic mechanism of B. abortus.
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Background

Brucella spp. are intracellular pathogens responsible for a
chronic mammalian zoonotic disease, which has emerged
as an ongoing public health problem worldwide [1]. These
organisms cause subtle infections, which entail extensive
replication inside host cells, such as macrophages, dendritic
cells, and placental trophoblasts, for several days without
producing toxic effects [2]. The virulence factors used by
the Brucella spp. to invade and persist are assumed to aid

* Correspondence: kimsuk@gnu.ackr

2Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang
National University, Jinju 660-701, Republic of Korea

*Institute of Agriculture and Life Science, Gyeongsang National University,
Jinju 660-701, Republic of Korea

Full list of author information is available at the end of the article

( BioMed Central

the organism's ability to avoid the killing mechanisms
within cells [3], but their molecular mechanisms are not
fully understood. In macrophages, Brucella may bind to
distinct phagocytic receptors, such as Fc gamma receptors
and scavenger receptors, but may also bind to unknown re-
ceptors resulting in subsequent engulfment by zipper-like
phagocytosis [4]. It has also been shown that Brucella in-
vades phagocytes through lipid raft microdomains [5, 6].
Platelet-activating factor receptor (PAFR) is a member of
the G protein-coupled receptor superfamily (GPCR) that is
expressed on various cell types, including neutrophils,
macrophages, monocytes, and epithelial cells [7]. This re-
ceptor is activated by its ligand, PAF, which is an effective
phospholipid mediator with multiple physiological and
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pathological involvement in allergic disorders and inflam-
mation [8, 9]. Both PAFR and PAF may enhance the host
ability to manage infections by promoting phagocytosis and
eradication of engulfed microorganisms. PAFR is engaged
during the host response to overcome infections through
promoting phagocytosis and the subsequent elimination of
internalized pathogens [10, 11].

Janus kinase (JAK) 2 is generally known as a key linker
of cytokine-mediated signal transduction and modula-
tion of immune responses [12]. It has been elucidated
that JAK2 is involved in the activation of Src-kinase,
PI3K, MAPKs, and STAT downstream signaling follow-
ing cytokine receptor activation and infection [13, 14].
JAK2 signaling is not a distinctive hallmark of cytokine
receptors; however, some evidences support its signifi-
cance in GPCR signaling with some studies showing that
JAK2 is associated with angiotensin AT1 receptor [15]
and PAFR [16].

It has been demonstrated that PAFR stimulation acti-
vates divergent signaling pathways. Whether B. abortus
interacts with PAFR and what phagocytic mechanisms of
B. abortus are associated with PAFR-linked signaling
have not been defined. Here, we address a novel phago-
cytic mechanism and reveal that PAFR facilitates the
phagocytosis of B. abortus, and this event is associated
with intracellular JAK2 pathways leading to amplified
rearrangement of the actin cytoskeleton. In correlation
with the interaction of B. abortus with PAFR-linked
JAK2 signaling, there is evidence that PAF production is
notably increased by B. abortus infection, which triggers
trafficking of PAFR from the membrane to the endo-
somes. Taken together, this study suggests that the
PAFR-linked JAK2 signaling contributes to the entry of
B. abortus into macrophages. These findings highlight
an important receptor-mediated signaling pathway in-
volved in the B. abortus phagocytic mechanism.

Results

Uptake of B. abortus contributes to PAF production by
enhancing activation of LPCAT2 through JAK2-mediated
pathway

Previous studies elucidated the action of PAFR on bac-
terial infections [10, 17], however, an interaction be-
tween B. abortus and PAFR or its ligand, PAF, has not
yet been investigated. We first determined whether B.
abortus infection induces PAF production through acti-
vation of PAFR. The PAF content increased at a high
level at 5 min post-infection with B. abortus (2.12-fold
increase) compared to resting cells (Fig. la). PAF has
been reported to stimulate PAFR which is associated
with JAK2 signaling [18], and in our previous study, we
demonstrated that JAK2 activation is involved in the in-
vasion pathway of B. abortus [19]. Consequently, for
comprehensive correlation between PAF production and
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B. abortus infection on PAFR-mediated signaling path-
way, we measured PAF content in both CV3988 (PAFR
antagonist)-treated and AG490 (JAK2 inhibitor)-treated
cells during B. abortus uptake. As a result, the levels of
PAF secretion during B. abortus infection were signifi-
cantly attenuated in both CV3988- and AG490-treated
cells, demonstrating approximately 1.40-fold reductions.
Collectively, PAF production is enhanced during B.
abortus infection through a JAK2-mediated pathway.
Additionally, the PAF content was not significantly in-
creased in cells infected with heat-killed B. abortus com-
pared to resting cells or live B. abortus, while in the case
of E. coli O157:H7 infection, it was remarkably increased
(2.18-fold increase) as much as those of live B. abortus.

Phosphorylation of lyso-phosphatidylcholine acyltrans-
ferase 2 (LPCAT?2), an enzyme involved in the synthesis
of PAF from lyso-PAF, enhances PAF production in
endotoxin-stimulated macrophages [20]. We hypothe-
sized that B. abortus could augment the activation of
LPCAT?2 as a key step for PAF production, hence we
investigated the phosphorylation of immunoprecipitated
LPCAT?2 in B. abortus-infected cells. As a result, B.
abortus infection and PAF stimulation resulted in not-
able increase in the values of LPCAT2 activation by
53.63 % at 5 min post-infection compared to resting cells
(Fig. 1b). In contrast, the LPCAT?2 activation values were
reduced to 35.65 % at 5 min post-infection in JAK2-
inhibited cells. Moreover, the LPCAT2 activation was
not significantly high in cells infected with heat-killed B.
abortus compared to resting cells or live B. abortus, but
that of E. coli O157:H7 infection showed an increase ac-
tivation (1.37-fold) as much as that of live B. abortus
(Fig. 1c). In correlation with the LPCAT2 phosphoryl-
ation data, these findings demonstrated that LPCAT?2 is
activated during uptake of B. abortus into macrophages
mediated by JAK2 signaling pathway.

PAFR-linked event triggers uptake of B. abortus into
macrophages

Several studies indicated that B. abortus-induced PAF
production is involved in PAFR-mediated signaling path-
way, and accumulating studies have shown that PAFR
has important roles for bacterial infections [10, 17].
Thus, we further investigated how PAFR is involved in
the uptake of B. abortus. Macrophage cells were stimu-
lated with various concentrations of PAF, which effect-
ively acts through PAFR, in an artificial manner for a
range of incubation times followed by infection with B.
abortus. The uptake of B. abortus was significantly
increased by the stimulation of PAF for 5 min in a
dose-dependent pattern compared with untreated cells
(P<0.001) (Fig. 2a and Additional file 1: Table Sla).
Conversely, the inhibition of PAFR function by the
PAFR antagonist CV3988 resulted in notably reduced
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Fig. 1 Production of PAF linked to LPCAT2 activation is enhanced by B. abortus infection. (@) RAW264.7 cells pretreated with AG490 (75 uM) or CV/3988

(1 uM), a PAFR antagonist, for 1 h were infected with live B. abortus for 5 min. The cells were infected with heat-killed B. abortus and live E. coli O157:H7
for 5 min. The levels of PAF secretion in the culture supernatants were quantified by PAF ELISA. Data represent the mean + SD of triplicate trials from three
independent experiments. Statistically significant differences from the untreated samples are indicated by asterisks (*, P < 0.05; ***, P < 0.001). (b) Cells
pretreated with PAF (200 nM), a PAFR agonist, for 5 min and AG490 (75 uM), a JAK2 inhibitor, for 1 h were infected with B. abortus for 5 min. (c) Cells were
also were infected with heat-killed B. abortus or live E. coli O157:H7 for 5 min. The cells were processed for immunoprecipitation with a LPCAT2 antibody
and then were probed with a phosphoserine antibody. The membrane was then stripped and re-probed with LPCAT2 antibody. The images shown are
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uptake of B. abortus in a dose-dependent pattern (P <
0.05) (Fig. 2b and Additional file 1: Table Sla). Add-
itionally, when we tested the effects of PAFR activation
on B. abortus internalization with different infection
doses (MOIs of 10 and 100), the numbers of internal-
ized bacteria were significantly increased at MOI 100
than MOI 10 in control cells but also in PAF-treated
cells (Additional file 1: Table S1b). These results verify
that PAFR activation by PAF contributes to the uptake
of B. abortus into macrophages.

PAFR-induced activation of JAK2 signaling is augmented
by uptake of B. abortus into macrophages

Some studies have found that stimulation of PAFR by
PAF activates JAK2 as demonstrated in a mutant PAFR
which failed to activate JAK2 phosphorylation [12, 16].
Previously, we confirmed that the activation of JAK2 and
downstream proteins were induced during the uptake of
B. abortus into macrophages [19]. Thus, we investigated
the phosphorylation of JAK2 and the downstream protein
p38a to verify whether PAFR-induced JAK2 activation is
associated with B. abortus uptake by macrophages. In

agreement with previous findings, JAK2 phosphorylation
was increased upon B. abortus infection, and the stimula-
tion of PAFR by PAF boosts JAK2 activation (increased
values of 14.78 % at 5 min and 14.49 % at 15 min) during
B. abortus uptake (Fig. 3a). In contrast, the suppression
of PAFR by CV3988 resulted in no considerable differ-
ence in the phosphorylation state of JAK2 compared
with the resting state of PAFR, but JAK2 activation was
hindered (reduced values of 40.51 % at 5 min, 27.04 %
at 15 min, and 24.20 % at 30 min) upon B. abortus in-
fection (Fig. 3b). These findings indicate that stimula-
tion of PAFR wupon infection of B. abortus in
macrophages induces activation of JAK2.

Interaction of PAFR with intracellular JAK2 signaling
assisted uptake of B. abortus into macrophages

Together with the supporting data referring to PAFR-
related JAK2 signaling [18], we investigated whether B.
abortus entry is involved in the interaction of PAFR with
intracellular JAK2 signaling. Consequently, we examined
whether the attenuation of B. abortus uptake by inhib-
ition of JAK2 is altered by stimulation or interference of
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Fig. 2 The stimulation of PAFR positively affects uptake of B. abortus into macrophages. (@) RAW 264.7 cells were pretreated for 5 min with serial

concentrations (0-200 nM) of PAF, a PAFR agonist, followed by infection with B. abortus for the indicated times. (b) Cells were pretreated for 1 h with a
serial concentration (0-2 puM) of CV3988, a PAFR antagonist, and then infected as described in (a). Bacterial internalization efficiency was determined by
evaluating the protection of internalized bacteria from gentamicin treatment. All data represent the mean + SD of triplicate trials from three independent

experiments. Statistically significant differences from the untreated samples are indicated by asterisks (¥, P < 0.05; **, P < 0.01; ***, P < 0.001)

PAFR. The progressively increased uptake of B. abortus
by PAF stimulation in untreated cells (P < 0.001), in con-
trast to the reduced uptake in JAK2-inactivated cells,
was slightly altered by PAF stimulation (Fig. 3c and Add-
itional file 1: Table Sla). These results suggested that
PAFR is linked to intracellular JAK2, which acts as its
downstream signal, and has an important role in the up-
take process of B. abortus into macrophages. Collect-
ively, these findings suggest that PAFR interacts with
intracellular JAK2 signaling for the uptake of B. abortus
into macrophages.

PAFR has a positive effect on phagocytosis of B. abortus
into macrophages and amplifies actin polymerization

The association of PAFR with phagocytosis illuminated
the function of PAFR as an infection control protein
[11, 21], and the recruitment of PAFR with intracellular
kinases elicits distinct actin rearrangement [22, 23].
Furthermore, we previously demonstrated that B. abor-
tus uptake was accompanied by activation of JAK2 oc-
curred through F-actin polymerization [19]. Thus, to
determine whether JAK2 activation-associated actin
polymerization in the phagocytosis of B. abortus is
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Fig. 3 Activation of PAFR-associated JAK2 signaling involved in B. abortus uptake. (@) RAW 264.7 cells were pretreated for 5 min with a serial concentration
(0200 nM) of PAF. Of the PAF-treated cells, cells in 0 and 200 nM PAF were infected with B. abortus for 5 min. The cells were lysed, and the activation of
JAK2 and p38a were monitored by immunoblot analysis. Images shown are representatives of three independent experiments. (b) Cells were pretreated
with CV3988 (1 uM) for 1 h, followed by infection with B. abortus for the indicated times (5, 15, or 30 min), and then monitored by immunoblot analysis
as described in @). (c) Cells pretreated with or without AG490 (75 uM) for 1 h were stimulated with PAF (200 nM), and then the infection assay
was conducted using the same procedure used to evaluate bacterial uptake into macrophages. Statistically significant differences from the
untreated samples are indicated by asterisks (**, P < 0.01; ***, P < 0.001)

affected by PAFR function, we first visualized F-actin
polymerization during B. abortus invasion into PAFR-
stimulated or PAFR-suppressed macrophages. For pre-
liminary tests, we checked whether fluorescent labeling
influences infectivity of bacteria which indicated that
fluorescent-labeled B. abortus hardly affected the
efficacy of infection in macrophages (5.64 + 0.128 CFU
(x10°)/well in unconjugated bacteria vs 5.12+0.5
42 CFU (x10°)/well in Alexa flour 405-conjugated bac-
teria). As expected, the stimulation of PAFR by PAF
augmented F-actin polymerization upon uptake of B.
abortus and showed high levels of F-actin rearrange-
ment as much as that of B. abortus-infected control
cells (Fig. 4, upper and middle panel). However, actin
polymerization induced by B. abortus uptake was re-
duced in the CV3988-treated PAFR-suppressed cells
(Fig. 4, lower panel). These findings indicated that
PAFR contributes to B. abortus phagocytosis by boost-
ing F-actin polymerization. Next, we further examined
the reorganization of cytosolic activated JAK2 and its
colocalization with F-actin during B. abortus invasion into

PAFR-stimulated or PAFR-suppressed macrophages. The
results revealed that the reorganization of activated JAK2
and the colocalization with F-actin were heightened by
the stimulation of PAFR and attenuated by the suppres-
sion of PAFR (Fig. 4, lower panel). Consequently, these re-
sults suggest that PAFR has a positive effect on JAK2
activation-induced actin polymerization for B. abortus
phagocytosis into macrophages.

Based on the finding of cytoskeletal F-actin redistribu-
tion, we evaluated the F-actin content upon B. abortus
uptake by FACS analysis to quantitatively confirm the
action of PAFR on F-actin polymerization for B. abortus
phagocytosis. The stimulation of PAFR and B. abortus
infection led to a significant amplification in F-actin
fluorescence intensity (P <0.01) and a rightward inten-
sity shift compared with non-stimulated or non-
infected cells (Fig. 5). In contrast, the suppression of
PAFR resulted in a marked reduction of F-actin content
in B. abortus-infected cells but not in non-infected cells
(Additional file 2: Figure S1). These results suggested
that PAFR is associated with the intensification of F-actin
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Fig. 4 PAFR cooperates with JAK2 signaling for phagocytosis of B. abortus. RAW 264.7 cells were pretreated with or without PAF (200 nM) for

5 min or CV3988 (1 uM) for 1 h prior to infection; the cells were then infected with Alexa Fluor 405-labeled B. abortus (blue) for the indicated
times. To observe redistribution of F-actin polymerization and activated JAK2, the cells were fixed and stained with both rhodamine-conjugated
phalloidin for F-actin (red) and FITC-labeled phospho-JAK2 antibody (green) immediately following a 10 min infection. The merged images are
also shown and all scale bars in images represent 10 um. All results are representatives of three separate experiments

polymerization for the phagocytosis of B. abortus into PAFR becomes rapidly desensitized, internalized, and
macrophages. According to the effects of PAFR activation = down-regulated, of which pathway is dependent on prote-
on B. abortus internalization with different infection asome, lysosomal pathways and ubiquitination [25]. We
doses, we additionally investigated F-actin polymerization  assume that B. abortus induces the production of PAF for
related to PAFR activation for phagocytosis of B. abortus  signal transduction via PAFR and subsequent PAF-
with different infection doses through gating on infected  stimulated PAFR ligation followed by internalization of
cells. As a result, the intensity of F-actin showed an infec-  PAFR from the membrane. To verify this hypothesis, we
tion dose-dependent increase and the gating on infected assessed the amount of peripheral membrane-engaged
cells have a tendency to increase than that of gating only  receptor in membrane isolates from B. abortus-in-
viable cells (Additional file 3: Figure S2). Collectively, we fected cells. The membrane-engaged PAFR showed re-
confirm that PAFR may be a critical signal transduction  duced values of 29.37 % in B. abortus-infected cells
promoter for F-actin polymerization during B. abortus in- and 37.15 % in PAF-treated cells at 30 min compared
fection in macrophages. to that at 5 min (Additional file 4: Figure S3). Thus,
this result indicates that PAFR is internalized from
Trafficking of PAFR from the membrane to endosomes is the membrane upon PAF stimulation, which was pro-
induced by the uptake of B. abortus duced following B. abortus infection after 30 min.
PAF-mediated PAFR ligation causes receptor internaliza- Furthermore, we visualized the internalization of PAFR
tion via clathrin-mediated endocytosis (CME) to transduce = from the membrane and the subsequent trafficking of
extracellular signals [23, 24]. Following PAF stimulation, PAFR to endosomes upon B. abortus infection. The
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Fig. 5 PAFR activation plays a critical role in intensifying F-actin polymerization for phagocytosis of B. abortus. RAW 264.7 cells were pretreated for
5 min with PAF (200 nM) followed by infection with B. abortus for 5 (a), 15 (b), or 30 (c) min, and then cells were subjected to FACS analysis for
F-actin content. (d) The quantitative analysis results of experiment in (a-d). The average F-actin content of a population was expressed as the
mean of the fluorescence intensity. Data represent the mean + SD of triplicate trials from three independent experiments. Statistically significant
differences from the untreated samples are indicated by asterisks (¥, P < 0.05; **, P < 0.01)
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levels of colocalization of PAFR with endosomes at
30 min post-infection in B. abortus-infected and PAF-
treated cells increased to 24.12 % and 24.07 %, respect-
ively, compared to resting cells (Fig. 6a and b). This
observation indicates that the increased colocalization
of PAFR with endosomes during B. abortus uptake is
correlated with the reduced amount of membrane-
engaged PAFR.

Discussion

Brucella spp. utilize intracellular infection as a virulence
strategy and interact with a wide range of host cells,
such as macrophages, dendritic cells, and placental tro-
phoblasts [4, 26—28]. The macrophage response to infec-
tion causes diverse effects and is critically important for
both the endurance of the invasive bacteria and the
development of host immunity [2]. Thus, it is important
to verify the molecular targets of B. abortus in host cells
and the virulence strategy used by the bacteria to thwart
the host defense responses. In this study, we established
an underlying virulence strategy employed by B. abortus
involving a host cell signaling pathway for phagocytosis
of this virulent pathogen. We thus identified the molecu-
lar events in the host cell that are essential for the
phagocytic strategy used by B. abortus.

During the initiation of infection, several macrophage
receptors with specific binding sites, including TLR4
[29], that interact directly with Brucella have been iden-
tified. However, how the receptor enhances phagocytic
activity by specific stimuli as a mediator of signal trans-
duction upon infection remains poorly understood.

The invasion of pathogenic organisms into the host
elicits a series of immune responses through interactions
between a variety of pathogen virulence factors and the
immune surveillance mechanisms of the host. Host-
pathogen interactions are commonly initiated via host
recognition of conserved molecular compositions known
as pathogen-associated molecular patterns (PAMPs)
[30], which are indispensable for the survival of the
pathogen. Detection of PAMPs by a variety of pattern
recognition receptors (PRRs) [31], such as Toll-like re-
ceptors (TLRs), RIG-I-like receptors (RLRs), and NOD-
like receptors (NLRs) triggers the recruitment of diverse
adaptor proteins and the activation of downstream signal
transduction pathways. This leads to responses essential
for defense of the host, including phagocytosis of patho-
gens, microbial killing, and production of chemokines
and cytokines. In addition to the PRRs, another recogni-
tion system mediated by PAFR has been reported [9, 32].
PAFR is a GPCR that naturally recognizes the phosphor-
ylcholine determinant on PAF but also recognizes PAMP
phosphorylcholine, which results in the uptake of bac-
teria into host cells. Previous studies concerning the
association of PAFR with bacterial phagocytosis have
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shown that PAFR and its stimulation by ligands exert
multiple immunoregulatory reactions by host cells
against bacterial infections. These reactions include the
promotion of phagocytosis, killing, and cell adhesion
[10, 15, 17, 33], suggesting the essential role of PAFR in
bacterial invasion. Phagocytosis via PAFR has been
shown in several respiratory pathogens that possess
phosphorylcholine on their surfaces [34—36]. The traf-
ficking and inflammatory consequences of the inter-
action of the phosphorylcholine-containing cell wall
with PAFR have been determined at the level of cellular
physiology as well as in animal models [22]. In contrast,
consistent with the fact that B. abortus cell wall lacks
phosphorylcholine while they have a phosphatidylcholine
as a major component of the cell envelope and a re-
quirement for wild-type virulence, we found that coloca-
lization of PAFR with B. abortus did not occur during
B. abortus uptake using confocal microscopy in prelim-
inary test (data not shown). Because a direct contact
between PAFR and B. abortus was not detected, we
thus assessed the effects of a PAFR ligand, PAF, on
signal transduction during an entry step in macrophage
infection by B. abortus.

PAF has diverse immunomodulatory actions for the host
defense against bacterial infections, including stimulation
and degranulation of granulocytes, monocytes, and mac-
rophages [17, 33]. In an extensive aspect of the relation
between PAF and bacteria, we found that B. abortus infec-
tion led to a remarkable production of PAF during inva-
sion. Furthermore, we postulated that PAF produced upon
B. abortus infection affects PAFR-mediated events for the
advanced uptake of B. abortus, hence uptake of B. abortus
into macrophage was investigated by extrinsic treatment
with PAF. The number of internalized B. abortus was sig-
nificantly increased in PAF-stimulated cells, indicating
that the stimulated PAFR enhances B. abortus uptake into
macrophages. This phenotype is dependent on PAF stimu-
lation time as our results show that treatment with PAF
for 5 min more significantly increases internalization than
treatment for 30 min. In contrast, the inhibition of PAFR
function notably reduced the uptake of B. abortus. Pos-
sibly, the same mechanism occurs in PAFR through B.
abortus-induced PAF on phagocytosis of B. abortus into
host cell. Collectively, these findings suggest that the
stimulation of PAFR actively influenced B. abortus phago-
cytosis and confirmed that PAFR has the potential to serve
as a trigger for the uptake of B. abortus.

The PAFR-associated intracellular signaling pathway
was found to involve the intracellular tyrosine kinase
JAK2, which resulted from the findings that JAK2 fails
to become phosphorylated in a PAFR mutant [16, 18]. In
agreement with a positive effect of PAFR on JAK2
activation, the phosphorylation of JAK2 was increased
by B. abortus infection, and the B. abortus-induced
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Fig. 6 Uptake of B. abortus induces trafficking of PAFR to endosomes. (a) RAW 264.7 cells were pretreated for 5 min with PAF (200 nM), and then B.
abortus in medium containing 1 mg/ml of TRDx was deposited onto cells followed by incubation at 37 °C for 30 min. Immunostaining with FITC-labeled
PAFR (green) was used to detect the colocalization of PAFR and endosomes (red). The merged images showed colocalization of PAFR and endosomes
(arrow). (b) The quantitative analysis results of experiment in (a). The colocalization number of endosomes with PAFR was counted, and the data are
presented as a percentage per 100 cells. All results are representatives of three separate experiments (** P < 0.01). All scale bars in images represent 10 um

JAK2 activation was augmented through PAFR stimula-
tion by PAF. In contrast, upon inhibition of PAFR, the
elevated JAK2 activation by B. abortus infection was
obstructed at the internalization stage. Indeed, these
findings suggest that PAFR-involved JAK2 activation
could be a virulence strategy critical for B. abortus inva-
sion into host cells.

It has been known that PAFR activation induces the
recruitment of intracellular kinases leading to distinct
actin rearrangement at the plasma membrane [22, 23].
To determine if this occurs upon B. abortus infection
of macrophages engaged in JAK2 activation, we ob-
served the reorganization of the actin cytoskeleton and
cytosolic activated JAK2 during B. abortus uptake by
PAFR-stimulated or -suppressed macrophages. As ex-
pected, the microscopy results revealed that the F-actin
polymerization and the redistribution of activated JAK2
were augmented by stimulation of PAFR. Furthermore,
FACS analysis showed increased F-actin fluorescence
intensity upon PAFR stimulation, which correlates with
our microscopy results. Therefore, the B. abortus-in-
duced effect on actin polymerization enhanced by
PAFR-associated JAK2 activation could be essential for
macrophage infection by this pathogen. In addition,
regarding the infection dose, we verified that the num-
ber of internalized bacteria and intensity of F-actin
were enhanced in higher infection dose (MOI 100)
than in lower one (MOI 10), indicating the effects and
levels of PAFR activation on B. abortus phagocytosis
into macrophage have a tendency to be proportional
to the infection dose.

B. abortus infection induced intracellular lyso-
phosphocholine acetyltransferase (LPCAT) activation,
which subsequently participated in PAF synthesis. Ad-
vanced studies have shown the complex pathway con-
necting the stimulation of PAFR through enhanced
PAF production by extracellular stimuli which initi-
ates receptor internalization [23, 24]. On the other
hand, the experiment to verify whether PAF produc-
tion linked to LPCAT2 activation is caused by live
Brucella infection in comparison with killed bacteria
and E. coli O157:H7 as a non-Brucella control re-
vealed that the positive effect on LPCAT2 activation-
related PAF production is practically related with live
Brucella infection but not killed bacteria. But the
same positive effects of E. coli O157:H7 infection as

much as those of live B. abortus corresponded with
previous study that described a significant increase in
PAF production by human colonic tissue for 4 h after
infection by enterohemorrhagic E. coli (EHEC) [37].
Thus, our results revealed that live Brucella infection also
induced PAF production through activation of LPCAT2
similar to other bacteria but we particularly verified that
this enhancement is linked to the JAK2-mediated path-
way. Moreover, the internalization and degradation of
PAFR were induced by stimulation of PAF, which can be
maintained by proteasome and lysosomal pathways [25].
In line with these signal pathways, the fundamental
proposal is that B. abortus could induce the produc-
tion of PAF, which may be advantageous for invasion.
Subsequently, the PAFR stimulation by B. abortus-in-
duced PAF secretion causes mobilization and traffick-
ing in membrane-engaged PAFR compared with the
resting condition. This finding is supported by the
evidence showing the increased trafficking of PAFR to
endosomes, which is in accordance with the internal-
ization of PAFR from the membrane upon B. abortus
infection. Considering the relevant evidence that
Brucella cause a weak response in innate immune
system, of which mechanism is likely that Brucella
do not rely on single distinct virulence factor [38],
the event involving PAFR trafficking upon B. abortus
infection could indirectly regulate PAFR-mediated
signaling activation in an integrated aspect of host-
pathogen interaction.

Thus, this sequential processing and correlation im-
plies that B. abortus utilizes a supporting mechanism
(non-binding membrane receptor PAFR), which modu-
lates the activation of PAFR-mediated JAK2 signaling
pathway during the entry step of infection.

Conclusions

In summary, this study concludes that B. abortus pro-
motes PAF production, which induces PAFR-linked
JAK2 signaling activation to successfully invade mac-
rophages. It seems likely that B. abortus may enable us
to further elaborate mechanisms of intracellular
signaling cascades connected to membrane receptor
activation. Thus, we establish a correlation between
receptor-mediated cellular signaling and the patho-
genic strategy of B. abortus.
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Methods

Cells and culture conditions

The RAW 264.7 murine macrophage cell line was ob-
tained from the American Type Culture Collection
(ATCC TIB-71, Rockville, USA) and was grown at 37 °C
ina 5 % CO, atmosphere in RPMI 1640 medium (Gibco,
Carlsbad, CA) containing 10 % heat-inactivated fetal bo-
vine serum (FBS), 2 mM [ -glutamine, 100 U/ml penicil-
lin, and 100 pg/ml streptomycin (all provided by Gibco).
RAW 264.7 cells were seeded (1 x 10° cells/well) in cell
culture plates and incubated for 24 h before infection for
all assays.

Bacterial strains and culture conditions

The B. abortus strain used in this study was derived
from 544 (ATCC 23448), which is a smooth, virulent
B. abortus biovar 1 strain. The B. abortus organisms
were maintained as frozen glycerol stocks (glycerol
80 % v/v) at -70 °C. In all experiments, the contents of
freshly thawed vials were cultured in Brucella broth
(Becton Dickinson, Franklin Lakes, NJ) or Brucella
agar without antibiotics for 3 days at 37 °C with aer-
ation; whereas, enterohemorrhagic E. coli (EHEC)
0157:H7 (ATCC 43894) cultures were grown in Luria-
Bertani (LB) broth. Bacteria were grown at 37 °C with
vigorous shaking until they reached stationary phase,
and the bacteria were suspended in PBS and then the
viable counts were measured by plating serial dilutions
on Brucella agar. For generating the killed bacteria, B.
abortus organisms grown to stationary phase were
washed five times in sterile PBS, heat killed at 80 °C
for 20 min. Total absence of B. abortus viability after
heat killing was confirmed by the absence of bacterial
growth in Brucella agar.

Bacterial infection and internalization assay

To detect internalization efficacy of the bacteria, RAW
264.7 cells were infected with B. abortus as described
previously [5]. In brief, bacteria were inoculated onto
cells grown in 96-well plates at multiplicities of infection
(MOIs) of 10 and 100, centrifuged at 150 x g at 22 °C for
10 min, and were then incubated at 37 °C in 5 % CO,
for 0, 15, and 30 min. The cells were washed once with
medium and were then incubated with medium contain-
ing gentamicin (30 pg/ml) for 30 min to kill the
remaining extracellular bacteria. For evaluation of viable
bacteria at different time points, the infected cells were
washed three times with PBS and were then lysed with
distilled water. The number of viable bacteria was de-
termined by CFU counts from serial dilutions of cell ly-
sates on Brucella agar plates. All of the assays were
conducted in triplicates and repeated at least three
times on different days.
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Immunoprecipitation and immunoblot analysis

B. abortus-infected cells in 6-well plates (5x 10> cells/
well) were lysed using ice-cold lysis buffer for 30 min at
4 °C. Total cell lysates were collected by centrifugation
at 18,000 x g at 4 °C for 15 min. For the isolation of
plasma membrane fractions, the infected cells were sus-
pended in 50 mM Tris-HCI buffer (containing 1 mM
EDTA, pH 7.4), and then were sonicated on ice 2 times
(each for 5 s, at 20 kHz). The sonicated samples were
ultracentrifuged at 265,000 x g at 4 °C for 2 h, and the
resultant pellet (membrane fraction) was resuspended in
50 mM Tris-HCl buffer. After purification of all
proteins, protein concentration was determined by
Bradford protein assay (Bio-Rad, Richmond, CA). For
the immunoprecipitation studies to analyze LPCAT2
activation, the cell lysates were incubated with goat
anti-LPCAT2 antibody (1 pg/100 pg of total protein;
Santa Cruz Biotechnology, Dallas, TX) overnight at 4 °C.
The cell lysates were then mixed with protein G Sephar-
ose beads (Santa Cruz Biotechnology). The final immuno-
precipitated product, the initial total cell lysates and
plasma membrane proteins were separated by SDS-PAGE
and were transferred to a PVDF membrane (Millipore,
Billerica, MA). The blots were blocked for 1 h with 5 %
(w/v) bovine serum albumin in TBS-T (20 mM Tris-HClI,
150 mM NaCl, Tween 0.1 %, pH 7.4) and were probed by
a mouse anti-phosphoserine antibody (1:1000; Millipore)
for LPCAT?2, rabbit anti-JAK2 (1:2000; Novus, Cambridge,
UK) and rabbit anti-p38a (1:1000; Cell Signaling Technol-
ogy, Danvers, MA), and rabbit anti-PAFR (1:200; Cayman
Michigan, USA) phosphospecific antibodies. Pan anti-
bodies and rabbit anti-B-actin antibody (1:1000; Cell
Signaling Technology) were used to probe stripped blots
to verify that equivalent amounts of proteins were loaded
per lane. Mouse anti-Sodium potassium ATPase (Na/K
ATPase) antibody (1:1000; Abcam) was applied for quality
control of plasma membrane. The binding of primary anti-
body was visualized using HRP-conjugated anti-rabbit IgG
and anti-mouse IgG secondary antibodies (1:5000; Sigma,
St. Louis, MO) followed by detection with enhanced ECL
(Amersham, Little Chalfont, UK). The immunoblot ECL
signals were quantified using NIH Image ] software.

Measurement of PAF content

Cells cultured in 96-well plates were infected with B. abor-
tus for 5 min. The PAF concentrations in cell culture
supernatants were measured by mouse PAF ELISA (Anti-
bodies-online, Atlanta, GA) according to the manufac-
turer’s instructions. All assays were conducted in triplicates
and repeated at least three times on different days.

Immunofluorescence microscopy
For using fluorescent-conjugated bacteria, B. abortus
was labeled with Alexa Fluor 405 (Molecular Probes,
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Eugene, OR) as follows; Ten mg of bacteria (approxi-
mately 10’ CFU) was dissolved in 1 ml of 0.1 M
sodium bicarbonate buffer (pH 8.3), and then slowly
added with 50 pl of Alexa Fluor 405. The reaction mix-
ture was incubated for 1 h at room temperature with
continuous stirring. After conjugation, viable bacteria
were counted by culture on Brucella agar, it was ascer-
tained that the conjugation of bacteria had no negative
effect on viability. Macrophages were cultured in 12-
well plates with 18 mm-diameter glass coverslips (10°
cells/well) for 24 h before the infection. Cells were
infected with unconjugated or Alexa Fluor 405 (Mo-
lecular Probes, Eugene, OR)-conjugated B. abortus for
5 min. The samples were fixed with 4 % (w/v) parafor-
maldehyde (Sigma) and were permeabilized with 0.1 %
Triton X-100 for 10 min at 22 °C. After 30 min incuba-
tion with a blocking buffer (2 % goat serum in PBS),
the samples were stained with specific antibodies in
blocking buffer for 1 h at 37 °C. For F-actin staining, the
cells were incubated with 0.1 uM rhodamin-phalloidin
(Cytoskeleton, Denver, CO) for 30 min at 22 °C. For the
detection of intracellular JAK2 localization, the cells were
incubated with phospho-JAK2 and then FITC-conjugated
goat anti-rabbit IgG (Sigma). For detection of colocaliza-
tion of PAFR and endosomes, B. abortus in medium
containing 1 mg/ml of TRDx were deposited onto cells by
centrifugation at 150 x g at 22 °C for 10 min, and were
incubated at 37 °C for 5 and 30 min. Immunostaining
was conducted with Alexa Fluor 350-labeled PAFR.
Finally, the preparations were washed and mounted
with fluorescent mounting medium (DakoCytomation,
Glostrup, Denmark). Fluorescence images were col-
lected with an Olympus FV1000 laser scanning con-
focal microscope. The images were processed with
Adobe Photoshop and NIH Image] software [38].

FACS assay for F-actin

To determine the relative content of F-actin in cells
infected with Alexa Fluor 405-unconjugated or conju-
gated B. abortus (MOIs of 10, 50 and 100), we per-
formed a FACS assay for F-actin as previously described
[39]. In brief, the cells (1.5 x 10° cells/ml) were harvested
and fixed with 4 % (w/v) paraformaldehyde at room
temperature for 30 min. Next, the samples were perme-
abilized and stained with 20 pg/ml lysophosphatidylcho-
line (Sigma) containing 1 pM TRITC-phalloidin (Sigma).
After centrifugation at 500 x g at 4 °C for 5 min, the cells
were washed with PBS, and the F-actin content was
quantified by FACS analysis using a FACSCalibur flow
cytometer (Becton Dickinson, Mountain View, CA). For
gating in FACS, two kinds of gating strategy were used;
first, the viable cells were gated based on forward-scatter
(FSC) and side-scatter (SSC) and F-actin fluorescence
was measured by the second plot gated on the viable
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cells. Second, the population of B. abortus-infected cells
was drawn to tightly encompass the majority of the vi-
able cells based on FSC and SSC, and F-actin fluores-
cence was determined by the third plot gated on the
infected cells, which was drawn to encompass an ex-
panded area of positive cells. The data were collected as
log-scaled fluorescence histograms from 10,000 cells,
and the average F-actin content of a population was
expressed as the mean of the fluorescence intensity. Ex-
periments were performed in duplicates and repeated at
least three times.

Statistical analysis

The data are expressed as the mean + standard deviation
(SD) for the replicate experiments. Statistical analysis was
carried out using Graphpad-Prism software, version 4.00
(Graphpad Software, Inc., San Diego, CA). The Student’s ¢-
test or one-way ANOVA followed by the Newman-Keuls
test were used to make a statistical comparison between
the groups. The results with P <0.05 were considered sig-
nificantly different. *, **, *** denote P<0.05, P<0.01, P<
0.001, respectively.
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Additional file 1: Table S1a. Effect of PAFR activation on B. abortus
internalization into macrophages. Table S1b. Effect of PAFR activation
with different infection doses of B. abortus. (DOCX 22 kb)

Additional file 2: Figure S1. Role of PAFR activation on the intensification
of F-actin polymerization for phagocytosis of B. abortus. RAW 264.7 cells were
pretreated for 1 h with a CV3988 (1 pM), followed by infection with B. abortus
for 5 (a), 15 (b), or 30 (c) min, and then cells were subjected to the FACS
analysis for F-actin content. (d) The quantitative analysis results of experiment
in (@-). Data represent the mean + SD of triplicate trials from three independ-
ent experiments. Statistically significant differences from the untreated samples
are indicated by asterisks (¥, P <0.05, **, P < 0.01). (TIF 1098 kb)

Additional file 3: Figure S2. PAFR activation-related F-actin
polymerization for phagocytosis of B. abortus with different infection
doses. RAW 264.7 cells were pretreated with or without PAF (200 nM)
for 5 min, followed by infection with B. abortus (MOI 10, 50 and 100) for
5 (a) and 30 (b) min, and then cells were subjected to the FACS analysis
for F-actin content. (c) The quantitative analysis results of experiment
in (a-b). Data represent the mean + SD of triplicate trials from three
independent experiments. Statistically significant differences from

the infected cells with B. abortus (MOI 10) are indicated by asterisks

(*, P <0.05, **, P<0.01, ***, P<0.001). (TIF 895 kb)

Additional file 4: Figure S3. Uptake of B abortus facilitates the
internalization of PAFR from membrane. (@) RAW 264.7 cells were pretreated



dx.doi.org/10.1186/s12866-016-0685-8
dx.doi.org/10.1186/s12866-016-0685-8
dx.doi.org/10.1186/s12866-016-0685-8
dx.doi.org/10.1186/s12866-016-0685-8

Lee et al. BMC Microbiology (2016) 16:70

for 5 min with a PAF (200 nM), followed by infection with B. abortus for
indicated times. Cell plasma membranes were isolated and monitored
for the immunoblot analysis using an antibody against PAFR. Sodium
potassium ATPase (Na/K ATPase) antibody was applied for quality
control of plasma membrane. Images shown are representative of
three independent experiments. (b) PAFR levels were quantified by
fold activation detected as standardized ratio of PAFR to (3-actin over
basal levels present in resting cells. Data represent the mean + SD of
triplicate trials from three independent experiments. Statistically sig-
nificant differences from the untreated samples are indicated by as-
terisks (**, P <0.01). (TIF 144 kb)
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