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The influenza pandemic is a wide-ranging threat to people’s health and property all over the world. Developing effective strategies
for predicting the influenza outbreak which may prevent or at least get ready for a new influenza pandemic is now a top global
public health priority. Owing to the complexity of influenza outbreaks that are usually involved with spatial and temporal
characteristics of both biological and social systems, however, it is a challenging task to achieve the real-time monitoring of
influenza outbreaks. In this study, by exploring the rich dynamical information of the city network during influenza outbreaks,
we developed a computational method, the minimum-spanning-tree-based dynamical network marker (MST-DNM), to identify
the tipping point or critical stage prior to the influenza outbreak. With historical records of influenza outpatients between 2009
and 2018, the MST-DNM strategy has been validated by accurate predictions of the influenza outbreaks in three Japanese
cities/regions, respectively, i.e., Tokyo, Osaka, and Hokkaido. These successful applications show that the early-warning signal
was detected 4 weeks on average ahead of each influenza outbreak. The results show that our method is of considerable
potential in the practice of public health surveillance.

1. Introduction

Influenza, a seasonal, contagious, and widespread respiratory
illness, has always been a huge threat to people’s health.
According to the World Health Organization, up to
650,000 deaths annually are associated with respiratory dis-
eases caused by seasonal influenza. In the United States, the
influenza pandemic leads to an average of 610,660 deaths
per year and 3.1 million hospitalized days [1]. It is estimated
that the total economic burden caused by influenza reaches
81.7 billion US dollars each year [2]. Therefore, from both
public health and economic perspective, it is crucial to detect
the early-warning signal of imminent influenza outbreak so
that timely preventive measures can be carried out to prevent
a new influenza pandemic or at least reduce the magnitude of
influenza outbreaks [3, 4]. However, it is usually a challeng-
ing task to predict the influenza outbreak due to the complex-

ity of its temporal and spatial characteristics. First, the
records of worldwide influenza pandemics showed that each
outbreak differed from the others with respect to etiologic
agents, epidemiology, and disease severity [5]. Second, there
is a major obstacle for most developing countries to deploy
influenza forecasts, that is, the national surveillance system
for infectious disease could be either too costly or inaccurate
[6]. Therefore, it is of great concern to develop a cost-effective
computational method for predicting the outbreak of influ-
enza only based on the available data.

In this study, by exploring the rich dynamical informa-
tion provided by high-dimensional records of clinic hospital-
ization data, we developed a practical computational method,
i.e., the minimum-spanning-tree-based dynamical network
marker (MST-DNM), to quantitatively measure the dynam-
ical change of a city network and thus detect the early-
warning signal of an influenza outbreak. The theoretical basis
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of MST-DNM is our recently proposed concept, the so-called
dynamical network marker (DNM) [7], which is a dominant
group of variables satisfying three generic properties for the
impending critical transitions, that is, (1) the correlation
between any pair of members in the DNM group rapidly
increases; (2) the correlation between one member of the
DNM group and any other non-DNM member rapidly
decreases; (3) the standard deviation or coefficient of varia-
tion for any member in the DNM group drastically increases.
Different from traditional biomarkers, the DNM method is
aimed at detecting the early-warning signal of the critical
state before the occurrence of a catastrophic event, by mining
the critical information from high-dimensional time series
data [7, 8]. The DNM method has been applied to real-
world datasets and successfully identified the critical states
for a number of biological processes, such as the critical state
of cell differentiation [9], the tipping point during the cell fate
decision process [10], the critical transition in the immune
checkpoint blockade-responsive tumor [11], the multistage
deteriorations of T2D [12], acute lung injury [13], HCV-
induced liver cancer [14], cancer metastasis [15], and other
complex diseases [15–19]. However, to accurately predict
the influenza outbreak, a new computational method is
required to explore and measure the criticality from a net-
work perspective by considering the geographic information
of a city.

The MST-DNM is a novel network-based computational
method combined with minimum spanning tree for accurate
detection of early-warning signal to the influenza outbreak.
The spread of infectious diseases in a region is described as
the dynamical evolution of a nonlinear system, while the
influenza outbreak is regarded as a qualitative state transition
of the dynamical system. Without loss of generality, there are
three states for the influenza outbreak (Figure 1), that is, a
normal state with high stability and robustness to distur-
bances, standing for the period with few clinic visits; a pre-
outbreak state (critical state) with low resilience and high
convertibility, representing the critical stage just before the
emergence of massive clinic visits; and an outbreak state with
high stability and robustness, which is an irreversible state or
severe flu pandemic with massive clinic visits. Clearly, identi-
fying the preoutbreak state is crucial in influenza control
since timely management may greatly reduce the magnitude
and duration of the influenza outbreak. Specifically, by com-
bining the geographically adjacent information, transporta-
tion, population, and the number of clinics of each city
district, we constructed a city network with edge weights
which were assigned as the correlation between the clinic
visit numbers of two adjacent districts. By analyzing the
dynamical transmission of influenza in the city network,
the proposed MST-DNM can accurately identify the preout-
break state and thus early signal influenza outbreaks or
potential pandemics. Specifically, the MST-DNM method
was employed to probe useful dynamical information in a
city network, which is modeled based on geographic location
and traffic conditions, from the high-dimensional clinic-
visiting data of influenza, which are from 175 clinics distrib-
uted in 23 wards of Tokyo, Japan, 139 clinics distributed in 30
cities of Hokkaido, Japan, and 197 clinics distributed in 11

wards of Osaka, Japan. Clearly, such real-time data could be
muchmore readily available for a large-scale surveillance sys-
tem. The results indicate that the MST-DNM method is
capable of monitoring the infection process of the flu in real
time and timely identifying the warning signal before the out-
break of influenza. Moreover, by analyzing the dynamic
changes of the minimum spanning tree in a city network, it
provides a new approach to study the epidemic spread in a
city. Therefore, this method is of great applicable potential
in setting up a real-time surveillance system, which could
be greatly favorable for preventive care or the implementa-
tion of interventions to a health epidemic.

2. Materials and Methods

2.1. Theoretical Background. The influenza spread and out-
break is a complex dynamic process of a nonlinear system.
According to the DNM theory, when a complex system
approaches to a tipping point or critical transition point,
there is a dominant group, i.e., the DNM, which satisfies
the following three essential properties [7]:

(i) The correlation (PCCin) between each pair of mem-
bers in the DNM group dramatically increases

(ii) The correlation (PCCout) between a member of the
DNM group and a non-DNM member rapidly
decreases

(iii) The standard deviation (SDin) for each member in
the DNM group drastically increases

In general, the above properties can be roughly under-
stood as that the emergence of the DNM group with violent
fluctuation and high correlation signifies the upcoming criti-
cal transition. Thus, these properties can be utilized as three
criteria to identify the critical state of a complex biological
system.

Based on the DNM theory, we developed the MST-
DNM method in order to accurately predict the early-
warning signal to the influenza outbreak, by combining
with the minimum spanning tree in a city network.
According to our method, the evolution process of flu out-
break could be modeled as three diverse stages or states
(Figure 1): (i) the normal stage, which is a stable state
with high resilience; (ii) the preoutbreak stage, which is
an unstable critical state with low resilience; this critical
state is the limit of the normal state and at the edge of
transition into an epidemic outbreak of influenza; and
(iii) the outbreak stage, which is a steady and irreversible
stage with a large number of clinic visits caused by influ-
enza. It would bring heavy economic burdens to people
and society and strongly impact the existing social health
security system once in this status. Consequently, it is cru-
cial to identify the warning signal of the preoutbreak state
to prevent people and society from the catastrophic flu
outbreak in some effective measures.

2.2. Algorithm. The sketch of the MST-DNM method is pre-
sented in Figure 2. First, it is noted that the MST-DNM
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method is applied to a city network for monitoring the influ-
enza spread and outbreak in such a city. Therefore, the first
step of our method is to model a city network by combining

the information of geographically adjacent relationship,
transportation, population, and the number of clinics of each
city district. Then, a weight was assigned to each edge of the
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Figure 1: Schematic illustration of detecting the early-warning signal of influenza outbreak based onMST-DNM. (a) The historical records of
clinic visits caused by influenza between 1 January 2009 and 1 May 2019 were collected from three regions of Japan, including Tokyo, Osaka,
and Hokkaido. (b) Through building a city network, weighting, and the changes of the minimum spanning tree of this network, the MST-
DNM method can monitor in real time the progress of the influenza and issue early-warning signals in a timely manner. (c) Based on the
MST-DNM method, the outbreak process of influenza could be divided into three states, i.e., the normal state, the preoutbreak state, and
the flu outbreak state. The abrupt increase of MST-DNM score means the arrival of the preoutbreak state.

3BioMed Research International



city network, which was the correlation between the numbers
of clinic visits of two adjacent districts. Based on such
weighted city network, our method is implemented. Specifi-
cally, in order to detect the critical state of influenza outbreak,
the procedure of the MST-DNMmethod can be described as
the following detailed steps. Its pseudocode is illustrated in
Algorithm 1.

2.2.1. Modeling a City Network Structure. A city network is
modeled based on its administrative divisions’ geographic
location and their adjacent information. As demonstrated in
Figure 2, for example, there are 23 districts in Tokyo, so that
23 nodes are added into the Tokyo city network. Furthermore,
the edges between nodes in the network are established based
on the adjacency relations of those corresponding districts.
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Figure 2: The overall algorithm structure of MST-DNM method. First, model a city network based on its administrative divisions and the
geographical relationship and map the corresponding clinic-visiting record matrix into the city network. Then, regard a week t as a
candidate tipping point, weight the city network, and calculate its minimum spanning tree’s length as the MST-DNM score Lt . Finally,

according to a logistic regression model trained by other years’ dataset, calculate the probability of Lt belonging to 1, i.e., Pðyt = 1│Lt ; ω
Þ = 1/ð1 + exp ð−LTt ωÞÞ. If this probability is greater than or equal to 0.5, week t is considered as the tipping point. Otherwise, week t is
classified as the normal state, and the algorithm carries on with week t + 1.
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2.2.2. Data Preprocessing. For each district of a city, it is nec-
essary that the raw data which is weekly based should be
averaged in terms of the total number of clinics within the
district, owing to the enormous discrepancy of the number
of visits between different clinics. Afterwards, the processed
data is mapped to the city network.

2.2.3. Implement. The city network can be represented as a
graph G = ðV , EÞ, where V = fvigMi=1 is a set of M vertexes
in this network and E = fekgNk=1 is a set of N edges in this net-
work. There are the following procedures.

First, we consider the number of clinic visits per week of a
district as a sample s, forming a series of time series data. In
other words, when the city network is at week t, there is a
sequence of clinic-visiting data Svit ={s1,s2,…, st} for each ver-
tex vi.

Second, for each edge ek of the city network at week t, cal-
culate the correlations between the two vertexes vi, vj of this
edge to give it a weight Wk

t :

Wk
t = δ PCCt Svit , S

vj
t

� �
∣−∣PCCt−1 Svit−1, S

vj
t−1

� ����
���, ð1Þ

where PCCtðSvit , S
vj
t Þ represents the Pearson correlation coef-

ficient (PCC) between the two vertexes vi, vj at week t and

PCCt−1ðSvit−1, S
vj
t−1Þ represents the Pearson correlation coeffi-

cient between the two vertexes vi, vj at week t − 1, and
parameter δ is of the following form:

δ = ∣SDt S
vi ,vj
t

� �
∣−∣SDt−1 S

vi ,vj
t−1

� ����
���, ð2Þ

where SDtðS
vi ,v j
t Þ represents the standard deviation (SD) of all

simple data of the two vertexes of this edge ek at week t and
SDt−1ðS

vi ,vj
t−1 Þ represents the standard deviation of all simple

data of the two vertexes of this edge ek at week t − 1. After this
step, we have obtained a set of weighted differential network
{N1,N2, …, Nt ,⋯}.

Third, when the city network is at week t, in order to bet-
ter describe its evolution as the number of visits changes, it is
required to obtain its minimum spanning tree. In this study,
Kruskal’s algorithm is applied to the time-specific weighted
differential network Nt (such network is generated specifi-
cally for a time point) to obtain its minimum spanning tree
MSTt . The detailed flow of Kruskal’s algorithm is presented
in Algorithm 2. Then, we can calculate the weight sum Lt
of this minimum spanning tree as the MST-DNM score:

Lt = 〠
K

i=1
Weighti, ð3Þ

where Weighti represents the weight of edge ei in MSTt and
K represents the total number of edges of MSTt .

In the ideal case, when the network system approaches a
tipping point, there are the following two properties for the
relationship between nodes in the network:

(i) The nodes in the city network are all DNMmembers.
The standard deviation of these members and the
Pearson’s correlation coefficient between these mem-
bers both dramatically increase

(ii) There are DNM and non-DNM members in the city
network. The standard deviation of the DNM mem-
bers dramatically increases, but the Pearson’s corre-
lation coefficient between DNM members and non-
DNM members decreases significantly, i.e., its abso-
lute value increases significantly

Meanwhile, the proposed city network’s MST-DNM
score Lt is based on the standard deviations of these DNM
members and their Pearson’s correlation coefficients; thus,
it could be employed as an index for quantitatively analyzing
the significant change of the city network, thus detecting the
warning signal of the critical point.

2.2.4. Identifying the Critical State. After the above proce-
dure, it is possible to quantitatively analyze and monitor

Input: one-year hospitalization data caused by influenza;
Output: the tipping point of the flu outbreak of this year.

1: Model a city network N for a specific city
2: Map the hospitalization data into the corresponding nodes in the network
3: for week t in a certain year do
4: for each edge ek ∈Ndo
5: Weight the edge ek with Wk

t = δkPCCtðvi, vjÞj−jPCCt−1ðvi, vjÞk
6: end for/∗obtained a weighted undirected graph N∗

t /
7: MSTt = Kruskal ðNtÞ/∗obtained the minimum spanning tree using Algorithm 2 ∗/
8: Calculate the minimum spanning tree’s weight sum Lt as the MST-DNB score
9: if1/ð1 + e−L

T
t ωÞ ≥ 0:5then /∗the parameter ω was trained by other year’s dataset∗/

10: the week t is deemed to the tipping point
11: Break
12: end if
13: end for

Algorithm 1: MST-DNM.
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the dynamical process of influenza spreading based on the
indicator Lt . Nevertheless, it is still a tough task to confirm
the tipping point. In some previous studies, the fold-change
thresholds were used to detect the warning signal [20, 21].
However, such empirical or tunable threshold is not a univer-
sal method for different data or network structures. In this
study, the logistic regression is applied to determine the
appearance of the tipping point, which is widely employed
in the biological field [22] due to its intrinsic advantage that
the threshold is determined by the data itself. In view of the
sufficient training data (several years of clinic-visiting
records), the learning-based approach would be an optimal
option.

Logistic regression, which essentially is a linear regression
model based on the sigmoid function, is used to analyze the
dataset with duality to explore relationship between its inter-
nal independent variables, i.e., solving two-class (0 or 1)
problems. Assume a dataset with m samples and n feature
and each sample with a binary label. Then, we will get a sam-
ple matrix X = ðx1, x2,⋯, xmÞT ∈ Rmn, where xi is a column
matrix with n features, and corresponding label Y = ðy1, y2,
⋯, ymÞ, where yi represents a binary label (0 or 1). Usually,
we will add an extra item to X as a bias; therefore, each xi is
represented by xi = ðx0i , x1i ,⋯, xni Þ. Then, the sigmoid func-
tion is applied to calculate the probability for xi belonging
to 1:

P yi = 1 ∣ xi ; ωð Þ = 1
1 + exp −xTi ω

� � : ð4Þ

According to the above form, the key to the logistic
regression model is to train a suitable parameter ω based on
the given sample X and label Y . Therefore, the following loss
function based on the negative log-likelihood is applied to
optimize our logistic regression model to obtain suitable ω:

L ωð Þ = −〠
n

i=1
yi log x

T
i ω + 1 − yið Þ log 1 − xTi ω

� �� �
+ ωj jj j1:

ð5Þ

In order to prevent our model from overfitting, the l1
norm was added into the loss function. Since there is no
direct solution to this loss function at present, we used coor-
dinate descent to minimize this loss function with respect to
ω.

In this study, we used the MST score of each week as X
and the relevant state as label Y , where 1 represents the crit-
ical state and 0 represents others. For a certain year, the logis-
tic regression model is trained by other years’ datasets; we
tested whether the week T = t is the tipping point. As long
as the probability of xt belonging to 1, i.e., Pðyt = 1 ∣ xt ; ωÞ
= 1/ð1 + exp ð−xTt ωÞÞ, is greater than 0.5, this week is consid-
ered to be the critical state. Otherwise, this week is classified
as the normal state. Then, the week T = t + 1 is selected as
the new test point to carry on.

3. Results and Discussion

3.1. Predict the Outbreak of Seasonal Influenza in Tokyo. It is
usually too complicated to mathematically express the influ-
enza transmission kinetics before a sudden outbreak, because
the influenza spread involves massive parameters from both
biological and social systems. Based on the dynamical sys-
tems theory, there exists a so-called bifurcation point when
there are dramatic fluctuations or a qualitative transforma-
tion in a network from its normal status [19, 23]. It means
that the state transition of a dynamical system would gradu-
ally be restricted in a one- or two-dimensional space so that
the system can be simply expressed and understood while
approaching the bifurcation point [7]. According to this the-
ory, it is achievable to develop a general method to detect the
tipping point of influenza outbreak only based on the
observed data.

As shown in Figure 1, we collected the historical clinic-
visiting data caused by influenza from clinics in 23 districts
of Tokyo, Japan, from January 1, 2009, to May 31, 2019. It
can be regarded as the outbreak point of flu when the number
of total clinic visits reaches the peak in each year. According
to the proposed method, MST-DNM, the following proce-
dures will be carried out to identify the critical state of flu
outbreak in Tokyo. First, we modeled a 23-node network

Input: a weighted undirected graph G = ðV , EÞ;
Output: a minimum spanning tree of this graph.

1: MST←Φ.
2: for each vertex v ∈Vdo
3: MAKE-SET ðvÞ
4: end for
5: sort the edges of E into nondecreasing order by weight w
6: for each edge ðu, vÞ ∈ E, taken in nondecreasing order by weight do
7: ifFIND‐SET ðuÞ ≠ FIND‐SET ðvÞthen
8: A← A ∪ ðu, vÞ
9: UNION ðu, vÞ

10: end if
11: end for
12: return MST

Algorithm 2: Kruskal.
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according to the geographic location of 23 wards and their
adjacency. Second, we mapped the clinic-visiting numbers
into corresponding nodes, assign weights (i.e., the correla-
tions between two adjacent nodes, the detailed calculation
is in Materials and Methods) to edges, and calculate the
weight sum of the minimum spanning tree of this network
for each week. Finally, an analyzed data matrix constituted

by MST-DNM scores was obtained, which was employed to
train a logistic regression through leave-one-out cross-
validation and further detect the tipping point of influenza
for each year.

As presented in Figure 3, the early-warning signals of the
seasonal influenza outbreak were detected by our MST-DNM
method. It can be seen that the flu outbreak of each year is

3020 40
Time (week)

50 60 70

0.35

0.30

0.25

0.20

0.15

M
ST

-D
N

M
 sc

or
e

0.10

0.05

0.00

Year 2009–2010
Tokyo

30

25

20

A
ve

ra
ge

 co
un

ts

15

10

5

0
3020 40

Time (week)
50 60 70

1.0

0.8

0.6

0.4

M
ST

-D
N

M
 sc

or
e

M
ST

-D
N

M
 sc

or
e

0.2

0.0

Year 2010–2011
Tokyo

25

20

A
ve

ra
ge

 co
un

ts

15

10

5

0
3020 40

Time (week)
50 60 70

0.8

0.6

0.4

0.2

0.0

Year 2011–2012
Tokyo

35

30

A
ve

ra
ge

 co
un

ts

20

25

10

15

5

0

3020 40
Time (week)

50 60 70

0.6

0.5

0.4

0.3

0.2

M
ST

-D
N

M
 sc

or
e

0.1

0.0

Year 2012–2013
Tokyo

35

30

20

25

A
ve

ra
ge

 co
un

ts

15

10

5

0
3020 40

Time (week)
50 60 70

1.75

1.50

1.25

1.00

0.75

0.50M
ST

-D
N

M
 sc

or
e

0.25

0.00

Year 2013–2014
Tokyo

35

30

20

25

A
ve

ra
ge

 co
un

ts

15

10

5

0
3020 40

Time (week)
50 60 70

0.4

0.3

0.2

0.1M
ST

-D
N

M
 sc

or
e

0.0

Year 2014–2015
Tokyo

20

25

A
ve

ra
ge

 co
un

ts

15

10

5

0

3020 40
Time (week)

50 60 70

1.75

1.50

1.25

1.00

0.75

0.50M
ST

-D
N

M
 sc

or
e

0.25

0.00

Year 2015–2016
Tokyo

35

30

20

25

A
ve

ra
ge

 co
un

ts

15

10

5

0
3020 40

Time (week)
50 60 70

0.40
0.35
0.30
0.25
0.20
0.15
0.10M

ST
-D

N
M

 sc
or

e

0.05
0.00

Year 2016–2017
Tokyo

35

30

20

25

A
ve

ra
ge

 co
un

ts

15

10

5

0
3020 40

Time (week)
50 60 70

1.2

1.0

0.8

0.6

0.4

M
ST

-D
N

M
 sc

or
e

0.2

0.0

Year 2017–2018
Tokyo 40

20

30

A
ve

ra
ge

 co
un

ts

10

0

3020 40
Time (week)

50 60 70

1.6
1.4
1.2
1.0
0.8
0.6
0.4M

ST
-D

N
M

 sc
or

e

0.2
0.0

Year 2018–2019
Tokyo

50

A
ve

ra
ge

 co
un

ts40

30

10

20

0

MST-DNM score

Average counts

Prediction point by MST-DNM

Flu outbreak/peak point

Figure 3: The predictions of annual influenza outbreak in Tokyo city between 2009 and 2019. For each year, our MST-DNMmethod timely
issues the early-warning signal of influenza outbreak only based on the clinic-visiting information. For each figure, the x-axis represents the
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and the explosion symbol is the actual outbreak point of influenza, i.e., the peak of the clinic-visiting number.
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quite regular except year 2009. The worldwide large-scale
outbreak of influenza A (H1N1) in 2009, which was reported
first in Mexico, led to a massive long-term outbreak of influ-
enza in Tokyo. It is explicit that the peak of Lt appears earlier
than the peak of the clinic-visiting counts for 4 weeks on
average. Therefore, before the outbreak of influenza, our
MST-DNM score is quite sensitive and the index Lt increases
drastically, which implies the appearance of critical state of
the influenza outbreak.

In order to better demonstrate the dynamical process
of the influenza spread in the network level, the evolutions
of minimum spanning tree of the city network can also be
presented. As shown in Figure 4, it is seen that there are
almost no influenza cases at each node/ward and the cor-

relations between these adjacent nodes/wards are relatively
low at the beginning. In the city network, when the corre-
lations between the adjacent nodes/wards drastically
increase, which are the necessary conditions of the DNM
features, it indicates that the influenza spread in this city
is closed to its outbreak point. Furthermore, the edges of
the minimum spanning tree become thicker before the
nodes turn red in week 54, which means that the early-
warning signals of our method appear before the flu out-
break point. The dynamical evolution of minimum span-
ning tree of the city network illustrates that the system
based on the MST-DNM method is able to monitor the
whole process of influenza outbreak in real time and issue
an early-warning signal in time.
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3.2. Application of MST-DNM in Osaka and Hokkaido. In
order to illustrate the universality of our MST-DNMmethod,
we also applied it to detect the early-warning signals of flu
outbreak in Hokkaido and Osaka. Similar to the processing
flow in Tokyo city, a 30-node city network was modeled for

Hokkaido region and an 11-node city network for Osaka city.
Then, we mapped the clinic-visiting data to the correspond-
ing network and calculate the minimum spanning tree.
Finally, a logistic regression model trained by data consisting
of MST-DNM scores was applied to detect the tipping point
of influenza for each year.

As shown in Figures S1 and S2 of Supplementary
Information (see Supplemental File), the critical state of the
influenza outbreak was smoothly detected by our method
MST-DNM in Hokkaido between 2011 and 2015 and in
Osaka between 2012 and 2017, respectively. In other words,
the MST-DNM method is quite general and robust
irrelevant to the scale of the city network. The dynamic
evolutions of the minimum spanning tree of Hokkaido city
network and Osaka city network are shown in Figures S3
and S4, respectively.

3.3. The Key Role of the Minimum Spanning Tree. In order to
demonstrate the key role of the minimum spanning tree in
our approach, we compared the effect of the MST-DNM
method on the presence or absence of the minimum span-
ning tree in 2010, which is presented in Figure 5(a). It can
be seen that the early-warning signal detected by a DNM
method without the minimum spanning tree is far away from
the influenza outbreak point but another signal appears in an
appropriate time point.

An undirected and edge-weighted minimum spanning
tree is the smallest tree model that minimizes the sum of
the weights of all connected edges in the original network.
It is able to reflect the overall changes of the network struc-
ture and could avoid the impact caused by local abnormal
correlations around node 7 in week 45, which indicates that
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Figure 5: The comparison result of the MST-DNMmethod on the presence or absence of the minimum spanning tree in 2010. (a) The early-
warning signal of a DNMmethod without the minimum spanning tree is far away from the real influenza outbreak point; however, the MST-
method’s is measurable. (b) The minimum spanning tree avoids abnormal correlations around node 7 in week 45, through which the MST-
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the minimum spanning tree plays a key role in the prediction
process of outbreak points.

3.4. Performance Comparison with Other Methods. In the
previous work, we developed a groundbreaking network-
based approach for predicting influenza outbreaks, the so-
called landscape dynamic network marker, which used
empirical fold-change threshold to recognize the significant
changes in DNM score to get the early-warning signal. We
compared the performance of the proposed method MST-
DNM with different tipping point determination strategies,
that is, threshold determined from logistic regression and
empirical threshold, which is presented in Figure 6. It is clear
that the performance of the MST-DNM method based on
logistic regression is better than that on the fold-change
threshold. Actually, the logistic regression has natural advan-
tages relative to the traditional early-warning signal determi-
nation methods. The logistic regression model is a more
general and more robust method only with some appropriate
training measures.

4. Conclusions

Japan suffered a serious influenza outbreak at the beginning
of year 2019. According to the reports of about 5000 desig-
nated medical institutions across Japan, there was an average
of 57.09 influenza patients per institution in the week from
January 21st to 27th, which hit a new historical high since
the first statistics in 1999. The influenza epidemic causes
school suspension and the absence of a large number of
workers, which would further result in a decline in social pro-
ductivity and affect the economic development. It is esti-
mated that the direct economic losses caused by the 2009
influenza pandemic to countries are about 0.5% to 1.5% of
gross domestic product (GDP) [24]. However, the actual
losses may be higher, due to the underestimate for the indi-
rect economic losses caused by other infection prevention
and control measures, such as the decline of tourism. There-
fore, in order to better prevent the outbreak of influenza, it is
quite essential to establish a real-time monitoring system
only based on available and robust data, such as the number
of clinic visits issued by the relevant health department.

Based on the DNM theory, which was applied to detect
the tipping point or analysis critical transition of complex
diseases on related genomic data in our previous works, com-
bined with minimum spanning tree and logistic regression, a
novel computable method called MST-DNM was developed
to identify the early-warning signal of influenza outbreak in
Tokyo, Osaka, and Hokkaido of Japan. In our MST-DNM
method, we first extract the crucial characteristics of the pre-
outbreak state of influenza using DNM and minimum span-
ning tree from high-dimensional and longitudinal clinic-
visiting counts. Then, the logistic regression trained by
leave-one-out cross-validation is applied to identify the pre-
outbreak state and issue an early-warning signal based on
these crucial characteristics. As shown in Figures 3 and 4,
the MST-DNM method could timely detect the early-
warning signal of influenza outbreak, which makes it quite
possible to construct a real-time and effective influenza sur-

veillance system. Nevertheless, there are still a few ways to
improve the performance of our algorithm, such as using
other robust but hardly obtainable data like population
movement between wards and flu epidemic report to calcu-
late the Pearson correlation coefficient and standard devia-
tion, which is one of our future topics.

Data Availability

The historical raw data is available from Tokyo Metropolitan
Infectious Disease Surveillance Center (link: https://survey
.tokyo-eiken.go.jp/epidinfo/weeklyhc.do), Hokkaido Infec-
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