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PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy?
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ABSTRACT
Inhibitory properties of PD-1 receptor engagement on activated T cells are well established in physiologic
and pathological contexts. In cancer, the use of checkpoint blockade, such as anti-PD-1 antibodies,
becomes progressively a reference treatment of a growing number of tumors. Nonetheless, it is also
established that PD-1 expression on antigen-specific T cells reflects the functional avidity and anti-tumor
reactivity of these T cells. We will discuss this dual significance of PD-1 expression on tumor-specific T
cells, due to a complex regulation and the opportunity to exploit this expression to define, monitor and
exploit tumor-reactive T cells for immunotherapy purposes.
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Introduction

PD-1 inhibitory receptor (CD279) has been discovered in 1992,
by the group of Pr Honjo.1 Initially identified for its ability to
induce apoptosis, its role in the maintenance of peripheral
immune tolerance has been further documented using PD-1¡/¡

murine models.2 PD-1 is expressed at the cell surface of acti-
vated T cells, NK cells, B cells, macrophages and several subsets
of DCs.3,4 PD-1 expression on na€ıve T cells is induced upon
TCR activation.5 This transient expression decreases in absence
of TCR signaling but is maintained upon chronic activation
with a persisting epitope target such as in chronic viral infec-
tions and in cancer.6 PD-1 ligation to its ligands PD-L1 and
PD-L2 impairs TCR signaling and CD28 co-stimulation.7,8 Con-
stitutive PD-1 expression by tumor-specific T cells was initially
described as associated with the expression of additional inhibi-
tory receptors such as Tim-3, LAG-3 or TIGIT,9-12 leading to
impaired T cell functions and to tumor escape, upon ligation to
its ligand PD-L1 expressed by tumor cells or immune infiltrat-
ing cells within tumor microenvironment. Constitutive PD-1
expression constitutes a form of immune adaptation to chronic
stimulation, leading to a physiologic limitation of immune
responses limiting auto-immune phenomena. This system is
thus hijacked by tumor cells to favor peripheral tolerance and
in this context PD-1 can be considered as a marker of dysfunc-
tional T lymphocytes.

However, results from different groups highlighted the
ambiguous role of PD-1 in defining efficient or ineffective
immune T cell responses. Indeed, although leading to an
inhibition signal upon ligation with its ligands, it is now
clear that PD-1 expression is first a marker of T cell activa-
tion, allowing the identification of the tumor-reactive CD8C

T cell fraction in melanoma tumors,13,14 and of high avidity
CD8 T-cells specific for Melan-A15 or neoantigens.16

Indeed, the level of PD-1 expression is related to the

strength of TCR signaling, and thus to the functional avid-
ity of specific T cells, underlining the complex significance
of PD-1 expression on tumor-specific T cells, also finely
regulated by genetic and epigenetic dynamic mechanisms.17

In this line of thoughts, the inability to identify exhausted
or activated T cells based on the sole expression of inhibi-
tory/co-stimulatory-receptors has been recently demon-
strated. Transcriptomic analyses raised the possibility to
uncouple activation and exhaustion gene programs in CD8C

T cells and provided new insight in the understanding of
molecular mechanisms of CD8C T cell dysfunction.18,19

Thus PD-1 expression can also be considered as a marker
of activated tumor-reactive T cells.

Nonetheless, immune tumor escape is a dynamic process
involving the induction of an immunosuppressive microenvi-
ronment in which PD-1/PD-L1 signaling pathway plays
definitively a multilayered role. In a growing numbers of
solid tumors, targeting this pathway with PD-1 or PD-L1
specific antibodies progressively transformed patient’s
management and led to unprecedented clinical responses in
a large spectrum of advanced human cancers.20 In US and
Europe, anti-PD-1 immunotherapy is used as a first line of
treatment of metastatic melanoma patients. Despite its
undisputed superior clinical efficacy compared with
chemo- or radiotherapy, anti-PD-1 monotherapy remains
inefficient on more than 60% of cancer patients. Acute toxic-
ities are less common (around 14% of treated patients) than
those reported for anti-CTLA-4 therapy but remain an
appreciable risk for patients. For these reasons, defining early
and robust predictive markers of clinical response is crucial
both to improve patient’s management and to reduce
treatment costs. Furthermore, the comprehensive analysis of
PD-1 regulation and signaling will also have a considerable
impact on the optimization of other immunotherapies such
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as T-cell-based immunotherapies. Indeed, it could help
define the best T cell subset to be used in adoptive cell trans-
fer treatment in combination with check-point blockade.

This review will focus on this dual role of PD-1 as a reflect of
efficient T cell activation and also of T cell dysfunction, and
how these properties could be further exploited to improved
the clinical efficacy of T-cell-based therapies.

Regulation of PD-1 expression

PD-1 expression on T cells is intricately regulated by different
genetic and epigenetic programs adapted to either transient or
chronic antigenic stimulations. PD-1 is rapidly induced on T cells
following TCR-mediated activation5 and this expression
decreases with antigen clearance. In contrast, PD-1 expression is
maintained on antigen-specific T cells in chronic disease settings
and has been associated with a progressive loss of T-cell functions.

Oestreich and coll. described, in mice, 2 regulatory regions
in Pdcd1 promoter, CR-C and CR-B, important crucial for
Pdcd1 gene transcription. These regions, highly conserved in
humans, contained numerous potential binding sites for tran-
scription factors and CR-C, a CpG island, was mandatory for
PD-1 expression.21 In na€ıve T cells, CR-B and CR-C are highly
methylated whereas following first antigen encounter, both
regions are demethylated and concomitant coinciding with
PD-1 expression. After antigen clearance, Pdcd1 promoter is
progressively remethylated in effector or memory cells while
Pdcd1 locus remained largely demethylated in hyporesponsive
T cells during chronic antigen exposure.6,22,23 This Pdcd1 gene
demethylation was suggested as an active process, sensitive to
TCR-mediated T-cell activation.24

NFAT transcription factors were recently proposed as key
modulators of this effector versus hyporesponsiveness T-cell
states. Martinez and coll. described NFATs as an early tran-
scriptional checkpoint progressively driving exhaustion.25

NFATs are quickly activated in T cells following TCR stimula-
tion. In effector T cells, NFATs form a protein complex with
AP-1 (c-Fos and Jun proteins) induced by appropriate co-stim-
ulation signaling and therefore regulate effector genes and
T-cell functions.26 In exhausted T cells, NFATs are predomi-
nantly “partnerless” thus binding to monomeric NFAT1 bind-
ing elements and promoted the activation of a transcriptional
program associated with T cell dysfunction (Fig. 1).

NFAT1 and NFAT2 were also described previously to
directly bind Pdcd1 promoter and activate its transcription.21

The mutation of NFAT1 binding site on the CR-C region
completely abrogated PD-1 expression in a mouse model.
NFAT1 rapidly activates PD-1 expression following TCR stim-
ulation and this is via NFAT activation and nuclear transloca-
tion that PD-1 expression reflected the strength of TCR
stimulation integrated by T cells. In absence of further activa-
tion signals, Blimp-1 actively repressed NFAT1 expression and
modified the chromatin structure at PD-1 locus therefore
down-regulating PD-1 expression.27

Recent studies described, exclusively in exhausted T cells, a
transcription enhancer in Pdcd1 gene implicated in PD-1 sus-
tained expression. This activation region is equally accessible in
cells genetically modified to express a NFAT1 protein unable to
interact with AP-1 suggesting a role for the partnerless NFAT1

in the maintenance of PD-1 expression in hyporesponsive T
cells.28-30 Fox01 transcription factor was also accumulated in
turn of PD-1/PD-L1 signalisation and Fox01 directly sustained
PD-1 expression.31 Furthermore, PD-1 inhibitory signaling was
shown to upregulate BATF expression and to inhibit CD28
positive co-stimulation.8,32 These 2 mechanisms notably reduce
AP-1 availability within the nucleus and favor T cell loss of
function illustrating the feed-forward loop regulated by PD-1
upon chronic antigen stimulation.

This complex regulation of PD-1 expression clearly shows
that PD-1 expression status alone cannot discriminate between
exhausted and activated T cells, that are the result of distinct
genetic and epigenetic programs, dictated by TCR signaling
strength and microenvironment.

PD-1 expression and anti-tumor response

Although inhibiting T cell responses upon ligation to its
ligands, PD-1 expression is the reflect of T cell activation.
In HPV-positive head and neck cancers, it has been docu-
mented that a favorable clinical outcome was associated
with a strong infiltration of activated PD-1C T cells, able to
get reinvigorated upon PD-1 blockade.33 Same results have
also been reported from non virus-induced solid tumors. In
melanoma, PD-1 expression identified tumor reactive CD8C

T cells, within tumor infiltrating lymphocytes (TIL) derived
from melanoma patients.14 Furthermore, only this PD-1
positive fraction contains T lymphocytes specific for neoan-
tigens, potentially expressing a high affinity TCR. These T
lymphocytes are able to eliminate autologous tumor cells,
despite their PD-1 expression.14,16 PD-1 expression is pro-
portional to the strength of TCR signaling to compensate T
cell activation and to control immune response.21 Further-
more, PD-1C T-cell fraction was largely pauciclonal (TCRb
repertoire) suggesting an antigen-driven amplification of
those PD-1C T-cell clonotypes within the tumor. In addi-
tion, expression of PD-1 on circulating T cells also identifies
patient-specific antitumor T cell response, similar to that
detected within TIL.16

In this line, we demonstrated the correlation between the
expression of PD-1 by human CD8C T cell clones specific for
the shared melanoma antigens Melan-A,34,35 and MELOE-136

and their high functional avidity.15 We described the exis-
tence of melanoma-specific T cell clones (isolated from the
blood of patients and healthy donors or from the TILs)
unable to induce PD-1 after T cell stimulation. This absence
of PD-1 expression was due to the persistent methylation of
Pdcd1 promoter. These PD-1neg T cell clones were not suscep-
tible to PD-L1 negative signaling but they exhibited lower
anti-tumor reactivity than their PD-1pos counterparts in the
absence of PD-L1 signaling. Logically, PD-1pos T cell clones
exhibited greater functional avidity than PD-1neg T cell clones
suggesting their interest for adoptive cell transfer (ACT) pro-
tocols. In this study, we also modulated PD-1 signaling dur-
ing the melanoma-specific T cells production procedures
with the addition of anti-PD-1 blocking antibody. Recovered
specific-T cell Vb repertoire, was different from that obtained
in the control condition with the preferential expansion of
clonotypes exhibiting high functional avidities that could
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potentially lead to a better anti-tumor activity in vivo, in com-
bination with PD-1 blockade or gene inactivation in these T
cells. Another recent study, deciphering the kinetics of TCR
binding to peptide-major histocompatibility molecules
(pMHC) with NTAmers resonates with these results. Indeed,
this work documents that TCR-pMHC off-rate, associated
with CD8C T cell potency, closely follows costimulatory/coin-
hibitory receptor expression in activated CD8C T cells, among
them PD-1 expression.37

The relevance of PD-1 expression to identify highly reac-
tive specific T cells has also been underlined in vaccination
studies. In mice engrafted with epithelial tumors expressing
HPV-associated E7 protein, vaccination with E7 protein
induced the proliferation of PD-1C specific CD8C T cells,
partly inhibiting tumor growth. In this setting, PD-1 block-
ade synergized with vaccine in eliciting antitumor efficacy.33

Another recent study demonstrated that vaccination with
altered peptide ligands with optimized CMH or TCR affin-
ity led to a strong but inefficient specific CD8 T cell
response, impaired by a sustained expression of PD-1 (and
other inhibitory receptors) by stimulated specific T cells.38

The anti-tumor efficiency of such vaccines could thus be
improved through a combination therapy targeting PD-1/
PD-L1 signaling pathway.

All these studies concur to demonstrate the complex signifi-
cance of PD-1 expression on tumor-specific T cells,17 particu-
larly because of its dynamic and fine regulation by genetic and
epigenetic mechanisms. Globally, the expression of inhibitory
receptors (among them PD-1) is a common feature of activated
and exhausted T cells and recent single cell transcriptomic
studies demonstrated that the sole expression of these inhibi-
tory receptors does not allow discriminating these 2 functional
status. The exhausted status of T lymphocytes can be docu-
mented on the basis of specific gene expression profile, notably
involved in zinc metabolism.18,39

Thus, setting up combination strategies associating PD-1
blockade and ACT with PD-1C high avidity specific T-cells or
vaccination strategies inducing such a CTL response would
be a relevant approach to improve anti-tumor responses.

PD-1 expression by CD8 T lymphocytes in patients
treated by anti-PD-1 therapy

The vast majority of studies about anti-PD-1 therapy, mainly
documented immune markers related to the mode of action
of PD-1 in the regulation of anti-tumor T cell response.40 PD-
1 regulates tumor-specific T cell response presumably on the
tumor site, through the inhibition of specific T cell activation
(Chen 2015). Therefore, the presence of a pre-existing CD8C

T cell infiltrate,41 along with an increased infiltration by
CD8C T cells upon anti-PD-1 therapy have been associated
with therapeutic responses. Indeed, several studies demon-
strated that regressive lesions were densely infiltrated by cyto-
toxic CD8C T cells.42,43 More precisely, it has been
documented that therapeutic responses were associated with
the presence of PD-1 expressing CD8C T cells at the tumor
margin, before therapy, co-localized with PD-L1 expressing
tumor cells.41 Following anti-PD-1 treatment, in responding
patients, cytotoxic CD8C T cells accumulated within the
tumor. This CD8C T cell infiltrate (pre-existing or accumulat-
ing in tumors upon treatment) exhibited a low TCRß diver-
sity, suggesting a clonal expansion of tumor-specific T cells.
In addition, IFN-g associated gene expression was also docu-
mented in patients responding to anti-PD-1 therapy.44

These different studies concur to define an “active” tumor
microenvironment, associating the accumulation of PD-1C

CD8C activated effector T cells, the presence of IFN-g, the acti-
vation of IFN-g responsive genes and thus the expression of
PD-L1 by tumor cells. Anti-PD-1 therapy could reinvigorate
pre-existing tumor-specific T cell by removing the inhibition
induced by the activation of PD-1/PD-L1 axis, and finally induce
tumor rejection. This active microenvironment (present in
about 38% of cancer patients) defines a sub-group able to
respond to anti-PD-1 therapy.45 A recent study confirmed the
importance of this active microenvironment in melanoma
tumors, identified by the expression of class II HLA on mela-
noma cells, and correlating with the expression of genes associ-
ated with T cell activation, notably PD-1 gene.46 Thus, class II
HLA expression, detected by immunohistochemistry on

Figure 1. Mechanisms leading to transitory or sustained PD-1 expression in activated and exhausted T cells. Left panel: Upon TCR-mediated stimulation, NFAT is dephos-
phorylated and translocated into the nucleus, where, upon association with AP-1 complex activated upon CD28 signaling, it drives effector gene and PD-1 expression.
Right panel: In the context of chronic antigen stimulation, sustained TCR signaling leads to a continuous PD-1 expression. Upon PD-L1 ligation, induced by IFN-g in the
microenvironment, PD-1 pathway inhibits TCR and CD28 signaling, that decreases AP-1 activation. Once translocated into the nucleus, NFAT is mainly “partnerless” and
drives exhaustion genes and a constant PD-1 expression, facilitated by a constitutively demethylated PDCD1 promoter.
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melanoma tumors could be a relevant immunemarker for thera-
peutic decision support, associated with PD-1 expression on
effector T cells.

In addition to the significance of PD-1C tumor infiltrating
CD8C T cells in predicting anti-PD-1 therapeutic response, the
presence of activated PD-1C CD8C T cells in patient blood was
also associated with therapeutic efficacy. Indeed, most non-
small cell lung cancer (NSCLC) patients receiving PD-1 therapy
exhibited an early increase in circulating Ki67C PD-1C CD8C T
cells.47 These effector-memory T cells are most likely recirculat-
ing tumor specific T cells, reinvigorated upon PD-1 blockade.
Interestingly, this T cell subset was preferentially detected in
responding patients, after the first cycle of anti-PD-1 adminis-
tration, and could represent an immune biomarker of anti-PD-
1 therapeutic efficacy.

PD-1 expression as a marker identifying efficient CD8
T cells for T-cell-based immunotherapy

The adoptive transfer of tumor-specific T lymphocytes is a
therapeutic strategy that demonstrated a relative efficacy,
notably for metastatic melanoma. This strategy aims at
transferring high amounts of tumor-reactive lymphocytes,
amplified and selected ex-vivo, to circumvent local tolerance
mechanisms and eradicate tumor cells. The therapeutic effi-
cacy of ACT relies both on antigenic specificity of infused
T cells and on their functional properties (tumor reactivity,
persistence, migration…). Several selection strategies of
tumor-reactive T cells have been tested based on the expres-
sion of activation receptors (CD25, PD-1, 4–1BB…), the
anti-tumor reactivity (cytokine secretion), or their specificity
(HLA-peptide multimer sorting48). In the periphery the ini-
tial frequency of circulating tumor-specific T cells could
represent a limitation for the production of high amounts
of specific T cells, with preserved properties of expansion
and in vivo persistence. The genetic transfer of specificity in

primary T cells or other T cell subsets through the use of
TCR or CAR transduction allows bypassing this limitation.
Whatever the approach for the production of tumor-specific
T cells for T-cell-based therapy, a crucial issue is to identify
the most relevant T-cell subset to select for ex-vivo amplifi-
cation. In this line of thoughts, 2 recent studies investigated
the therapeutic potential of T-cell-based therapy using PD-
1-selected TIL, and came to the same conclusion. They
documented, in myeloma and melanoma mouse models,
that only T cells from the PD-1 positive fraction exhibited
tumor reactivity and that their adoptive transfer to tumor-
bearing mice resulted in tumor control, in contrast to the
adoptive transfer of PD-1 negative T lymphocytes from the
same TIL population.49,50 Furthermore, PD-1C transferred T
cells were able to persist in vivo and to mount an adaptive
memory immune response against the tumor.50 In both
studies, anti-tumor efficacy was further enhanced upon
combination with PD-1 blockade. In the same line, and
starting from the vast T cell repertoire specific for Melan-A
antigen, we recently showed that PD-1 expression identified
a peculiar specific T cell repertoire, exhibiting higher func-
tional avidity and functional properties of melanoma spe-
cific effector T cells. We further documented in vitro that
PD-1 blockade during a GMP-compliant procedure to pro-
duce Melan-A specific T cells for ACT, favored the amplifi-
cation of peculiar TRCß subfamilies, with better functional
avidity against their cognate antigen.15 All these studies
concur to strengthen the rationale for the use of PD-1
selected T lymphocytes for T-cell-based therapy. However, a
major drawback for the use of PD-1 positive T cells for
ACT purposes could be their impaired functions in vivo. To
preserve the functions of these T cells after transfer, thera-
peutic combinations with PD-1 or PD-L1 blockade are
explored, together with the possibility to inactivate PD-1
gene in selected T cells, before transfer. This latter perspec-
tive would offer twin benefits: first, the autoimmune adverse

Figure 2. PD-1 based selection and inactivation for optimal T-cell based therapies. 1/ High avidity tumor specific T cells can be expanded from the CD8C PD-1C TIL frac-
tion or after antigen stimulation of PBMC upon PD-1 blockade that favors the amplification of highly reactive CD8C T cells. 2/ PD-1C recovered high avidity T cells, CAR-
T cells or TCR-transduced T cells can be further inactivated for PD-1 expression (and other inhibitory receptors) by genome editing, to bypass immunosuppression mecha-
nisms. 3/ High avidity tumor specific T cells inactivated for PD-1 expression can be infused to cancer patients, alone or in combination with other therapies such as
radioimmunotherapy.
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effects of the systemic infusion of anti-PD-1 would be
avoided and the cost of the treatment would be significantly
reduced. On this topic, TALEN or CRISPR-Cas9 genome
editing tools provided an unprecedented and promising
technological breakthrough modifying selected human T
cell subsets to improve the anti-tumor efficiency of ACT
treatments.51 The successful use of this technology has been
first reported for the silencing of CCR5 gene in HIV-1-sus-
ceptible human CD4C T cells.52 The feasibility of PD-1
inactivation following CRISPR/CAS9 edition has been ini-
tially reported in human primary T cells,53 and resulted in
a significant decrease of PD-1 expression on edited T cells,
associated with enhanced IFN-g production and cytotoxic-
ity, without affecting the viability of these T cells. The edi-
tion of PD-1 gene with the TALEN technology has also be
tested in polyclonal tumor-reactive T cells, from mice
engrafted with fibrosarcoma cells.54 The adoptive transfer of
these PD-1 edited T cells in tumor-bearing mice resulted in
tumor rejection and long-term protective memory. Thus,
the edition of genes coding PD-1 and other inhibitory
receptors could be done in high avidity tumor-specific
T cells, selected on the basis of PD-1 expression, but also in
the highly reactive CAR- or TCR transduced-T cells
(Fig. 2). Indeed, a recent study illustrated the feasibility to
inactivate PD-1 gene in human CD19-CAR-T cells. This
inactivation led to an enhanced cytotoxicity of CAR-T cells
against tumor cells in vitro, and an improved tumor reactiv-
ity in vivo against tumor xenografts.55

Furthermore, the transfer of genome-edited T cells to
humans recently passed a key safety review in the USA, by the
Recombinant DNA Advisory Committee (RAC) at the US.
National Institutes of Health. This decision will accelerate the
clinical transfer of new immunotherapy approaches, combining
the selection of highly tumor-reactive T cell subset (based on
the expression of PD-1 and potentially of other co-stimulation
molecules) and genome engineering to counteract the tumor
microenvironment driven immunosuppression.

Conclusion

In conclusion the fine regulation of PD-1 expression on tumor-
specific T cells makes this molecule a valuable marker to select
high avidity-specific T lymphocytes, for immunotherapy pur-
poses. Furthermore, to prevent autoimmune adverse events
related to anti-PD-1 systemic therapy, genome edition of spe-
cific T lymphocytes targeting immune checkpoint inhibitors
appears a promising option, while leaving the possibility to
associate another combination therapy.
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