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The way spatial memory retrieval is represented in the brain remains unclear to date.
Previous studies have displayed a hippocampus-centered navigation network using
functional magnetic resonance imaging (fMRI) analysis. There have been some studies
on the representation of navigation behavior by signal distribution patterns, but only in
the hippocampus and adjacent structures. In this study, we aimed to determine (1) the
brain regions that represent information in both intensity and distribution patterns during
spatial memory retrieval and (2) whether the patterns of neural responses represent
spatial memory retrieval behavior performance. Both univariate analysis [general linear
model (GLM)] and multivariate pattern analysis (MVPA) were employed to reveal the
spatial distributions of brain responses elicited by spatial memory retrieval. Correlation
analyses were performed to detect the correspondences between brain responses and
behavior performance. We found that spatial memory retrieval occurred in widespread
brain regions, including the bilateral hippocampi, bilateral superior frontal gyrus, bilateral
superior parietal lobules, bilateral occipital lobes, and cerebellum. The amplitude of
activation in the left hippocampus showed a significant negative correlation (r = −0.46,
p = 0.039) with the number of task completions. Additionally, within-subject classification
accuracies based on the blood oxygenation level-dependent (BOLD) signal patterns of
the right middle temporal gyrus (rMTG) rostral areas in the Brainnetome Atlas showed a
significant positive correlation (r = 0.78, p < 0.0001) with retrieval accuracy. In summary,
our findings have implications for understanding the separation between navigational
and non-navigational states and emphasizing the utility of MVPA in the whole brain.

Keywords: spatial memory retrieval, cubical space, GLM, MVPA, occipitoparietal cortex, right middle temporal
gyrus, task-based fMRI

INTRODUCTION

Spatial memory is the storage of information about orientation and location. The way spatial
memory is represented in the brain has been a motivating question for decades (Eichenbaum
et al., 1999; Buzsaki and Llinas, 2017; Bellmund et al., 2018). Tolman first conducted a water maze
experiment in mice to probe this exciting issue and concluded that spatial memory was represented
in the central nervous system rather than being a simple stimulus response (Tolman, 1948).
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This finding was further demonstrated by O’Keefe and colleagues’
discovery of place cells in the rodent hippocampus, which allowed
neural instantiation of spatial location in the central nervous
system (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel,
1978). Although correlations between small numbers of neurons
and spatial location have been delineated in animals, they have
not yet been mapped in the complex human nervous system.
However, depicting the nervous activity of spatial memory on a
macroscopic scale is essential (Hassabis et al., 2009).

Forty years later, a self-paced Roland’s hometown walking task
was initially designed and applied to evaluate mental activity
changes involving long-term spatial memory retrieval using
positron emission tomography–computed tomography (PET–
CT) (Roland et al., 1987). Since then, Roland’s hometown walking
task has frequently been used in neuroimaging studies to assess
patients’ spatial memory function (e.g., anterior temporal lobe
resection, temporal lesions) (Avila et al., 2004, 2006; Janszky
et al., 2005; Bonelli et al., 2010; Strandberg et al., 2017). Despite
congruent findings, such a free-behaving experiment remained
a niche due to uncontrollability and unnecessary complexity,
resulting in essentially uninterpretable data (Maguire, 2012).
Hence, the correspondence between the behavior performance
of memory ability and neural responses is a challenging area
to investigate (Banta Lavenex et al., 2015; Fernandez-Baizan
et al., 2019a,b). To overcome the limitations mentioned above,
investigators have proposed numerous paradigms to quantify
spatial memory retrieval process by two-dimensional space,
such as recognition visual field location (Jeye et al., 2018;
Fritch et al., 2020) or scenario pictures (Lacy et al., 2011),
and three-dimensional space, such as a virtual round arena
(Nilsson et al., 2013), spatial route learning (Rekkas et al.,
2005), the virtual Morris water maze (Antonova et al., 2011;
Reynolds et al., 2019), and perspective changing in space
(Lambrey et al., 2012). Notably, these previous works frequently
used univariate statistical models, focusing on the hippocampus
and entorhinal cortex (EC) functions in spatial memory and
navigation processes. Neuroimaging and neuropsychological
studies have indicated that the hippocampus and EC are
not the only regions that mediate spatial memories. The
pre-existing spatial cognitive map in some patients remains
intact after medial temporal lobe (MTL) impairment (Teng
and Squire, 1999), consistent with our clinical experience
in patients who underwent MTL resection. In addition, the
univariate method may have overlooked information beyond
the amplitude of the brain signals (e.g., spatial patterns of brain
activation). Spatial signal distribution deserves attention due
to the complexity of the cognitive spatial map in the brain.
The bridge between the MTL and other cortices associated
with spatial memory has not yet been fully built (Maviel
et al., 2004; Vann and Albasser, 2011; Moscovitch et al., 2016;
Sekeres et al., 2018).

To analyze the distribution pattern of brain signals
detected by functional magnetic resonance imaging (fMRI)
or electroencephalogram (EEG), multivariate pattern analysis
(MVPA) has received increasing attention in brain imaging
data analysis (Hassabis et al., 2009; Chadwick et al., 2010, 2012;
Bonnici et al., 2012; Nielson et al., 2015; Deuker et al., 2016).

MVPA can detect effective information in high-dimensional
data to a greater extent, discriminating between experimental
conditions and searching for slight individual differences to
prevent signal-loss issues (Pereira et al., 2009). Cognitive maps
formed in the MTL have been identified in a few studies using
MVPA based on fMRI signal patterns. Dissociated patterns
between responses in the hippocampus and parahippocampal
gyrus were observed in Hassabis and colleagues’ research
with two virtual squared rooms (Hassabis et al., 2009).
Subsequent work with a large-scale quasi-real environment
confirmed that spatial and temporal events could reflect
the similarity of neural patterns in the hippocampus from
different subjects (Deuker et al., 2016). Another study showed
various activation patterns in the anterior hippocampus
during retrieval of one’s life, representing distinct experience
integration in reality (Nielson et al., 2015). Undoubtedly,
neural activation within the MTL can provide a scaffold
for episodic memory and navigation, whether in a real or a
virtual world. Nevertheless, few studies have used MVPA to
study spatial memory representations within the navigation
network or brain level.

In the present study, a well-designed three-dimensional spatial
memory retrieval task with an egocentric view (Hassabis et al.,
2009) was used, and blood oxygenation level-dependent (BOLD)
signals were collected. Both univariate and multivariate methods
were conducted to identify the brain regions encoding the
spatial memory retrieval process, and correlation analyses were
performed to reveal the correspondence between neural activities
and the behavior performance of memory retrieval. We aimed to
determine (1) the brain regions representing the information in
both intensity and distribution patterns during spatial memory
retrieval and (2) whether the patterns of neural responses reflect
a person’s spatial memory ability.

MATERIALS AND METHODS

Subjects
Twenty young healthy volunteers (men, ranging from 20 to
30 years, 26.3 ± 3.6 years) with no history of psychiatric
or neurological illness were recruited. All participants were
right-handed, as ascertained by the Edinburgh Handedness
Inventory. The study was approved by the ethics committee of
Tianjin Medical University General Hospital. All the participants
provided written informed consent before the study.

MRI Data Acquisition
All MRI data were acquired using a 3.0 T magnetic resonance
scanner (Siemens Prisma) with a 64-channel phased-array
head coil. Functional data were acquired using a simultaneous
multislice, gradient echo, echo-planar imaging sequence (EPI)
with the following parameters: echo time (TE) = 30 ms, repetition
time (TR) = 750 ms, field of view (FOV) = 222 × 222 mm,
matrix = 74 × 74, in-plane resolution = 3 × 3 mm, flip angle
(FA) = 54◦, slice thickness = 3 mm, no gap between slices, number
of slices = 48, and slice orientation = transverse.
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Experimental Design
A validated three-dimensional spatial memory task was applied
to evaluate the memory retrieval of spatial locations (Hassabis
et al., 2009). All experimental tasks were implemented with the
Unity game engine1. An MRI-compatible response collection
system with four buttons was available for fMRI experiments,
which allowed participants to freely move forward or backward
and turn right or left through the environment. During the
navigation task, subjects were required to follow a given letter
to a specific location in two virtual reality rooms. Each room
was 8 × 8 m in square and 3 m in height and consisted of
a roof, ground, and four walls, which was smaller than what
Hassabis made, allowing the subjects to navigate efficiently during
the task phase. Four target positions in the corners labeled
A, B, C, and D were reachable according to the layouts of
decorations on the wall (i.e., clock, panting, door, chair). A birch-
colored table was placed in each corner of the room and was
immaterial as a cue during navigation. Participants could walk
at a realistic speed of 1.9 m/s in the compartments, which is
vital in the spatial updating process, as Hassabis et al. (2009)
described (Figures 1A,B).

Before scanning, participants immersed themselves in virtual
compartments to maximize familiarity with the keyboard
controls and were introduced to the navigation task without prior

1https://unity3d.com/

knowledge of matching labels to target positions. They had to
reach the target points by the given labels at their own pace.
When the participants passed through the incorrect locations,
they received feedback from a cross showing on the screen. When
the subjects arrived at the designated location, they got a check
mark and returned to the virtual room center before the next
navigation. Prior to the scanning process, the participants had
to meet the criterion performance in a behavioral test in which
they had to correctly complete 10 navigation tests in a row in
each room to ensure that both layouts had been well mastered.
Navigation training took at least 30 min to reach the required
performance. Prescanning training was necessary to minimize
any learning or novelty effects and stabilize neural activity during
retrieval. There was an interval of 1 day between the pretraining
task and the formal scanning session. In the retrieval stage,
participants entered the room and faced the wall, where a random
letter for the navigation target was displayed for 2 s. When
they arrived at the targets, the viewpoint transitioned downward
so that the identical floor texture occupied the entire field of
view. After a 3 s countdown, a new letter was given that was to
be followed (Figure 1C). Before proceeding in the scanner, the
subject needed to complete as many retrieval tasks as possible
in 4 min. The number of task completions and the accuracy of
retrieval tasks were gathered for further analysis.

Throughout the scanning, the task proceeded in a block-
design manner with a 30 s duration of each block. The task

FIGURE 1 | Experimental design. (A) Navigation task is completed in two virtual reality rooms of different colors (i.e., green or blue) with four decorations on the wall
(i.e., clock, panting, door, chair). (B) Schematic of the room layouts with the four target corners, labeled A, B, C, and D. A birch-colored table is placed in each
corner of the room and is immaterial as a cue during navigation. The target positions are set under the tables, corresponding to the letters, A, B, C, and D. The two
rooms are designed to increase the difficulty of the task. (C) The task proceeds in a block-design manner with a 30 s duration of each block. The task stage
alternates with the resting stage in the course of 8 min. In the retrieval stage (task state), participants enter the room and face the wall, where a random letter for the
navigation target is displayed for 2 s. When they arrive at the targets, the viewpoint transitions downward so that the identical floor texture occupied the entire field of
view. Participants will be given a feedback (a check mark or a cross) after navigation in the learning and testing phase, but not in the scanning stage. After a 3 s
countdown, a new letter was given that was to be followed. In the non-retrieval stage (rest state), no letter prompts and no movements were made, and random
perspectives were displayed. The subjects were requested to press buttons at the same frequency as the task and watch the screen to ensure visual matching. The
entire task is only used to distinguish between navigational (task) and non-navigational (rest) states.
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stage alternated with the resting stage in the course of 8 min.
No letter prompts and no movements were made in the rest
phase, and random perspectives were displayed. The subjects
were requested to press buttons at the same frequency as the
task and continue to watch the screen until the prompt letter
appeared in the center of the screen (Figure 1C). The two stages
were matched in terms of visual content and hand movements to
the maximum extent.

Image Preprocessing
The fMRI data were preprocessed using Statistical Parametric
Mapping (SPM12)2 with the following steps: realignment
(correction for head motion-induced intervolume displacement),
normalization to the Montreal Neurological Institute (MNI)
space using the unified normalization–segmentation procedure
via the structural images, and spatial smoothing using a Gaussian
kernel of 5 mm full-width at half-maximum (FWHM). Default
high-pass temporal filtering (1/128 Hz cut-off) in SPM12 was
applied to remove low-frequency noise and signal drifts from
each voxel’s fMRI time course.

General Linear Model
The rationale behind the localization of brain regions
associated with spatial memory is that the amplitude of
such responses depends on the specific spatial task. To formally
test this hypothesis, we performed a general linear model (GLM)
analysis to identify brain areas where neural activity correlates
with spatial memory tasks by contrasting the retrieval state
(task phase) and non-retrieval state (rest phase). The two states
were modeled as separate regressors in GLM. Six head motion
parameters (estimated from the realignment step during fMRI
data preprocessing) were included as covariates in the GLM. The
contrast maps corresponding to the retrieval state (task phase)
minus the non-retrieval state (rest phase) in the first-level
analysis were further entered into a second-level one-sample
T-test to obtain group-level results. The significance level was
set at p < 0.001 at the voxel level, corrected to p < 0.05 using
family-wise error (FWE) at the cluster level. Averaged beta
values within significantly activated clusters were extracted and
correlated with the behavior scores (i.e., retrieval completed
times and retrieval accuracy).

Multivariate Pattern Analysis
MVPA of fMRI signals has recently gained popularity in the
neuroimaging community. MVPA is considered a sensitive
method to recognize the variation in brain activation and was
employed in our analysis. MVPA is a machine learning technique
that uses a pattern classifier (Mur et al., 2009; Pereira et al.,
2009) to identify the representational content of the neural
responses elicited by spatial memory retrieval. In contrast with
univariate analyses that detect regional averaged signals and
consider a single voxel or a single region of interest (ROI)
at a time, MVPA analyzes the spatial pattern of fMRI signals
across all voxels within a predefined area. That is, MVPA detects
condition-specific patterns of activity across many voxels at

2https://www.fil.ion.ucl.ac.uk/spm/

once. Whereas GLM directly compares differences in signal
amplitude on a voxel-by-voxel basis, MVPA projects samples
composed of multiple voxels from each condition of interest into
a high-dimensional space and searches for the boundary between
the samples from two or more conditions (Mur et al., 2009).
MVPA is usually more sensitive than conventional univariate
analysis (i.e., GLM) in revealing differences in brain activity
between experimental conditions because it offers a powerful
solution to the problem of multiple comparisons. It performs a
joint analysis of patterns of activity distributed across multiple
voxels. In the current study, we applied both within-subject and
between-subject MVPAs to detect spatial memory retrieval neural
responses. All analyses were conducted using custom scripts
written in MATLAB (MathWorks, Natick, MA, United States)
in combination with LibSVM implementation of the linear
support vector machine (SVM)3 using a linear kernel. The
parameters of the SVM were set to their default values. In
both the within-subject and the between-subject MVPA, we only
distinguished between navigational and non-navigational states.
If there was no specific information, the average classification
accuracy was 50%.

Within-Subject MVPA
For within-subject MVPA, the detailed procedures were as
follows: for each subject, (1) the averaged BOLD signal of each
trial was calculated and labeled as the task stage and the rest
stage, (2) the MVPAs were performed in each brain defined by the
Brainnetome Atlas4 (Fan et al., 2016) and cerebellum templates in
Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002), and for each brain region, the BOLD signals of
all rest and task trials were extracted and used as features
for classification. Leave-one-out cross-validation (LOOCV) was
conducted, and the average classification accuracy for each
subject was obtained. (3) Subsequently, the accuracy of all
subjects within each brain region was fed into one-sample T-tests
separately to generate a T value brain map. The corresponding
p-values were corrected by Bonferroni correction (p < 0.05/272).

Between-Subject MVPA
For between-subject MVPA, the detailed procedures were as
follows: (1) the beta maps generated by GLM analyses were
labeled as the task stage and the rest stage, (2) MVPAs were
performed in each brain defined by the Brainnetome Atlas,
and for each brain region, the beta values of all rest and
task maps across subjects were extracted and used as features
for classification. LOOCV was conducted to obtain group-
level classification accuracy. The statistical significance of the
classification model was determined by a permutation test
(n = 1,000) and corrected for multiple comparisons (p < 0.05,
corrected for FWE) using an in-house MATLAB (R2017a) script.
Briefly, in each permutation step, after randomly shuffling the
labels of all beta maps, SVM models were performed to generate
corresponding classification accuracies in brain regions defined
by the Brainnetome Atlas and cerebellum templates in the

3www.csie.ntu.edu.tw/∼cjlin/libsvm
4http://atlas.brainnetome.org
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AAL Atlas, and the maximal classification accuracy across all
regions was selected. This procedure was repeated 1,000 times
and resulted in 1,000 maximal classification accuracies used
to generate the null distribution for calculating the p-value of
each brain region. Note that because the null distribution was
generated using the maximal classification accuracies across all
brain regions, the resultant p-values were automatically corrected
for FWE (Nichols and Hayasaka, 2003).

RESULTS

Behavioral Results
All 20 subjects successfully completed the test. In the behavioral
research phase, the average accuracy of retrieval tasks within
4 min was 94.52% (SD = 5.77), and the average number of task
completions was 26.65 (SD = 3.13).

GLM Results and Behavioral Relevance
Using a voxelwise GLM analysis model to determine the effect
of spatial memory retrieval, we found that the amplitude of
fMRI responses was associated with spatial memory retrieval
(at p < 0.001, FWE correction corrected for p < 0.05 at
the cluster level) in widespread brain areas, including the
bilateral hippocampi, bilateral frontal superior gyri, bilateral
superior parietal lobule (SPL), bilateral occipital lobe, and
cerebellum. The detailed information can be found in Table 1.
The spatial distribution of these brain regions can be found
in Figure 2. In the current study, significantly activated brain
regions were the core parts often elicited by spatial memory
retrieval (Nilsson et al., 2013; Reynolds et al., 2019). Subsequently,
the correspondences between the amplitude brain responses
and the behavior performance were detected by performing
Pearson correlation analysis. The average beta values of the

abovementioned clusters were extracted and correlated with the
behavior performance (i.e., completion times and accuracy).
The beta value in the left hippocampus showed a significant
negative correlation (r = 0.46, p = 0.039) with the number of task
completions quantified by behavior assessment (Figure 3, left).

Within-Subject MVPA
Considering GLM restriction, the lack of scrutinization of
distribution patterns and information mining toward small
sample data, we performed MVPA to detect the neural responses
elicited by spatial memory retrieval. We conducted within-
subject MVPA in brain regions defined by the Brainnetome Atlas
using the average BOLD signal of each trial. We found that
widespread brain regions showed high classification accuracies
between the task and rest stages (corrected by Bonferroni
correction) (Figure 4). The average classification accuracy of
each brain region is presented in Table 2. Brain regions with
accuracies higher than 80% included two subregions in the
right lateral occipital cortex (LOcC), two subregions in the
left SPL, one subregion in the right SPL, and two subregions
in the medioventral occipital cortex (MVOcC) according to
the Brainnetome Atlas. Detailed information on all corrected
subregions is shown in Supplementary Table 1. Moreover, we
found that the within-subject classification accuracies positively
correlated with the spatial memory retrieval accuracy (r = 0.775,
p = 0.0079; Figure 3, right) in the rostral area of the right middle
temporal gyrus (rMTG).

Between-Subject MVPA
By applying regionwise between-subject MVPA, we found that
numerous regions showed high classification accuracy between
task- and rest-stage beta maps. These brain regions are mainly
located in the paracentral lobule, basal ganglia, superior frontal
gyrus, MVOcC, and SPL (Figure 5). The arithmetic average

TABLE 1 | Detailed information about activation areas in GLM analysis.

Cluster region Cluster size (voxels) Peak intensity (T-value) Peak MNI coordinates

X Y Z

Cluster 1: bilateral parieto-occipital lobe

Right superior parietal lobule/right precuneus 349 13.63 15 −57 63

Left superior parietal lobule/left precuneus 574 11.63 −17 −57 58

Right calcarine 168 11.03 25 −60 8

Left calcarine 149 7.96 0 −76 8

Cluster 2: cerebellum

Right cerebellum 482 9.75 26 −35 −44

Left cerebellum 350 10.39 −24 −35 −45

Vermis 141 15.36 −3 −69 −33

Cluster 3: left frontotemporal lobe

Left superior/middle frontal gyrus/left precentral gyrus 143 9.2866 −24 −9 45

Left hippocampus/left thalamus 112 13.7691 −30 −36 3

Cluster 4: left inferior occipital gyrus 73 10.6014 −21 −87 −9

Cluster 5: right inferior temporal gyrus 69 9.6844 48 −60 −9

Cluster 6: right hippocampus 94 12.1545 27 −27 0

Cluster 7: right superior frontal gyrus 79 8.513 24 3 57
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FIGURE 2 | Activation map obtained from the “navigational vs. non-navigational” state (at p < 0.001, corrected by FWE for p < 0.05 at the cluster level). The hot bar
at the bottom labels T value from 0 to 15. Numbers represent X (sagittal view), Y (coronal view), and Z (axial view) coordinates in the MNI space.

FIGURE 3 | The beta value in the left hippocampus shows a significant negative correlation (r = 0.46, p = 0.039) with the number of task completions (left).
Within-subject classification accuracies positively correlated with the spatial memory retrieval accuracy (r = 0.775, p = 0.0079) in the rMTG (right).
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FIGURE 4 | Whole-brain regionwise within-subject MVPA result obtained from “navigational vs. non-navigational” state classification. The hot bar at the bottom
indicates percentage accuracy values. Numbers represent X (sagittal view), Y (coronal view), and Z (axial view) coordinates in the MNI space.

classification accuracy of each brain region is presented in
Table 2. Detailed information can be found in Supplementary
Table 2. These brain regions mainly overlapped with our
previous results.

DISCUSSION

The present results indicate that the brain’s vast regions are
associated with spatial memory retrieval in univariate and
multivariate ways. Spatial memory recognition therefore depends
on the whole brain, not just the MTL structures. In the behavioral
analysis, the amplitude of average fMRI signals in the left
hippocampus showed a significant negative correlation with the
number of task completions in a limited time. In addition,
task retrieval accuracy positively correlates with the classification
accuracy given by the patterns of the rMTG rostral areas in
the Brainnetome Atlas. Therefore, MVPA-based spatial memory
analysis should be extended from the hippocampus or MTL
structures to the whole-brain level to deepen our understanding
of spatial memory.

Multivariate-Based Brain Map in Spatial
Memory
The increasing application of MVPA brings sensitivity to
fluctuations in multivariate information and offers the possibility
to attach further details in spatial memory. Chadwick et al.
(2012) previously reviewed their four published MVPA
studies that specifically focused on the MTL, including spatial
information recognition (Hassabis et al., 2009), individual
episodic memory discrimination (Chadwick et al., 2010),
identifying the overlapping information in episodes (Chadwick
et al., 2011), and decoding overlapping scene representations
(Bonnici et al., 2012). Their experiments convincingly highlight
the potential utility of MVPA in hippocampal analyses.
Additionally, recent publications have significantly improved
hippocampus-specific analysis of spatial memory (Hassabis
et al., 2009; Nielson et al., 2015; Deuker et al., 2016). Hassabis
et al. (2009) demonstrated that the hippocampal neuron
population represented precise spatial positions, whereas
voxels in the parahippocampal gyrus expressed environmental
information in two virtual cubical spaces. We also used this
paradigm in our research to distinguish the differences between
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TABLE 2 | Mean accuracy from between-subject and within-subject MVPAs in each corrected region.

Gyrus Between-subject Mean accuracy (%) Within-subject Mean accuracy (%)

Bilateral Left Right Bilateral Left Right

Superior parietal lobule 94.29 95.00 93.75 78.00 80.00 76.00

Medioventral occipital cortex 95.00 95.63 94.38 76.72 74.50 78.94

Lateral occipital cortex 91.59 89.17 94.50 78.46 76.51 80.42

Precuneus 94.06 95.00 93.13 73.75 73.91 73.59

Paracentral lobule 97.50 95.00 100.00 68.13 68.13 68.13

Postcentral gyrus 94.29 95.00 93.75 71.25 75.52 66.98

Superior frontal gyrus 95.36 93.93 96.79 69.31 68.33 70.78

Precentral gyrus 93.13 93.13 93.13 70.94 71.93 68.96

Vermis 91.25 71.98

Inferior parietal lobule 91.88 90.83 92.92 70.74 70.10 71.50

Inferior temporal gyrus 90.75 91.88 90.00 70.44 71.04 69.53

Middle frontal gyrus 92.68 92.14 93.21 67.86 69.11 66.61

Basal ganglia 95.42 95.00 95.83 64.94 64.22 65.42

Orbital gyrus 93.75 95.83 91.67 64.79 65.21 64.38

Middle temporal gyrus 88.44 85.00 91.88 69.84 68.13 71.56

Fusiform gyrus 85.00 87.50 82.50 72.66 75.16 70.16

Cingulate gyrus 91.56 90.63 92.50 65.86 66.80 64.92

Cerebellum 86.50 85.00 88.00 70.66 71.70 69.86

Thalamus 92.08 92.50 91.67 64.95 64.06 65.83

Superior temporal gyrus 93.33 92.50 94.38 62.97 62.19 63.75

Inferior frontal gyrus 92.50 92.00 93.00 62.19 62.27 62.03

Insular gyrus 92.27 89.58 95.50 61.56 62.19 61.25

Posterior superior temporal sulcus 83.75 – 83.75 64.69 65.47 63.13

Hippocampus 92.50 93.75 90.00 None

Parahippocampal gyrus 85.50 82.50 86.25 None

Amygdala 83.75 – 83.75 None

None, no subregion in this area was corrected. The vermis cannot be divided into the left and right parts.

navigational and non-navigational states instead of spatial
location or environmental information. Deuker et al. (2016)
introduced a novel experimental paradigm that allowed them
to investigate spatial and temporal aspects of memory in a
large-scale virtual city. Their results provided a new explanation
for a common coding mechanism of episodic and spatial
memory, in which the spatiotemporal network was reflected in
the hippocampus’s neural patterns. In real life, another report
showed that both spatial and temporal contexts were encoded
within the hippocampus across various scales of magnitude,
up to 1 month in time and 30 km in distance (Nielson et al.,
2015). MVPAs enable scientists to decode complex, overlapping,
and practical information from voxel patterns in the human
hippocampus, whether in rigorous laboratory conditions or
in the real world.

Remarkably, the MVPA method primarily focuses on
detecting diverse patterns of neural signal changes relating to
specific stimuli information in the brain in addition to the
BOLD intensity from standard fMRI analyses. Region-specific
analyses by MVPA within the hippocampus consolidate its
place in spatial memory retrieval and navigation. However,
there is less focus on the rest of the brain areas. Thus, it
is worth exploring whether there is any difference between
the multivariate-based brain map and univariate-based

activation map in the spatial memory task. This study aims
to identify cortices involving spatial memory across the
brain by MVPA, referring to Hassabis’s paradigm (Hassabis
et al., 2009). We first present a multivariate-based spatial
navigation map consisting mainly of the bilateral hippocampi,
bilateral superior frontal gyrus, bilateral SPLs, bilateral
occipital lobes, and cerebellum. The univariate (Figure 2)
and multivariate (Figures 4, 5) images display a fair visual
uniformity in spatial distribution. To show consistency with
similar experiments, Neurosynth (Yarkoni et al., 2011), an
automated meta-analysis platform5, was used to present a
navigation-based synthetic activation map (Supplementary
Figure 1) from 77 published articles. As in the above three
maps (Uncorrected Annotation Univariate map, Figure 2;
Multivariate map, Figures 4, 5; Synthetic map, Supplementary
Figure 1), brain regions in the “navigation network” beyond
the hippocampus mainly overlap with three regions, SPL,
MVOcC, and LOcC.

To better illustrate the navigation map, we need to describe
the spatial information processing method in detail. Spatial
processing is well organized by two hierarchical pathways:
the ventral stream (or the “what” pathway) for object vision

5www.neurosynth.org
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FIGURE 5 | Whole-brain regionwise between-subject MVPA result obtained from “navigational vs. non-navigational” state classification. The hot bar at the bottom
indicates percentage accuracy values. Numbers represent X (sagittal view), Y (coronal view), and Z (axial view) coordinates in the MNI space.

and the dorsal stream (or the “how” pathway) for spatial
vision (Ungerleider and Haxby, 1994; Konen and Kastner,
2008). Kravitz et al. (2011) updated a novel neural framework
for visuospatial processing and redefined the dorsal stream’s
anatomical origin. Posterior regions of the parietal cortex,
including medial portions of the SPL, are critical in the dorsal
stream. Much research has provided evidence that some parietal
lobe parts encode spatial performance in the human brain (Fein
et al., 2009; Gottlieb and Snyder, 2010; Vandenberghe et al.,
2012). The SPL plays a central role in spatial functions, such as
spatial attention, saccadic eye movements (Gottlieb and Snyder,
2010), and memory tasks (Simons et al., 2010; Vandenberghe
et al., 2012). Posterior parietal lesions can also lead to egocentric
disorientation (Aguirre and D’Esposito, 1999) and an inability to
localize objects in space (Kase et al., 1977). This deficit indicates
that the posterior parietal cortex is the source of the egocentric
information needed for navigation. In our research, bilateral
occipitoparietal cortices were revealed among these three maps
(Figures 2, 4, 5) with a high T value in GLM analysis and
high accuracy of MVPA classification. These results strengthen

the previous conclusion that the posterior parietal cortex is
associated with spatial memory in BOLD signal intensity and
distribution patterns. However, it is difficult to determine how
the three pathways form in the posterior parietal cortex. The
distribution pattern within this region may involve the separation
of functions, which MVPA might resolve.

The GLM approach, the “gold” standard in fMRI research,
is usually referred to as a mass univariate model-based analysis,
revealing linear correlations between time course and task
design. MVPA is a classification algorithm that captures subtle
differences in informative voxel distributions between various
conditions based on SVM in general. Both methods were adopted
in this research to compare the distribution of multivariate and
univariate information. In our maps, although the multivariate
and univariate information overlapped for the most part, there
were slight differences as well. Classification accuracy within
the hippocampus is lower than that calculated from the SPL,
MVOcC, and LOcC, especially in within-subject MVPA, in
which the classification accuracy fails to pass the correction. The
decision whether to navigate is likely embodied in these areas.
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Further detailed experimental designs are needed to compare the
representation of navigation decisions in these brain regions.

Behavioral Analyses in the Hippocampus
and rMTG
The MTL structures, particularly the hippocampus, showed
enhanced brain activity during navigation (Epstein et al.,
2017). We found the same neural signaling alterations in the
hippocampus (Figure 2 and Table 1). In the behavior analysis,
we noticed that the beta value of the left hippocampus showed
a significant negative correlation (r = 0.46, p = 0.039) with
the number of task completions in a limited time. Because all
subjects underwent multiple exercises before the scanning, we
assume that lower neural activity was required for well-trained
subjects than for others to achieve the same performance. The
reduction in neural activity caused by repeated stimuli is the
robust cortical activity associated with experience (Vannini et al.,
2013). In studies of episodic memory, repetition suppression
has been observed in the hippocampus and adjacent brain
regions in the MTL, suggesting that suppression may reflect
successful encoding or consolidation (Gonsalves et al., 2005;
Rand-Giovannetti et al., 2006; Suzuki et al., 2011). A significant
number of studies using two-dimensional images as experimental
materials have produced the same conclusion, although a
similar effect in a three-dimensional environment has not
yet been confirmed.

We first report that classification accuracy based on the
patterns of the rMTG rostral areas in the Brainnetome
Atlas showed a remarkably significant correlation with task
performance by using MVPA. Under the strictest correction,
the rostral areas of the rMTG, located in the anterior temporal
lobe, showed a high Pearson correlation coefficient (r = 0.7750),
which suggested that potential neural function correlated with
spatial memory retrieval. A previous study indicated that
anterior temporal lobe resection might impair memory function,
typically visual memory following right anterior temporal lobe
resection (Bonelli et al., 2013). Patients who undergo from right
anterior temporal resections demonstrate deficits of memory
for locations in both two-dimensional and three-dimensional
performances (Diaz-Asper et al., 2006). We suggest that the
rostral areas of the rMTG may serve as an essential component
of the parieto-medial temporal pathway and have a vital function
in visuospatial retrieval.

LIMITATIONS

Gender differences were frequently discussed in previous studies
(Persson et al., 2013; Spets et al., 2019) that showed that men have
better performance in spatial memory tasks and different patterns
of cortical activity. To better elucidate how spatial memory is
encoded in the brain, we recruited only male subjects to ensure
homogeneity. However, sex comparisons should be a significant
component of further studies. With regard to data continuity and
comparability, we collected only behavioral data from the MRI
unit. Further analysis should be performed using behavioral data
obtained both inside and outside the MRI unit.

CONCLUSION

In summary, whole-brain maps of spatial memory retrieval
in cubical space were generated using GLM and MVPA in
our study. Certain distribution patterns in these regions, the
posterior parietal cortex and rMTG, are specific to spatial
memory retrieval. These results show global and regional
effects in the brain during spatial memory retrieval. MVPA
provides assistance in obtaining more information about spatial
memory in the brain.
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