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Abstract

Adaptive multiscale prognostics and health management (AM-PHM) is a methodology designed to 

support PHM in smart manufacturing systems. As a rule, PHM information is not used in high-

level decision-making in manufacturing systems. AM-PHM leverages and integrates component-

level PHM information with hierarchical relationships across the component, machine, work cell, 

and production line levels in a manufacturing system. The AM-PHM methodology enables the 

creation of actionable prognostic and diagnostic intelligence up and down the manufacturing 

process hierarchy. Decisions are made with the knowledge of the current and projected health state 

of the system at decision points along the nodes of the hierarchical structure. A description of the 

AM-PHM methodology with a simulated canonical robotic assembly process is presented.

1. Introduction

Prognostics and Health Management (PHM) refers to a class of techniques and methods that 

enable condition monitoring of a physical machine or functional process. PHM encompasses 

health monitoring of a system; provides diagnostic information including what is at fault, 

why the fault occurred, and how the fault can be remedied; and offers prognostic intelligence 

as to when a system or process is going to degrade to various states that may include going 

out of specification or failure.

A manufacturing system is a complex system-of-systems with a hierarchical structure. A 

manufacturing system hierarchical structure is described as a facility consisting of multiple 

assembly/fabrication lines that are further divided into work cells or work stations which are 

further divided into multiple machines consisting of components (Hopp & Spearman, 2008). 

One challenge in PHM for manufacturing is that in most applications data gathering and 

analysis is limited to the component level. For example, prognostic intelligence for 

machines, such as robots or machine tools, typically does not propagate beyond the 
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boundaries of the machine even though the failure of a single component may lead to failure 

of other components or to system-wide effects.

The use of PHM technologies in manufacturing operations continues to experience growth 

driven by advances in sensor, computing, and communications technologies, and in machine 

learning and other data analytic techniques. An increased interest in PHM within 

manufacturing is also reflected in recent academic literature. Yoon, He, and Van Hecke 

(2014) applied PHM to an additive manufacturing process for improved fault diagnosis and 

quality control. Philippot, Marang, Gellot, Ptin, and Riera (2014) suggest a fault tolerant 

control structure for manufacturing plant control. The self-aware machine platform for 

application in a manufacturing shop floor proposed by Liao, Minhas, Rangarajan, Kurtoglu, 

and de Kleer (2014) provides a richer set of PHM information, including predicted 

component wear and real-time anomaly detection to the shop supervisor. However, there is a 

notable absence of methodologies to support the development of agile and flexible PHM 

systems in smart manufacturing environments (Peng, Dong, & Zuo, 2010).

Ideally, PHM would be available at the system level, including prognostic intelligence being 

propagated up the hierarchical structures that relate components to machines, machines to 

work cells, and work cells to production lines. Model-based diagnostic methods that have 

been developed for hierarchical aerospace systems may be applied to hierarchical 

manufacturing systems. For example, Narasimhan and Brownston (2007) suggested a 

general framework for stochastic and hybrid model-based diagnostics for aerospace systems. 

Feldman, de Castro and van Gemund (2013) proposed a decision support framework for 

satellite systems that uses active testing to increase diagnostic accuracy. Biswas and 

Mahadevan (2007) also proposed a framework for system health management that includes 

fault detection, fault identification, and adaptive control for aerospace applications. In the 

manufacturing domain, Celik, Lee, Vasudevan, and Son (2010) applied a dynamic data-

driven framework on a supply chain system to perform multi-fidelity simulation. Ferri, 

Rodrigues, Gomes, de Medeiros, Galvo, and Nascimento (2013) have suggested a method 

for achieving system-level PHM by propagating the remaining useable life (RUL) along the 

fault tree structure of the manufacturing system model. This is a positive step in creating a 

methodology for achieving system-level PHM within Smart Manufacturing based on the 

system model and component-level PHM.

To address the existing gap in providing PHM for hierarchical manufacturing systems, we 

propose a methodology termed Adaptive Multiscale PHM (AM-PHM). The AM-PHM 

methodology is designed to support PHM in Smart Manufacturing Systems (SMS). AM-

PHM is characterized by its incorporation of multi-level, hierarchical relationships and PHM 

information gathered from a manufacturing system. AM-PHM utilizes diagnostic and 

prognostic information regarding the current health of the system and constituent 

components, and propagates it up the hierarchical structure. By doing so, the AM-PHM 

methodology creates actionable prognostic and diagnostic intelligence along the 

manufacturing process hierarchy. This information includes the predicted health state upon 

completion of a task. The AM-PHM methodology allows for more intelligent decision-

making to increase efficiency, performance, safety, reliability, and maintainability.
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AM-PHM, at a given level along the system hierarchy, uses operational profiles from 

adjacent, higher-level operational profiles. These profiles describe the production goals 

under consideration by the decision-makers (e.g., operators and supervisors) at the higher 

level. In addition to the traditional workload, bill of materials, and requirements of the 

manufacturing process, the operational profile may have a focused objective such as 

minimizing cost or maximizing reliability. One instantiation of the AM-PHM concept may 

be as an AM-PHM module situated at every node along the hierarchical structure. The AM-

PHM module gathers PHM information from subordinate systems or components and makes 

a decision ideal for the task corresponding to the operational profile. The AM-PHM module 

then creates operational profiles for its subordinate AM-PHM modules while producing 

diagnostic and prognostic information for its higher-level subsystem.

An example robotic assembly process is selected to show the effectiveness of the AM-PHM 

methodology. In today’s manufacturing world, the finished products/goods are becoming 

more complex as machines with increased capabilities are being deployed to the 

manufacturing floor. One example is the utilization of the industrial robot.

Worldwide, the manufacturing landscape has experienced extensive growth in the 

development and deployment of new robotic technologies. Paired with the introduction of 

newer, cheaper, and more reliable sensing technologies, the capabilities of robotic systems 

have improved in a relatively short amount of time. Processes that were historically 

performed by manual labor may now be accomplished using robots. As such, the use of 

robots outside of the automotive and electronics industries is on the rise (Orcutt, 2014).

Global manufacturing initiatives are stressing the development and integration of smart 

manufacturing technologies in modernized manufacturing facilities. Such technologies are 

seen as key to maintaining economic stability within an increasingly competitive global 

market (Holdren et al, 2011).

Robotic assembly is expected to be a principle application of robotics in manufacturing 

(Marvel & Falco, 2012). Historically, mechanical assembly has been addressed by manual 

labor. However, advancements in robotic perception, force control, and kinematic dexterity 

have enabled robotics to be viable options for assembly applications. This expands the 

traditional application suite of material handling, painting, and welding that have been more 

typical of robotic operations in manufacturing. Moreover, with the introduction of 

collaborative robot technologies, the expansion of robotics is expected to positively impact 

manufacturing processes that remain largely manual in nature (Marvel, 2014).

With the anticipated integration of robots into both new and preexisting manufacturing lines, 

the quality of PHM will directly influence the effectiveness of interoperability and system 

performance. This is particularly true when humans are expected to work alongside robotic 

collaborators, where robot performance also impacts safety. Should a robotic system 

experience a failure, it is expected to do so in a safe, reliable manner that does not negatively 

impact its environment, process, or collaborators. Moreover, the road to recovery must be 

clearly established and easy to implement. This necessitates significant advancements in the 

quality and dissemination of robotic PHM.
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The remainder of the paper is organized as follows. Section 2 examines the current state of 

PHM capabilities and standards in manufacturing. Section 3 presents the AM-PHM 

methodology including the proposed AM-PHM features for describing the health state of 

systems. Section 4 discusses two example implementations of the AM-PHM methodology as 

applied to a test robotic assembly production line scenario. Section 5 concludes the paper by 

highlighting the significance of AM-PHM in manufacturing.

2. Current State of PHM in Smart Manufacturing

PHM technologies in manufacturing systems reduce time and costs for maintenance of 

products or processes through efficient and cost-effective diagnostic and prognostic 

activities. In 2010, a comprehensive review was conducted of prognostic and diagnostic 

methodologies for condition-based maintenance (CBM) that presented the existing strategies 

within four categories: physical models, knowledge-based models, data driven models, and 

combination (hybrid) models (Peng et al., 2010). This review highlighted many specific 

methods across four categories (Hidden Markov Models, Bayesian network-related methods, 

Fuzzy Logic, Principal Components Analysis) along with their successes and limitations. No 

method stood out as being sufficient to provide both diagnostic and prognostic intelligence 

at multiple levels. This review demonstrated that for every method’s strength, there was at 

least a single weakness. Similarly, another review of existing methods for manufacturing 

systems was conducted in 2012 that focused on comparing time-based maintenance (TBM) 

and condition-based maintenance (CBM) (Ahmad & Kamaruddin, 2012). TBM, commonly 

referred to as preventative maintenance, is typically simpler to implement (in that 

maintenance is scheduled based upon a specific unit of time; e.g., cycle time) while CBM, 

sometimes termed predictive maintenance, may ultimately be more cost effective if a 

process’s or equipment’s health data accurately reflects its current state and allows a 

machine to run longer until maintenance (as compared to a TBM schedule). The challenge in 

CBM is gathering sufficient data to make a reasonably accurate prediction.

Product PHM (providing health monitoring, diagnostics, and/or prognostics for a finished 

system; e.g., automobile, aircraft, power generation station) is more widespread as compared 

to process PHM (providing health monitoring, diagnostics, and/or prognostics to a system 

that integrates one or more pieces of equipment to complete a task; e.g., assembly process, 

welding process, machining process) (Batzel & Swanson, 2009) (Holland Barajas, Salman, 

& Zhang, 2010) (Hu & Koren, 1997) (Shen, Wan, Cui, & Song, 2010). Likewise, PHM 

techniques have been developed and applied more widely at component/equipment levels, 

yet some work has occurred at the higher/system levels. For example, innovative methods 

have been developed to support various machining operations (Al-Habaibeh & Gindy, 2000) 

(Altintas, Verl, Brecher, Uriarte, & Pritschow, 2011) (Biehl, Staufenbiel, Recknagel, 

Denkena, & Bertram, 2012) (Borisov, Fletcher, Longstaff, & Myers, 2013). System-level 

PHM methods have also been developed, yet seem to be focused in their applicability and/or 

limited in capability (Barajas & Srinivasa, 2008) (Datta, Jize, Maclise, & Goggin, 2004) 

(Hofmeister, Wagoner, & Goodman, 2013).

Vogl et al. (2014) conducted a detailed review of existing standards that were designed to 

help guide implementation of PHM in manufacturing. Specifically, many of the current 

Choo et al. Page 4

Proc Annu Conf Progn Health Manag Soc. Author manuscript; available in PMC 2017 June 27.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



PHM standards were developed within the International Organization for Standardization 

(ISO) and focus primarily on condition monitoring and diagnostics (ISO, 2002) (ISO, 2003) 

(ISO, 2012). Few standards include discussion of prognostics (ISO, 2004). Most standards 

fall into one of two categories; standards that are very specific and only applicable to a few 

processes and standards that are very broad that may lack guidance for applications. 

Likewise, no standard has been developed that offers the flexibility to be applied at multiple 

hierarchical levels of a complex system to promote effective PHM practices.

3. Adaptive Multiscale PHM for Smart Manufacturing

A manufacturing system hierarchical structure can be described as a facility consisting of 

multiple assembly/fabrication lines which are further divided into work cells or work 

stations which are further divided into multiple machines (Hopp & Spearman, 2008). For 

this paper, the hierarchical structure of the facility, assembly line, work cell, and machine 

will be used as a primary example, although there exists more complex methods of 

describing a manufacturing facility.

Information is passed down in the form of orders, schedules, bills of materials, or control 

signals between each hierarchical level of the system. The job of the subordinate system is to 

follow the tasks assigned by the higher-level node. Historically, maintenance policies for 

machines have been based on usage time or workload, as static policies defined in these 

terms can be estimated through historical data and experience. An effort to modify this 

approach into a feedback system where the health state of the machine or component is 

considered in making maintenance decisions emerged only recently. (National Institute of 

Standards and Technology, 2015) However, health state information is often confined to the 

component or machine level and is not propagated up to the system level.

On the other end of the spectrum, the system-level approach to analyzing a manufacturing 

system has resulted in generalized risk and fault analysis methods such as fault tree analysis 

(FTA) and failure mode and effects analysis (FMEA) (SAE International, 2009). Also, 

modeling software tools such as SysML have been used to describe the system structure 

including interoperability and interdependency between components of the system (Wünsch, 

Lüder, & Heinze, 2010).

The AM-PHM methodology is designed to provide decision-makers with enhanced 

information on the current and predicted health state of the decision-maker’s subsystems. 

Figure 1 depicts the AM-PHM methodology for a simple hierarchical manufacturing 

structure.

For AM-PHM, a decision-maker is not limited to the machine operator. Rather, it refers to 

any person or machine such as the control unit of a manufacturing robot or the supervisor of 

an assembly line that is responsible for making decisions that can influence the outcome of 

the system. The point at which the decision-maker resides in the hierarchical structure is 

called the decision point within the AM-PHM methodology. Conceptually, an AM-PHM 

module resides at every decision point of the hierarchical structure of the manufacturing 

system.
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A hierarchical manufacturing system refers to a manufacturing system in which multiple 

levels exist. For each level, the higher-level nodes encompass the lower-level nodes. In this 

level structure, the parent nodes have control over the states of its subsystems while 

subsystems do not have direct control over the states of its parent nodes. Examples of the 

hierarchical structure may be a SysML description or a fault tree structure of the 

manufacturing system. Another example may be a treelike description of the physical setup 

of a manufacturing system consisting of assembly lines, work cells, and machines.

For the example structure shown in Figure 1, an order is placed to the Facility Manager with 

the number of products requested, product requirements, and expected finish date. The order 

information and the operational directive are passed onto the facility level AM-PHM 

module. The directive refers to a particular set of attributes or objectives that the decision-

maker would like to focus on. For example, the decision-maker may be interested in 

reducing the time, cost, risk, or wear in maximizing the utilization rate.

The facility level AM-PHM module reports the health information of the facility to the 

Facility Manager. PHM information on the subsystem is needed for effective directive-

driven decisions to be made. The PHM information from the subsystem is processed at each 

AM-PHM module. This results in health metrics that appropriately represent the current and 

future state of the system. These health metrics may include remaining usable life of the 

system, expected health state upon completion, nature of fault, and proposed solutions.

The AM-PHM module also creates operational profiles once all aforementioned information 

is gathered. Each operational profile is designed to control the subsystems with a focused 

directive. The operational profile also contains the projected health information for the 

subordinate systems such as projected health upon completion. The decision-maker may 

now choose from the set of operational profiles that fit within the constraints handed down 

from its superior nodes.

The Facility Manager selects the operational profile that best fits the directive and order 

requirements. Once the operational profile is chosen, the set of instructions contained within 

that operational profile are handed down to the subordinate AM-PHM module and a similar 

process repeats itself. For the example in Figure 1, the selected operational profile 

containing the number of products needed to be produced by each production line and 

operational directive is passed down to the Assembly Line level.

A similar process is now repeated at the Assembly Line level. The Assembly Line Manager 

takes the operational profile handed down from the Facility level and selects an appropriate 

operational profile. The operational profile handed down to the Work Cell level contains 

information such as number of products produced for a particular work cell and bill of 

materials needed for the processing of the order.

A similar process is repeated for the Machine level. For the Machine level the operational 

profile contains machine operation parameters and the AM-PHM information contain data 

such as the aggregated wear for critical components.
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Although the simplified scenario depicted in Figure 1 is convenient for initial discussion of 

the AM-PHM concept, the concept may be expanded for more general SMS environments in 

which there exists an extensive hierarchy of processes and components.

Additional features that better describe the current health state at a particular juncture of the 

system are needed for the AM-PHM system to be helpful to the decision-maker. The newly 

suggested features are (a) greatest wear, (b) average wear, (c) health balance score, (d) 

probability of successful completion, and (e) estimated health state upon completion.

a. Greatest wear represents the most extreme wear in percent from all the wear 

states of all the subordinate components. This gives an idea of the state of the 

most worn component of the system.

b. Average wear represents the arithmetic weighted mean of the wear in percentage 

of all the subordinate components. This metric represents the overall average 

health state of the system. The average on its own may not reveal much 

information but in conjunction with the greatest wear and the health balance 
score, this helps to describe the health state of the all the components of the 

subsystem. Different components contribute differently to the overall 

performance of a manufacturing system. There are established methods such as 

FTA, FMEA, Hierarchical Holographic Modeling (HHM), and Risk Filtering, 

Ranking, and Management (RFRM) that may be used to analyze the weight of 

each component to different failures. The differing importance of a component is 

included as a weighted coefficient.

c. Health balance score is the standard deviation of the wear state of each of the 

subordinate components at a given node. This metric indicates degree of 

concentration of wear of the system. A higher number would indicate that wear 

values vary greatly among components, while a smaller number would indicate 

that the system has similar wear along most of its components.

d. Probability of successful completion is the probability that the component will 

complete the given operational profile with the current state of health. This gives 

decision-makers an idea of the success rate or confidence involved with a given 

solution.

e. Estimated health state upon completion refers to the expected final state of health 

for all metrics involved in AM-PHM. This is used to show a predicted picture of 

the overall state of health at the point of completion of the assigned task.

The average wear, health balance score, and probability of successful completion may be 

further customized so that each of the components carry different weights. This means the 

proposed metrics can focus on certain components depending on its importance within the 

overall structure of the system.

One notable point for the proposed features is that the basis for the usefulness of these 

metrics lies on the assumption that the PHM information from the component level is 

accurate to a certain degree. An accurate wear model is necessary for the health metrics to 

be useful.
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4. AM-PHM Implementation in Smart Manufacturing Robotic Assembly

An example assembly line involving multiple robots is described in this section. The AM-

PHM methodology is applied to the canonical manufacturing process simulation. The 

canonical process is a generalized test case of the example assembly line and includes 

related assumptions. This simplified test case, including its simulated results, highlights the 

usefulness of the AM-PHM implementation. The structure and the trend of the numbers 

involved are reasonable in real manufacturing settings. The use of robotic arms in industry is 

widespread as stated in Snyder (1985) and the trend of the drill wear in the canonical 

example simulation follow the model by Kadirgama, Abou-El-Hossein, Noor, Sharma and 

Mohammad (2011).

The example hierarchical structure of a manufacturing environment consists of a single 

assembly line with multiple work cells, each of which has multiple machines, each 

comprised of multiple components. The operational profiles flow from the higher-level 

block to the lower-level blocks in the AM-PHM framework. The PHM information is 

reported from the lower-level blocks up to the higher-level block. However, both the 

operational profile and the PHM information are processed appropriately for each level.

The specific information that is listed in the operational profiles and the PHM reports differ 

depending on the block’s location in the hierarchical structure. For example the operational 

profile generated by the assembly line for each work cell will resemble a bill of materials; 

the operational profile generated by the work cell for each machine will resemble a process 

instruction; and the operational profile generated by the machine to its components will be 

close to a set of control signals.

The operational profile generator of the AM-PHM module at each level must translate the 

task it receives from the higher-level AM-PHM module into a task that can be understood by 

the subordinate level. Similar concepts apply to the PHM information at each stage. The 

PHM information from the component to the machine will include RUL of replaceable parts, 

while the PHM information from the machine to the work cell includes more information on 

the tradeoffs involved with different operational profiles. Finally, the PHM report from the 

work cell to the assembly line would include more information on the probability of 

successful completion and the overall health state of the work cell. The AM-PHM module 

must process the PHM information it receives from the lower levels and provide value-

added, level appropriate information for the upper level.

Two different examples of AM-PHM are given. The first example is focused on a simple 

AM-PHM structure with simple operational profiles and a PHM report involving only RUL. 

This structure may be implemented if the nature of the task performed at an assembly line 

does not require sophisticated PHM capabilities or if changing the existing system model 

and fault tree structure is not desired. The deployment of AM-PHM into the existing 

assembly line model is minimally invasive and most likely will not affect the overall 

structure of the fault tree.

The second example is a more sophisticated AM-PHM system. This is needed if the 

assembly line handles a more complex process involving many different machines with 
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interdependencies and interoperability. The downside is that the implementation may 

become more complicated and the use of AM-PHM may impact the existing fault tree 

structure of the system model.

In the canonical example, a robot with two drilling arms is used to drill holes into a box. The 

left and right drilling arm are each responsible for drilling holes into the left and right side of 

the box, respectively. A SysML model of the drilling robot is presented in Figure 2. The 

corresponding FTA diagram of the drilling robot is shown in Figure 3. Only the flank wear 

of the drill bit component on each arm is considered for the simplified AM-PHM example, 

as flank wear is one of the common wears exhibited in drilling (Kadirgama et al. 2011). It is 

important to note that one drilling arm may perform the job of the other drilling arm with the 

penalty of reduced production rate.

In real-world manufacturing systems, there are many factors such as material properties, 

work piece structure, and machine characteristics that are carefully considered when 

selecting machining parameters. Machining parameters are optimized to best fit the 

particular manufacturing process. However, in a complex system-of-systems, optimization 

based on one feature means there is a trade-off with other features. Also, for a particular 

process there is a range of acceptable machining parameters rather than one fixed operating 

point (Furness, Wu, and Ulsoy, 1996). Drill bit manufacturers recommend a range of feed 

rates and cutting speeds for their drill bits (Sandvik Coromant, 2005).

When the parameters for a process are selected, the model [for the process] does not account 

for the fact that the system may change as the machine experiences wear in its components. 

The wear of the components, such as the flank wear of the drill bit, affects the characteristics 

of the system. Thus, the optimal operating parameters may need adjustment to account for 

the change in the system caused by the deteriorating health state of the machine.

For the canonical process example simulation, simplifications are made to emphasize the 

effect of the AM-PHM methodology and to reduce the complexity of the example. The 

drilling robot is tasked to drill 100 holes on the left and right side of the box. The left and 

right drilling arm each drill on their respective sides, simultaneously. Though there are 

several different types of wear involved with the drill bit, only the flank wear occurring on 

the cutting edge of the drill bit is considered.

The work piece is made of Nickel alloy with a Brinell hardness of 200. The production line 

has identified an acceptable and stable range of operating parameters. The cutting speed is 

between 100 m/min to 180 m/min. The feed rate is between 0.1 mm/rot and 0.2 mm/rot. 

Each hole has a cutting depth of 1.5 mm and the drill diameter is 10 mm. Expected tool life 

is different for different combinations of cutting speed and feed rate and follows the values 

stated by Kadirgama et al. (2011).

The drill bit is considered completely worn and reached its replacement point when there is 

0.3 mm of flank wear. The RUL or tool life depends on the machining parameters and the 

replacement threshold for the drill bit. Tool life also differs depending on the size and 

geometry of the drill bit. Thus, to provide a more comparable quantitative figure for the 
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amount of wear, the wear is presented as a percentage. The wear percentage is calculated by 

dividing the remaining tool life by the tool life for a new tool.

4.1. Simple Implementation of AM-PHM

The AM-PHM module is implemented on the canonical example robotic assembly process. 

Only the RUL is propagated based on the system’s SysML model to provide RUL 

information along the system’s hierarchical structure.

Two methods by Mhenni et al. (2014) and Ferri et al. (2013) were combined to achieve this 

task. Mhenni et al. (2014) suggested a method for converting a SysML model into a fault 

tree. The method uses templates that translate several basic SysML subcomponent blocks 

into an equivalent fault tree structure. Then rules are suggested for combining these small 

fault trees into a complete system fault tree. Figure 3 shows the fault tree constructed using 

this automated algorithm. The leaf nodes of the fault tree correspond to the individual 

components of the left arm of the driller robot.

Another example PHM technique that could be applied within AM-PHM was developed by 

Ferri et al. (2013). This research team developed a method for propagating the RUL along a 

fault tree. This methodology takes the RUL of the end components and applies a set of rules 

to produce the RUL at each node of the fault tree. The PHM capability provides the RUL for 

each component. The individual component-level RUL is combined, resulting in the overall 

RUL for the driller robot.

A semi-automated method for building system-level AM-PHM is completed through the 

combination of these two methods. The system-level RUL is produced given the availability 

of the SysML model and component-level RUL. In this case, the actual implementation of 

the AM-PHM is done through the use of FTA as an intermediate, semiautomated step of 

linking system-level hierarchical information and component-level health information. Only 

the RUL given at each level is used as the source of health information.

The work cell is tasked to build 20 boxes. The starting wear state of the individual drill bits 

are 85 % worn for the left drill in Robot 1 and new for all other drill arms. The default 

operating speed is set to a feed rate of 0.2 mm/rot and 120 m/min. This results in a wear rate 

of 15 % per minute for the drill bit and a production rate of 5 boxes per minute. The 

component-level RUL is calculated based on this initial condition. The component-level 

RULs show that for Robot 1, the left arm has an RUL of 1 minute and the right arm has an 

RUL of 6.6 min. For Robot 2, both the left and right arm has an RUL of 6.6 min. This 

information is propagated along the hierarchical structure according to the rules. Robots 1 

and 2 each result in RULs of 1 minute and 6.6 min, respectively. The decision to distribute 

the load to the two robots is made based on the production targets and RUL information by 

the work cell operator. A work load of five boxes is assigned to Robot 1 and a work load of 

15 boxes is assigned to Robot 2. The job takes three min to complete and the final RUL 

upon completion for each robot is 0 and 3.6 min, respectively. The complete results 

including additional information on the health of the work cell are presented in Table 1.
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The result shows that the system has an RUL of 3.6 min. This is information previously 

unattainable to the decision-maker. Utilization of the RUL information enables more 

efficient use of the components of the manufacturing system. The advantage of this degree 

of PHM reflection is that at any point in the hierarchical structure the same RUL calculation 

method can be applied again reducing the complexity of implementation. The upper-level 

RUL is calculated using simple multiplication and comparison process. This begins by 

converting the fault tree (consisting of logic AND and OR gates) to a sum of products (SOP) 

expression. Once the SOP expression for the system is obtained, the system RUL is 

calculated by multiplying the probability distribution of the RULs for the product terms of 

the expression. The next step is to select the appropriate RUL for the sum portion of the 

expression. The system RUL ends up highlighting the set of components that are 

contributing to the nearest expected system failure. However, the system RUL does not 

contain health information on the other components of the system that are not directly tied to 

the upcoming failure. This limits the range of intelligent decisions that can be made.

4.2. Full Implementation of AM-PHM

A more sophisticated implementation of the AM-PHM concept would be to introduce 

additional features that help convey timely information on the health state of the system. The 

new features used in this example are the health balance score, average wear state, worst 
wear state, and estimated wear state upon completion. An order to make five boxes was 

given to the work cell as with the previous example. For the starting health state, only the 

right drill arm’s wear state is at 75 % while all other components are new.

The PHM information from a subordinate component is conveyed to the upper-level AM-

PHM module. The collected PHM information is processed to produce the PHM information 

at the current node. The cutting speed and feed rate parameters are changed to a different 

operating point within the stable and acceptable range. Work load is changed and the 

expected results are calculated for all the different parameters. The drill bit wear trend 

follows the model suggested by Kadirgama et al. (2011). The production rate is changed by 

adjusting the cutting speed and feed rate which effects the wear rate of the drill bit. 

According to Furness, Wu and Ulsoy (1996) the feed and speed have relatively small effects 

on the drill hole quality and that the drilling feed and speed is limited by factors such as drill 

wear. The drill speed parameters may be adjusted within a certain confine without 

significantly affecting the hole quality. The final decision is made from the set of choices 

that best fits the operational directive. The results for this simulation are given in Tables 2 

and 3.

For the case in Table 2, the work cell was handed down orders to produce 20 boxes with a 

directive of minimum health balance. Low balance score means that the components are at a 

similar state of health and may be used to align maintenance points for the components. The 

chosen operational profile distributes a load of five boxes for the first robot and 15 boxes for 

the second robot. However, the cutting speed is adjusted to 100 m/min and the feed rate is 

also adjusted to 0.1 mm/rot. The production rate is slowed down to 2.1 box/min as a result 

which reduces the wear of Robot 1’s drill bits to 0.02 mm/min or 6.6 % of its tool life per 

minute. This results in the production taking approximately 2.1 min.
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For the case in Table 3, the work cell is also ordered to produce 20 boxes but with a directive 

of minimum time. The operational profile chosen suggests a cutting speed of 180 m/min and 

a feed rate of 0.2 mm/rot. The production rate is increased to 7.6 boxes per minute at the 

cost of seeing 0.1 mm of flank wear per minute or 33 % of reduction in tool life per minute. 

The left drill bit reaches its failing point after 30 seconds and the right drilling arm handles 

the job of drilling holes on the left side as well which reduces the production rate for Robot 

1. Production is completed in 1.5 min at an increased cost on the wear of the drill bits.

The AM-PHM methodology is being applied in a simulated environment that is designed to 

resemble real-world hierarchical manufacturing systems. The canonical example simulation 

is based on real-world drill bit wear trends. For simplicity, in this paper, tool life is only 

dependent upon the operating parameters since the material stays consistent. The AM-PHM 

suggests operating points by optimizing a weighted cost function. The cost function includes 

all the health related features. The weight used in the cost function is adjusted depending on 

the decision-maker’s operational directive. The suggested actions such as changes in 

parameters are based on existing stable operating conditions to ensure system stability.

The canonical simulation used in this example is based on models from literature. In the 

future the AM-PHM methodology will be applied to real-world data some of which is 

obtained from actual production facilities. The real data will also include a more detailed 

wear model in which the wear rate is also dependent on additional factors such as current 

state of wear and material properties.

5. Conclusion

The concept of Adaptive Multiscale PHM for manufacturing was introduced in this paper. 

The AM-PHM methodology calls for the AM-PHM module at each decision point along the 

hierarchical structure to receive operational profiles outlining the job requirements and 

report back performance and health estimates appropriate for the upper level.

The AM-PHM is demonstrated on a canonical test manufacturing scenario simulation. 

Directive oriented decisions were made in the simulation by using additional information on 

the health of the system in addition to knowledge on the system hierarchical model. The 

AM-PHM shows promising results as it enables manufacturing work cells to adapt to 

changing machine conditions.

Further development of the AM-PHM methodology will continue. A modified work cell 

canonical process is in development. This model is based on a real-world manufacturing 

facility. A canonical process work cell simulator capable of simulating continuous wear of 

the components is being developed. The AM-PHM will be tested using this simulation 

environment and will be compared against other existing PHM based decision-making 

policies. The results of the different policies will be compared using quantitative measures 

such as time, monetary cost and Overall Equipment Effectiveness (OEE).
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Figure 1. 
Conceptual representation of AM-PHM
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Figure 2. 
SysML description of drilling robot
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Figure 3. 
Fault tree analysis (FTA) of drilling robot
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Table 1

AM-PHM based manufacturing results using RUL

Time (min) 0 1 2 3

Production Rate of Robot 1 (box/min) 5 5 - -

RUL of Robot 1 (min) 1 0 - -

Production Rate of Robot 2 (box/min) 5 5 5 5

RUL of Robot 2 (min) 6.6 5.6 4.6 3.6

Produced (box) 0 10 15 20

RUL of Work Cell 1 (min) 6.6 5.6 4.6 3.6
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Table 2

AM-PHM results based on maximum mean health

Time (min) 0 1 2 3

Production Rate of Robot 1 (box/min) 2.1 2.1 2.1 -

RUL of Robot 1 (min) 15.15 14.15 13.15 13

Production Rate of Robot 2 (box/min) 7.6 7.6 7.6 -

RUL of Robot 2 (min) 3 2 1 1

Produced (box) 0 9.7 19.4 20

RUL of Work Cell 1 (min) 15.15 14.15 13.15 13.15
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Table 3

AM-PHM result using maximum health balance and minimum time

Time (min) 0 1 2 3

Production Rate of Robot 1 (box/min) 7.6 5.7 3.8 0

RUL of Robot 1 (min) 3 2 1 1

Production Rate of Robot 2 (box/min) 7.6 7.6 7.6 0

RUL of Robot 2 (min) 3 2 1 1

Produced (box) 0 15.2 20 20

RUL of Work Cell 1 (min) 3 2 1 1
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