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Abstract

Background

Asthma is a chronic inflammatory disease of airways, but an ideal biomarker that accurately
reflects ongoing airway inflammation has not yet been established. The aim of this study
was to examine the potential of sputum leucine-rich alpha-2 glycoprotein (LRG) as a new
biomarker for airway inflammation in asthma.

Methods

We obtained induced sputum samples from patients with asthma (N = 64) and healthy vol-
unteers (N = 22) and measured LRG concentration by sandwich enzyme-linked immuno-
sorbent assay (ELISA). Ovalbumin (OVA)-induced asthma model mice were used to
investigate the mechanism of LRG production during airway inflammation. The LRG con-
centrations in the bronchoalveolar lavage fluid (BALF) obtained from mice were determined
by ELISA and mouse lung sections were stained with anti-LRG antibody and periodic acid-
Schiff (PAS) reagent.

Results

Sputum LRG concentrations were significantly higher in patients with asthma than in
healthy volunteers (p = 0.00686). Consistent with patients’ data, BALF LRG levels in
asthma model mice were significantly higher than in control mice (p = 0.00013). Immunohis-
tochemistry of lung sections from asthma model mice revealed that LRG was intensely
expressed in a subpopulation of bronchial epithelial cells, which corresponded with PAS-
positive mucus producing cells.
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Conclusion

These findings suggest that sputum LRG is a promising biomarker of local inflammation in
asthma.

Introduction

Asthma is a chronic inflammatory disease of the airways, characterized by bronchial hyper-
reactivity, airway obstruction, and mucus hyper-production. Although pulmonary function
tests are often used to objectively assess the severity of the disease, they do not necessarily
reflect ongoing airway inflammation. Indeed, several biomarkers have been evaluated for spu-
tum, bronchoalveolar lavage fluid (BALF), and exhaled samples in order to assess the inflam-
mation levels of the airways as well as therapeutic effects of an intervention. For example,
fractional exhaled nitric oxide (FeNO) is a widely used exhaled marker of airway inflammation,
and is thought to be specific for eosinophilic inflammation in asthma patients [1]. However,
recent evidence suggests that single measurements of FeNO are insufficient to evaluate asthma
control and to determine anti-inflammatory medication dosing [2, 3]. The search for novel bio-
markers of airway inflammation is warranted to establish accurate diagnosis, monitoring dis-
ease progression and personalizing treatment.

Leucine-rich alpha-2 glycoprotein (LRG) was identified as a serum protein containing eight
leucine-rich repeats [4, 5]. LRG expression is up-regulated in granulocytes during their differ-
entiation [6] and in hepatocytes during the acute phase response [7]. We have previously
reported that serum LRG is a disease activity marker for inflammatory diseases such as rheu-
matoid arthritis and ulcerative colitis [8, 9]. Given that inflamed tissues can produce LRG [9],
it seemed logical that LRG concentrations in samples collected from the site of inflammation
might reflect the severity of local inflammation. Therefore, in this study, we investigated the
significance of sputum LRG as a novel biomarker of ongoing airway inflammation in asthma.

Materials and Methods
Study Subject

We obtained induced sputum samples from patients diagnosed with bronchial asthma

(N = 64) and healthy volunteers without respiratory symptoms (N = 22). The collection of
induced sputa was approved by the ethics committee of Hiroshima University, and all subjects
provided written, informed consent. Sputum specimens were obtained and processed as previ-
ously described by using dithiothreitol (DTT) [10-12]. The clinical characteristics of the study
subjects are shown in Table 1. Individual data sets of patients’ characteristics are provided in
S1 File.

Quantification of human LRG

The concentrations of sputum LRG were measured by sandwich enzyme-linked immunosor-
bent assay (ELISA). Monoclonal antibodies specific for human LRG (huLRB0091 and
rbLRB0048) were used as previously described with minor modification [13]. For the measure-
ment of sputum samples, we assessed the effect of DTT on the performance of ELISA, because
this reductant was used for the processing of sputa and remained in the ELISA samples at the
final concentration of 0.005%. In the presence of 0.005% DT, the absorbance values of sam-
ples containing recombinant human LRG was decreased to 70% of those without DTT, but
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Table 1. Clinical characteristics of the study subjects.

Subjects
Females/Males
Age years
Disease duration (y)
Smoking status (%)
Fomer
Current
None
ICS use (%)
Allergic history
Spirometry
FEV1.0 (L/s)
%FEV1.0
%PEF
Sputum cell profile

Total cell count (x10° cells/mL)

Neutrophils %
Lymphocytes %
Macrophages %
Eosinophils %
White blood cells (cells/pL)
Blood eosinophils %
Blood IgE (IU/mL)

Asthma HV
64 22
35/29 14/8
55.6+15.4 58.4+10.4
17.1+12.7 -
12(18.8) 2(9.1)
13 (20.3) 0
39 (60.9) 20(90.1)
54 (84.4) 0
34 (52.3) 0
2.1+0.73 2.36+0.53
85.91+21.42 94.76 £ 17.51
84.3+25.42 94.99+ 14.84
39.24 £ 37.13 34.28 + 30.55
56.62 £ 24.62 61.83+26.75
2.73+2.39 7.96+7.41
28.86+22.19 29+24.55
11.58+ 16.66 2.72+4.16
6489 + 1573 4899 + 1058
5.56 + 4.55 1.95+0.57
460+ 718 57.4+422

Data are represented as mean + sd or n (%), unless otherwise stated. HV, Healthy volunteer; ICS, inhaled corticosteroid; FVC, forced vital capacity; FEV1.0,
forced expiratory volume in 1 s; PEF, peak expiratory flow

doi:10.1371/journal.pone.0162672.t001

they still gave a linear relation with the added recombinant LRG. We therefore generated a
standard curve using recombinant human LRG supplemented with 0.005% DTT to determine
LRG levels of sputum samples.

Mice

Animal experiments were approved by the Animal Research Committee of Kochi Medical
School. Mice were maintained under specific pathogen free condition and physical condition
was routinely monitored. All surgeries were performed under sodium pentobarbital anesthesia,
and all efforts were made to minimize suffering. At the time of sacrifice, mice were euthanized
by blood collection by inferior vena cava under the anesthesia, and organs were excised for fur-
ther experiments. All animals were treated humanely, and experiments were conducted in
accordance with institutional ethics guidelines.

Murine model of asthma

To generate an asthma model in mice, C57BL/6 mice were sensitized on days 0 and 14 by intra-
peritoneal injection of 20 ug of ovalbumin (OVA) and 2 mg of AI(OH);. Fourteen days after
the second sensitization, mice were exposed to 1% OVA aerosols for 20 min daily for three con-
secutive days (days 28, 29 and 30) and control mice were exposed to aerosolized PBS. On day
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32, BALF was obtained and LRG concentrations were determined by ELISA optimized for
mouse samples.

Collection of BALF

The mice were sacrificed with a lethal dose of pentobarbital, the tracheas were cannulated with
a 20-gauge needle, and the lungs were lavaged once with 1 ml of saline and 0.05 mL of air. The
lavage fluids were centrifuged for 10 min at 500 g, and the supernatants were collected. BALF
samples were stored at -80°C until measurement of LRG.

Quantification of mouse LRG

BALF levels of mouse LRG were measured by the sandwich ELISA using specific antibodies.
To generate monoclonal antibodies against LRG, rabbits were immunized with the recombi-
nant mouse LRG protein. From rabbits, the genes of the variable regions of LRG-specific anti-
bodies were cloned and inserted into an expression vector containing the constant region of
mouse or rabbit IgG, as reported previously by Seeber et al [14] with a modification. Two
clones (mMLRA0010 and rLRA0094) were selected to construct a sandwich ELISA for the detec-
tion of mouse LRG. Briefly, 96-well microtiter plates were coated with the capture antibody
(0.5 ug/ml mLRA0010) and blocked with 10 mM Tris-HCl, 150 mM NaCl, pH7.5, 0.01%
Tween-20 (TBS-T) containing 0.5% BSA and Block Ace (DS Pharma Biomedical, Osaka,
Japan). BALF were 20-fold diluted with blocking buffer before added to the plate and incubated
for one hour. After washing, plates were incubated with the detection antibody (1 ug/ml
rLRA0094), followed by peroxidase-conjugated anti-rabbit IgG (Southern Biotech). The stan-
dard curve was constructed by serial dilution of recombinant mouse LRG.

Immunohistochemistry and PAS staining

Immunohistochemistry was performed using the ChemMate Envision method (DakoCytoma-
tion, Glostrup, Denmark). Briefly, four micro meter thick paraffin sections were de-waxed, rehy-
drated and incubated for 20 minutes in citrate buffer (10 mM citric acid, pH6.0) at 95°C—100°C
for antigen retrieval. Sections were treated with 0.3% H,O,, then blocked with Blocking One
(Nacalai, Kyoto, Japan) and incubated with anti-LRG1 monoclonal antibody (clone R322, IBL,
Gunma, Japan) and anti-MUC5AC antibody (ab3649, abcam Cambridge, MA, USA) overnight
at 4°C. After washing, sections were treated with Dako ChemMate ENVISION Kit (K5007)
according to manufacturer’s instructions. All sections were counterstained with hematoxylin.
Serial sections from each mouse were stained with periodic acid-Schiff (PAS).

Cell culture

Normal human bronchial epithelial cells (NHBE) (CC2540 Lot 0000429581, Lonza, Walkers-
ville, MD) were maintained in bronchial epithelial cell growth medium (BEGM BulletKit, CC-
3710, Lonza). Cells were cultured with or without 10 ng/mL IL-13 (213-ILB-005, R and D) for
5 days and further incubated with several cytokines for additional 24 h for western blot and 6 h
for quantitative PCR. Cytokines used in this experiments were purchased from Peprotech (IL-
6, TNF-o and IL-4) and R and D (IL-13, IL-25, IL-33 and TSLP).

Western blot

Cell culture supernatants were collected and were subjected to SDS-PAGE and western blot
analysis. Anti LRG1 antibody (HPA001888, Atlas Antibodies, Sweden) was used to detect
LRG.
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Sputum LRG (ng/ml)

Fig 1

Quantitative PCR analysis

Total RNA was isolated from cells and reverse-transcribed using the RNeasy Mini and Quanti-
Tect Reverse Transcription Kits (QIAGEN, Tokyo, Japan), respectively. Real-time PCR
(qPCR) was performed on ABI PRISM 7900HT Real-time system (Applied Biosystems, Darm-
stadt, Germany) using SYBR Premix Ex Taq (Takara Bio, Shiga, Japan). Target gene expression
levels were normalized by glyceraldehyde-3-phosphate dehydrogenase (G3PDH) levels in each
sample. Each reaction was performed in triplicate.

The primers for gPCR were designed and used as follows: human LRG, sense 5'- TTTACA
GGTGAAACTCGGGG—13, antisense 5 —ACCCCAAGCTAAGTGGGACT —3’; G3PDH,
sense 5- AGCAATGCCTCCTGCACCACCAAC—3;, 5’—CCGGAGGGGGCCATCCACA
GTCT—3’; SPDEEF, sense 5-AGCCTACAGAAGGGCAGT GA—3), antisense 5-AACTCAG
GGGTGCAGATGTC-3’; B-actin, sense 5-AGCCTCGCCTTTGCCGA-3’, antisense 5-CTGG
TGCCTGGGGCG-3

Results and Discussion

In this study, we aimed to examine the potential of sputum LRG as a new biomarker for airway
inflammation in asthma. To measure LRG concentrations in biological samples from human
and mice, we used sandwich ELISA systems optimized for each species.

The detailed clinical characteristics of the study subjects are shown in Table 1. We obtained
induced sputum samples from patients diagnosed with bronchial asthma (N = 64) and healthy
volunteers without respiratory symptoms (N = 22). There was no significant difference in age
or sex between the two groups. Sputum LRG levels were significantly higher in patients with
asthma (140.5 £ 151.0 ng/ml) than in healthy volunteers (66.9 + 59.6 ng/ml) (Fig 1). In asth-
matic patients, disease duration of patients did not show a correlation with sputum LRG
(Spearman rank correlation coefficients, p = 0.186). Sputum LRG levels were not significantly

p=0.00686

10001
800 - o
600 -
400
200+

0-

HV Asthma

. Up-regulation of LRG in asthmatic patients. Levels of LRG in sputum obtained from healthy volunteers

and patients with asthma. Concentrations of sputum LRG were determined by ELISA. The Mann-Whitney U-test
was used for statistical analysis. The individual values are provided in S2 File.

doi:10

.1371/journal.pone.0162672.9001
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Table 2. Correlations between sputum LRG concentration and sputum total cell counts.

total cell count

doi:10.1371/journal.pone.0162672.t002

Asthma HV Asthma + HV
rs=0.419 rs = 0.596 rs =0.429
p =0.0009 p =0.0066 p =0.00008

different between patients with or without smoking history (120.6 + 80.4 or 153.2 + 181.3,
respectively. p = 0.962, Mann-Whitney U test), or allergic diathesis (156.9 + 177.2 or

113.0 £ 85.3, respectively, p = 0.488, Mann-Whitney U test). In contrast, high levels of sputum
LRG were observed in patients with inhaled corticosteroid treatment compared to those with-
out this treatment (155.3 £ 158.3 or 60.3 + 56.2, respectively, p = 0.009, Mann-Whitney U
test). Statistical analysis of the correlation between sputum LRG levels and sputum cell profiles
revealed that sputum LRG levels were most strongly associated with cellular infiltrates in the
sputum (rs = 0.419, p = 0.0009; Table 2) and weakly with the percentages of sputum eosino-
phils (rs = 0.256, p = 0.042, Spearman rank correlation coefficients). In contrast, sputum LRG
levels were not positively correlated with blood IgE and blood eosinophils, known biomarkers
of allergic diseases (rs = 0.089, p = 0.625 and rs = -0.366 p = 0.045, respectively, by Spearman
rank correlation coefficients). These results collectively suggest that sputum LRG is a potential
biomarker of asthma, whose levels are not significantly affected by smoking or allergic history.
Furthermore, the increase in sputum LRG is likely to reflect local airway inflammation related
to various leucocytes, presumably not limited to eosinophilic inflammation. Our data also sug-
gest that steroid treatment may affect LRG levels in the airway, but high LRG levels in patients
treated with ICS may be explained by the general notion that this population contains patients
with severe, unstable asthma compared to that without ICS treatment.

Next, we investigated OVA-induced asthma model mice to determine the mechanism
underlying the up-regulation of LRG in sputum. Consistent with the elevated sputum LRG lev-
els in patients with asthma, LRG concentrations in the BALF were significantly higher in the
mice treated with OVA (212.87 £ 69.96 ng/ml) than those in control mice (39.78 + 19.98 ng/
ml) (Fig 2A, left). While we had previously reported that serum LRG was increased in murine
models of inflammatory diseases, such as DSS-induced colitis and LPS-induced sepsis [9], we
observed no significant elevation in serum LRG of this model (control 4.57 + 0.76 pg/ml, OVA
5.81 + 1.57 pg/ml) (Fig 2A, right). During systemic inflammation, circulating cytokines such as
IL-6, IL-1B and TNF-o can stimulate hepatocytes to release abundant LRG in sera [7]. How-
ever, in asthma model mice, we assume that LRG is produced locally at the inflammatory air-
ways and is preferentially secreted into the airway.

To identify the cell types expressing LRG at the site of inflammation, paraffin sections of
mouse lungs with or without OVA treatment were immunostained with anti-LRG antibody
(Fig 2B and 2C). In control mice lungs, LRG was weakly detectable in a fraction of alveolar epi-
thelial cells but not in bronchial epithelial cells. However, in OVA-treated mouse lungs, in
which inflammatory cells accumulated around airways and blood vessels, a subpopulation of
bronchial epithelial cells were intensely stained with anti-LRG antibody in addition to alveolar
cells. The airway epithelium consists of two principal cell types: ciliated cells and non-ciliated
secretory cells [15]. High-power microscopic imaging revealed that LRG was detected only in
non-ciliated cells (SIA Fig). Furthermore, immunohistochemistry of Ezrin, the apical protein
expressed in ciliated cells but not in non-ciliated cells, showed that LRG-positive cells corre-
sponded to Ezrin-negative cells (S1B and S1C Fig). These results suggest that LRG is produced
by non-ciliated secretory cells.

PLOS ONE | DOI:10.1371/journal.pone.0162672 September9, 2016 6/12



o @
@ : PLOS | ONE LRG as a Biomarker of Airway Inflammation

A
400 - p=0.00013 10 4 n.s.
z © Z 3 o
£ 300 - S |
B E 8
i =
S 200 A & g 8
- - 4 4
= - I
= 100 - o =
< o 5 2 A
-] _8_ n
0 0
Control OVA Control OVA

- -

Fig 2. Detection of LRG in BALF, serum and lung section in a murine model of asthma. A) Levels of
LRG in BALF and serum in a mouse model of asthma. Concentrations of BALF and serum LRG were
determined by ELISA. The Student’s t-test was used for statistical analysis. The individual values are
provided in S3B-S3E File) Localization of LRG in mouse lung. Paraffin sections of the lung from control (B
and D) and OVA-treated (C and E) mouse were stained with anti-LRG antibody (B and C) and PAS (D and E).
Scale bar, 100 pm. F and G) Immunohistochemisry of MUC5AC (F) and LRG (G) of the lung from OVA-
treated mouse. Arrows show MUC5AC (F) or LRG (G) positive cells. Scale bar, 20 um

doi:10.1371/journal.pone.0162672.9002
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We then performed PAS staining using serial sections to specify mucus-producing epithelial
cells (Fig 2D and 2E). When treated with OVA, PAS-stained bronchial epithelial cells markedly
increased, implying that mucus production was enhanced by airway inflammation. Strikingly,
LRG-stained bronchial epithelial cells in OVA-treated mice were associated with PAS-positive
epithelial cells, indicating that LRG is especially up-regulated in mucus-producing cells. Fur-
thermore, immunohistochemistry showed that the expression of LRG correlated with
MUCS5AC, a marker of goblet cell metaplasia in murine airways (Fig 2F and 2G) [16]. Given
that LRG expression was increased in inflamed colonic mucosa [9], it is possible that mucosal
epithelial cells are a critical source of LRG during inflammatory reactions. At present, whereas
the role of LRG in the airway inflammation is unknown, locally secreted LRG may contribute
to the pathogenesis of asthma, because LRG was reported to modulate signaling of TGF-f [17,
18], a major stimulator of subepithelial fibrosis and airway remodeling.

To investigate the mechanism of LRG induction in bronchial epithelial cells, we used nor-
mal human bronchial epithelial (NHBE) cells for analysis. In asthma, there is an increase in the
number of goblet cells, referred to as goblet-cell metaplasia (GCM). GCM is thought to be due
to the transdifferentiation of ciliated cells and Clara cells in bronchial epithelia, rather than due
to the proliferation of goblet cells themselves [19]. Since IL-13 is known to induce GCM in
bronchial epithelial cells in vitro and in vivo [20-23], aliquots of NHBE cells were pretreated
with IL-13 [24]. As expected, the expression of SPDEF, a marker of GCM, was increased in IL-
13-treated cells (S2A Fig). Western blot analysis revealed that NHBE cells, with or without IL-
13 pretreatment, have an ability to secrete LRG in culture supernatants (Fig 3A). Cytokine
stimulation of control cells cultured without IL-13 induced a marginal, if any, increase in LRG
secretion (Fig 3A, left). In contrast, stimulation of IL-13-pretreated cells with TNF-o and IL-4
noticeably increased LRG in supernatants (Fig 3A, right). Furthermore, stimulation by these
cytokines induced significant up-regulation of LRG gene expression in IL-13-pretreated cells
(Fig 3B). This suggests that IL-13-induced transdifferentiation combined with stimulation by
asthma-related cytokines such as TNF-a and IL-4 enables the epithelial cells to upregulate both
transcription and secretion of LRG. This finding is in accordance with the results obtained in
the murine asthma model, in which LRG production was observed in non-ciliated, mucus-pro-
ducing cells in the airway. Thus, we speculate that transdifferentiation to mucus-producing
cells is critical for epithelial cells to increase their LRG-producing ability, which is stimulated
further by additional cytokines such as TNF-a and IL-4. In addition, because inflammatory
cytokine signaling is known to be inhibited by corticosteroids, as demonstrated by the downre-
gulation of TNF-a-induced VCAM or ICAM expression in bronchial epithelial cells [25, 26],
our findings argue against the idea that ICS treatment directly increase LRG expression in the
airways by enhancing proinflammatory signaling.

Recently, periostin has been highlighted as a potential target for the diagnosis of asthma [27,
28]. Like LRG, sputum periostin levels are elevated in patients with asthma [29] and airway epi-
thelial cells were demonstrated to be the major source of periostin [30]. Interestingly, periostin is
considered to be a biomarker of Th2-related eosinophilic inflammation and periostin gene
expression is induced by IL-13 and IL-4 but not by TNF-o [30]. In contrast, whereas LRG was
induced by IL-4 in IL-13-primed NHBE cells, IL-13 alone did not increase LRG levels in NHBE
cells and TNF-o was the most potent in LRG induction (Fig 3). In addition, upon stimulation of
transdifferentiated NHBE cells with TSLP, IL-25 and IL-33, Th2-promoting cytokines known as
epithelial-related cytokines, LRG expression tended to be increased by IL-33 but not by TSLP
and IL-25 (S2B Fig). It is suggested that IL-33 induced LRG gene expression via the proinflam-
matory pathway similar to IL-1f. Thus, LRG induction in epithelial cells is not specific to Th2-re-
lated condition, but rather mediated by several Th2 cytokines and prototypic inflammatory
cytokines such as TNF-o.. Because asthma is a complex syndrome and the disease can be driven
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Fig 3. Induction of LRG in primary bronchial epithelial cells. A) LRG secretion in culture supernatant by
primary bronchial epithelial cells. Cells were incubated with IL-13 for 5 days and then treated with indicated
cytokines for 24 h. Control cells were incubated without IL-13 for 5 days and further stimulated by cytokines. LRG
protein in culture supernatantwas detected by western blot. B) LRG gene expression in primary bronchial epithelial
cells treated with IL-13 for 5 days. Cells were stimulated by indicated cytokines for 6 h. LRG mRNA expression was
analyzed by quantitative PCR. Dunnett’s test was used for statistical analysis. The individual values are provided in
S4 File.

doi:10.1371/journal.pone.0162672.9003

0.000

not only by Th2 inflammation but also by non-Th2 immune response [31], sputum LRG may be
useful to monitor both Th2 and non-Th2 airway inflammation in asthma.

In conclusion, we demonstrated that sputum LRG levels are significantly increased in
patients with asthma. We also found that BALF LRG is increased in the murine asthma model
and that LRG is expressed in asthmatic airway epithelia. Increased production and secretion of
LRG in bronchial epithelial cells require not only the mucous differentiation of these cells but
also the additional stimulation by the inflammatory cytokines such as TNF-o and IL-4. Our
findings suggest that sputum LRG is a promising biomarker of local inflammation in asthmatic
airways. It would be of great importance to examine sputum LRG levels before and after thera-
peutic intervention, in particular with ICS. Further prospective studies are underway to assess
the clinical benefit of this novel biomarker.

Supporting Information

S1 Fig. (A) Microscopy in high-power fields. Microscopic observation of OVA treated
mouse bronchi. A paraffin section of mouse lung was immunostained with anti-mouse LRG
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antibody. (B) and (C) Localization of Ezrin and LRG in the lung. Parrafin sections of the
lung from OVA-treated mouse were stained with anti-Ezrin and anti-mouse LRG antibodies.
Arrows show Ezrin-negative (B, dotted line) and LRG-positive (C) cells. Scale bar = 50 pm
(PDF)

S2 Fig. Gene expressions of SPDEF and LRG in primary bronchial epithelial cells. (A)
Change of SPDEF gene expression in primary bronchial epithelial cells. Cells were treated with
or without 10 ng/mL of IL-13 for 5 days. SPDEF gene expression was measured by quantitative
PCR. (B) LRG gene expression in cells treated with IL-13 was measured by quantitative PCR.
The individual values are provided in S4 File.

(PDF)

S1 File. Patients’ characteristics. Sheet 1. Result of DTT spiking experiments of human LRG
ELISA. Sheet 2. Individual data sets of patients’ characteristics.
(XLSX)

$2 File. Human LRG ELISA. Levels of LRG in sputum (Sheet 1) and serum (Sheet 2) of
patients with asthma and healthy volunteers.
(XLSX)

S3 File. Mouse LRG ELISA. Levels of LRG in BALF (Sheet 1) and serum (Sheet2) of OVA-
treated or control mice.
(XLSX)

$4 File. Gene expressions in bronchial epithelial cells. Expression of genes in primary bron-
chial cells measured by quantitative PCR. SPDEF (Sheet 1) and LRG (Sheet 2 and 3) mRNA
was evaluated.

(XLSX)
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